JPS5987036A - Preparation of microcapsule - Google Patents
Preparation of microcapsuleInfo
- Publication number
- JPS5987036A JPS5987036A JP57196036A JP19603682A JPS5987036A JP S5987036 A JPS5987036 A JP S5987036A JP 57196036 A JP57196036 A JP 57196036A JP 19603682 A JP19603682 A JP 19603682A JP S5987036 A JPS5987036 A JP S5987036A
- Authority
- JP
- Japan
- Prior art keywords
- emulsifying
- particle size
- spindle
- liquid
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003094 microcapsule Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title description 3
- 239000007788 liquid Substances 0.000 claims abstract description 48
- 239000002775 capsule Substances 0.000 claims abstract description 33
- 229920000642 polymer Polymers 0.000 claims abstract description 10
- 239000000178 monomer Substances 0.000 claims abstract description 9
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229920005989 resin Polymers 0.000 claims abstract description 6
- 239000011347 resin Substances 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 239000011148 porous material Substances 0.000 claims description 10
- 239000007764 o/w emulsion Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000008267 milk Substances 0.000 claims 1
- 210000004080 milk Anatomy 0.000 claims 1
- 235000013336 milk Nutrition 0.000 claims 1
- 230000001804 emulsifying effect Effects 0.000 abstract description 55
- 239000002245 particle Substances 0.000 abstract description 47
- 238000009826 distribution Methods 0.000 abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000839 emulsion Substances 0.000 abstract description 8
- 238000010008 shearing Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 2
- 229920000877 Melamine resin Polymers 0.000 abstract 1
- 229920001807 Urea-formaldehyde Polymers 0.000 abstract 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 abstract 1
- 238000004945 emulsification Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 26
- 239000000243 solution Substances 0.000 description 12
- 230000004087 circulation Effects 0.000 description 10
- 238000011161 development Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920003169 water-soluble polymer Polymers 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012695 Interfacial polymerization Methods 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- LIZLYZVAYZQVPG-UHFFFAOYSA-N (3-bromo-2-fluorophenyl)methanol Chemical compound OCC1=CC=CC(Br)=C1F LIZLYZVAYZQVPG-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ZKURGBYDCVNWKH-UHFFFAOYSA-N [3,7-bis(dimethylamino)phenothiazin-10-yl]-phenylmethanone Chemical compound C12=CC=C(N(C)C)C=C2SC2=CC(N(C)C)=CC=C2N1C(=O)C1=CC=CC=C1 ZKURGBYDCVNWKH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
- B01J13/18—In situ polymerisation with all reactants being present in the same phase
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Color Printing (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は油滴を内包する微小カプセルの製造方法に関す
るもので、特に水中油滴型エマルジョンの形成工程に特
徴を有し、粒子径の均一な微小カプセル子製造する方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing microcapsules containing oil droplets, and is particularly characterized by a step of forming an oil-in-water emulsion, and a method for producing microcapsules with uniform particle size. It is related to.
周知の如く、微小カプセルは、化学的反応性を有する物
質、空気酸化等を受は易l不安定な物質、液体状まえは
気体状物質等を安定に保持するのに適している。現在で
は、この微小カプセルの応用技術は多岐に及び、医薬品
、農薬、染料、接着剤、液体燃料、香料、液晶等が実用
化されている。この内でも、感圧複写紙への応用は長年
に亘る工業的実績を有している。As is well known, microcapsules are suitable for stably holding chemically reactive substances, unstable substances susceptible to air oxidation, liquid or gaseous substances, and the like. Currently, there are a wide range of application technologies for these microcapsules, and they have been put into practical use in pharmaceuticals, agricultural chemicals, dyes, adhesives, liquid fuels, fragrances, liquid crystals, etc. Among these, application to pressure-sensitive copying paper has a long industrial track record.
微小カプセルの製造方法としては、コアセルベーション
法、界面重合法、インサイツ(In−situ)法等、
各種の方法が知られているが、本発明が対象とする尿素
−ホルマリン又はメラミン−ホルマリンの樹脂カプセル
はインサイツ法に属するものであり、インサイツ法は、
一般に、分散媒体に分散した芯物質の内側又は外側の一
方のみから壁膜となるモノマー、低重合物又は初期縮合
物を重合触媒と共に供給して芯物質の表面で重合又は縮
合反応を行なわせるカプセル化法である。Methods for producing microcapsules include coacervation method, interfacial polymerization method, in-situ method, etc.
Although various methods are known, the urea-formalin or melamine-formalin resin capsules targeted by the present invention belong to the in-situ method;
In general, a capsule in which a monomer, a low polymer, or an initial condensate forming a wall film is supplied together with a polymerization catalyst from either the inside or outside of a core material dispersed in a dispersion medium, and a polymerization or condensation reaction is carried out on the surface of the core material. It is a legal method.
この微小カプセルの製造方法によって得られる微小カプ
セルの粒子形態は、各粒子が分離して存在する単核カプ
セルが形成される。これらの粒子形態は粒子径及び粒度
分布で表現することが通則になっている。微小カプセル
の粒子径及び粒度分布がカプセル品質決定上の重要な因
子となっている為に、微小カプセルの製造に際しては、
所望の粒子径で且つ粒度分布の狭いカプセルが安定的に
得られることが望オれている。The particle form of the microcapsules obtained by this method for producing microcapsules is a mononuclear capsule in which each particle exists separately. It is a general rule that these particle forms are expressed by particle size and particle size distribution. Since the particle size and particle size distribution of microcapsules are important factors in determining capsule quality, when manufacturing microcapsules,
It is desired to stably obtain capsules having a desired particle size and a narrow particle size distribution.
これを感圧複写紙用の無色染料含有カプセルについて説
明すれば、一般に、多数枚複写時の記録発色性と保存時
や取扱い時の静圧、摩擦による発色汚れに対する耐汚染
性とは相反する傾向にあり、多数枚複写時の記録発色付
を向上させれば耐汚染性が不充分となり、耐汚染性を重
視すれば多数枚複写の目的が完全には達成されない。こ
の問題をカプセルの粒度分布からみれば、一般に、原紙
の諸性質、油性液中の無色染料の濃度、壁膜材料と油性
液の滑止、カプセル塗液中の各材料の量比を一足条件に
した場合、粒子径を均一に、即ち、粒度分布を狭く調整
すればする程、記録発色性、耐汚染性共、て優れた感圧
複写紙が得られる傾向にある。その理由は、発色汚れの
主たる原因が破壊され易い巨大粒子径のカプセルが混在
していることにるり、一方、平均粒子径より極端に小さ
いカプセルはg1時にも破壊されず記録発色に寄与しな
いためである。従って、良好な感圧複写紙を製造する上
で、所望の粒子径で且つ粒度分布の狭いカプセルを渭る
ことは、重要な技術課題となっている。To explain this about colorless dye-containing capsules for pressure-sensitive copying paper, there is generally a tendency for recording color development during multi-copying to be at odds with stain resistance against color development caused by static pressure and friction during storage and handling. Therefore, if the recording color development during multi-sheet copying is improved, stain resistance becomes insufficient, and if stain resistance is emphasized, the purpose of multi-sheet copying cannot be completely achieved. If we look at this problem from the particle size distribution of capsules, we can generally consider the various properties of the base paper, the concentration of colorless dye in the oil-based liquid, the slip resistance between the wall material and the oil-based liquid, and the ratio of each material in the capsule coating liquid as conditions. In this case, the more uniform the particle size, that is, the narrower the particle size distribution, the more excellent the pressure-sensitive copying paper tends to be in both recording color development and stain resistance. The reason for this is that the main cause of colored stains is the presence of large particle size capsules that are easily destroyed, while capsules that are extremely smaller than the average particle size are not destroyed even at G1 and do not contribute to recording color development. It is. Therefore, in producing a good pressure-sensitive copying paper, it is an important technical issue to produce capsules with a desired particle size and a narrow particle size distribution.
ここで、微小カプセルの製造工程を概説すれば、概ね次
の3工程から成っているといえる。Here, if we outline the manufacturing process of microcapsules, it can be said that it generally consists of the following three steps.
(1)カプセルに内包すべき油性液(ポリマー又はモノ
マーを含有する場合もある。)の調整及び水溶性のモノ
マー又はポリマーの溶解等の材料の調整工程。(1) Preparation of materials such as preparation of an oily liquid (which may contain a polymer or monomer) and dissolution of a water-soluble monomer or polymer to be included in the capsule.
(2)前記油性液と水溶性モノマー又はポリーーの溶液
を混合、乳化し水中油滴型エマルジョ/を形成する工程
。(2) A step of mixing and emulsifying the oily liquid and a water-soluble monomer or poly solution to form an oil-in-water emulsion.
(3)系の温度、PH,固形分a度等を制御しながら相
分離、壁膜の硬化・補強を行なう壁膜形成処理工程。(3) A wall film forming process in which phase separation, hardening and reinforcement of the wall film are performed while controlling the temperature, pH, solid content, etc. of the system.
このうち、(2)のエマルジョンの形成二相は、微小カ
プセルの製造上カプセルの粒子径及び粒度分布を制御す
る上で極めて重要な工程である。っ才り、乳化工程で均
一な粒子径のエマルジョンを調整すれば、均一な粒子径
のカプセルが得られる。Among these, the two-phase emulsion formation (2) is an extremely important step in controlling the particle size and particle size distribution of the capsules in the production of microcapsules. In fact, if an emulsion with a uniform particle size is prepared in the emulsification process, capsules with a uniform particle size can be obtained.
ところが、乳化については工学的に十分な解明がなされ
ていない部分が多々ある。攪拌又は乳化の解明を難しく
している理由として、ニュートン液体と非ニユートン液
体の区別、混合二液の種類による粘度、界面張力等物性
の差、乳化翼の形状・回転数、バッフルの有無等乳化機
の多様性などが挙げらニ、これらの攪拌又は乳化の要因
が複雑且つ多岐にわたって錯綜しているためとされてい
る。ところで、微小カプセル製造に於ける乳化工程とは
、数μ〜数百μの水中油滴型エマルジョンの形成、即5
、油性1夜の微小滴を水溶性のモノマー又はポ・1マー
を含む溶液に内包させる工程を意味する。との場合の乳
化は攪拌を極端に強くした場合と考することかでき、乳
化効是は権門の液の流動状態(てよって大とく影響され
る。液の流動状態としては巨視的な流れ、即ち循環流と
乱流とを含むは(丁・舎内全体の対流状態と、微視的な
流れ、即ち液の粘性、界面張力が強く作用する乳化翼周
辺の局5的な剪断流とに分けて考兄ることかできる。However, there are many aspects of emulsification that have not been sufficiently elucidated from an engineering perspective. The reasons why it is difficult to understand stirring or emulsification include the distinction between Newtonian liquids and non-Newtonian liquids, differences in physical properties such as viscosity and interfacial tension depending on the type of mixed two liquids, the shape and rotation speed of emulsifying blades, and the presence or absence of baffles. This is said to be due to the diversity of machines and the complicated and wide-ranging factors involved in stirring or emulsification. By the way, the emulsification process in the production of microcapsules refers to the formation of an oil-in-water emulsion with a size of several microns to several hundred microns.
, refers to the process of encapsulating oily microdroplets in a solution containing a water-soluble monomer or polymer. In this case, emulsification can be thought of as a case where stirring is extremely strong, and the emulsification effect is greatly influenced by the fluid flow state of the liquid. In other words, it includes circulation flow and turbulent flow (convection state throughout the building), and microscopic flow, that is, localized shear flow around the emulsifying blade where liquid viscosity and interfacial tension act strongly. We can consider them separately.
そこで、従来、微小カプセルの製造用に使用さ几ている
乳化機について考察する。一般に使用されている志のと
して、攪拌機、ホモミキサー、ホモジナイザー、コロイ
ドミル、フロージェントミキサー、インラインミルを一
挙げることができるが、これら■乳化機はいずれも外部
動力によって嘔動される乳化翼の回転運動による巨視的
な流れと微視的な流れの組合せによって乳化効果を得て
いるものである。この場合、巨視的な流れを加速又は補
足するためにポンプや攪拌装置を系中に組入れることが
多い。その乳化の原理を第1因に示す従来の代表的な乳
化機によって説明する。Therefore, an emulsifying machine conventionally used for manufacturing microcapsules will be considered. Commonly used machines include stirrers, homomixers, homogenizers, colloid mills, flowant mixers, and in-line mills, but all of these emulsifying machines use emulsifying blades that are driven by external power. The emulsification effect is obtained by a combination of macroscopic flow and microscopic flow due to rotational motion. In this case, a pump or stirring device is often incorporated into the system to accelerate or supplement the macroscopic flow. The principle of emulsification will be explained using a typical conventional emulsifying machine shown in the first factor.
第1図に於て、乳化槽1には液5が保持されており、こ
の乳化槽1の上部に設置されたモータ2はシャツ)3に
より乳化槽中の乳化翼4と連結されている。従って、モ
ータ2が始動すると、その回転力はシャフト3を介して
乳化翼4に伝達されるので、乳化m1に保持されている
液5を攪拌、乳化することができる。この乳化翼は主に
2つの作用を行なうと考えられる。即ち、巨視的な流れ
として液を循環させ、微視的な流れとして液を剪断する
。乳化翼が高速回転すると、乳化翼のごく周辺では剪断
力が増加し、吐出と流入の双方の液の激しい衝突を生じ
乳化が行なわれる。一方、乳化翼の周辺から排除された
液は槽内金上下循猿し、同伴流と混り合って再び乳化域
に還流される。この循環流は乳化槽の構造、寸法、液の
粘度、流速分布等によって変化する極めて不規則なもの
であるが、粒度分布を考える上からは、循環流が何度乳
化域を通過したか(平均循環回数)が重要となる。つま
り、乳化翼の回転運動に五り乳化効果を生じさせる従来
の乳化機に於ては、乳化翼のごく周辺に生じる液剪断と
槽内の循環流に基づく平均循環回数とによって乳化効果
が決定されるということができる。In FIG. 1, a liquid 5 is held in an emulsifying tank 1, and a motor 2 installed at the top of the emulsifying tank 1 is connected to an emulsifying blade 4 in the emulsifying tank by a shirt 3. Therefore, when the motor 2 starts, its rotational force is transmitted to the emulsifying blade 4 via the shaft 3, so that the liquid 5 held in the emulsifier m1 can be stirred and emulsified. This emulsifying wing is thought to perform two main functions. That is, the liquid is circulated as a macroscopic flow and sheared as a microscopic flow. When the emulsifying blade rotates at high speed, shearing force increases in the immediate vicinity of the emulsifying blade, causing violent collisions between the liquids both discharged and inflowed, resulting in emulsification. On the other hand, the liquid removed from the periphery of the emulsifying blade circulates up and down the tank, mixes with the accompanying flow, and returns to the emulsifying area. This circulating flow is extremely irregular and varies depending on the structure, dimensions, liquid viscosity, flow velocity distribution, etc. of the emulsifying tank, but from the perspective of particle size distribution, it is important to consider how many times the circulating flow passes through the emulsifying zone ( The average number of cycles) is important. In other words, in conventional emulsifiers that produce an emulsifying effect through the rotational movement of the emulsifying blade, the emulsifying effect is determined by the liquid shear that occurs in the immediate vicinity of the emulsifying blade and the average number of circulations based on the circulating flow in the tank. It can be said that it is done.
従っ人、従来の乳化機の短所は、(1)乳化域が乳化翼
のとぐ周辺のみに限られており、乳化域への平均循環回
数が液全体では不均一なこと、(2)剪断力が乳化1の
回転中心に対する遠近で不均一なことの両東因により、
粒度分布が広くなってしまうことにある。このため、微
小カプセル製造に使用する現実の乳化機については、槽
内構造、乳化翼の形状及び回転速度、乳化時間等を調整
し、ある程度の改善効果を得ているが、これには限界が
ある。特に、大型乳化機を使用して量産する場合、カプ
セルの粒度分布の広がりは一層大きくなる。Accordingly, the disadvantages of conventional emulsifiers are (1) the emulsifying area is limited to the area around the emulsifying blade, and the average number of circulations to the emulsifying area is not uniform throughout the liquid; (2) shear Due to the fact that the force is non-uniform near and far from the center of rotation of emulsion 1,
The problem is that the particle size distribution becomes wider. For this reason, in the actual emulsifying machines used for microcapsule production, improvements have been made to some extent by adjusting the internal structure of the tank, the shape and rotation speed of the emulsifying blades, the emulsifying time, etc., but there are limits to this. be. In particular, when mass-producing the capsules using a large emulsifying machine, the particle size distribution of the capsules becomes even wider.
本発明は、蒸上の如き外部動力による乳化翼の回転を利
用して乳化工程を行なう従来の微小カプセルの製造方法
とは基本的に異人る新規な微小カプセルの製造方法を提
供するものである。即ち、本発明は尿素−ホルマリン又
はメラミン−ホルマリンの樹脂カプセルの製造に於て、
油性液と水溶性のモノマー又はポリマーを含む溶液とを
混合し、略紡錘形の空間を有する乳化部材に対し、その
略紡錘形中央部の接線方向に開口した流入細孔から上記
混合液を圧入し、空間中を渦状に回転させなから略紡錘
形の両端に開口した流出細孔に至らしめて水中油滴型エ
マルジョンを形成した彼、壁膜形成処理を施すことを特
徴とする微小カプセルの製造方法を提供するものである
。The present invention provides a novel method for manufacturing microcapsules that is fundamentally different from conventional methods for manufacturing microcapsules in which the emulsification process is performed using rotation of emulsifying blades by external power such as steaming. . That is, in the production of urea-formalin or melamine-formalin resin capsules, the present invention
Mixing an oil-based liquid and a solution containing a water-soluble monomer or polymer, and pressurizing the mixed liquid into an emulsifying member having a substantially spindle-shaped space through an inlet pore opened in a tangential direction at the center of the substantially spindle-shaped part, He formed an oil-in-water emulsion by rotating the microcapsules in a vortex in a space through outflow pores opened at both ends of a substantially spindle shape, and provided a method for producing microcapsules characterized by a wall film formation process. It is something to do.
本発明の基本的特徴は、槽中の液を回転する翼で乳化す
る従来の方法とは反対に、液をニマルジョンの形成に心
安な乳化域に圧送することにある。The basic feature of the invention is that, as opposed to the conventional method of emulsifying the liquid in a tank with rotating blades, the liquid is pumped into an emulsification zone where it is safe for the formation of a nimulsion.
つまり、安定した剪断力が得られる乳化空間を形成して
おき、この乳化空間に圧力制御可能な条件下で合液を通
過させることによって、水中油部屋エマルジョンを形成
し、もつで所望の粒子径で且つ粒度分布の狭い微小カプ
セルを得ることにある。In other words, an emulsification space where a stable shear force can be obtained is formed, and by passing the combined liquid through this emulsification space under pressure-controllable conditions, an oil-in-water chamber emulsion is formed, and the desired particle size is obtained. The objective is to obtain microcapsules with a narrow particle size distribution.
本発明(ζ於ける乳化のための空間は略紡錘形をしてお
り、との略紡錘形中央部の接線方向に開口した流入細孔
と略紡錘形の両端に開口した流出細孔とを具備している
。空間の形状は略紡錘形であれば足り乙ので、例えば、
円柱の上下両底面に円錐や截頭円錐を連設した形状等、
紡錘形の類似形でも良いが、この場合にも流入細孔は円
柱の接線方向に開コされ、又、流出細孔は円錐の頂点或
いは截頭円錐の上底面中央に開口していなければならな
い。In the present invention, the space for emulsification in ζ is approximately spindle-shaped, and includes inflow pores that open in the tangential direction at the center of the approximately spindle shape, and outflow pores that open at both ends of the approximately spindle shape. It is sufficient that the shape of the space is approximately spindle-shaped, so for example,
Shapes such as a cone or truncated cone connected to the top and bottom of a cylinder, etc.
It may be similar to a spindle shape, but in this case as well, the inflow pores must open in the tangential direction of the cylinder, and the outflow pores must open at the apex of the cone or at the center of the upper base of the truncated cone.
本発明と於ける乳化の基本理念を上記した円柱に截頭円
錐を連設した空間を有する乳化部材について説明すれば
、円柱状空間に流入した液をその接線方向から軸中心に
向って徐々;て回転半径を小さくしながら渦状に回すこ
とにある。つまり、予備攪拌された二液は円柱状空間内
に接線方向から入り、軸中心に向って徐々に内側へと渦
状に回る流体層となる。この流体層は中心に向って層状
をなして流れるので、内側に向うにつれ流れる半径は小
さくなっていき、反対に速度は増加し、ていく。The basic idea of emulsification in the present invention will be explained with respect to the above-mentioned emulsifying member having a space in which a truncated cone is connected to a cylinder. The liquid flowing into the cylindrical space is gradually directed from the tangential direction toward the axial center; The idea is to rotate it in a spiral while reducing the radius of rotation. In other words, the pre-stirred two liquids enter the cylindrical space from a tangential direction and form a fluid layer that gradually swirls inward toward the axial center. This fluid layer flows in a layered manner toward the center, so as it moves inward, the radius of the flow becomes smaller and, conversely, the velocity increases.
隣接した層の流れは速度が異なっているため、強い剪断
力を受ける結果乳化を行うものである。Since the flows in adjacent layers have different velocities, emulsification occurs as a result of receiving strong shearing force.
この現象は完全に解明されているわけでは々いが、隣接
した層間に渦振(ウォルテノクス・コア)或いはズレ剪
断が形成し、これによって各粒子は高周波振動の如く高
エネルギーを受けて小粒化するものと考えられる。これ
に加えて、乳化空間に流入して最終的に流出細孔から流
出する聾での過程には、通過流自体の運動による衝撃又
は剪断をも受けていると考えられる。渦流の強弱は乳化
粒子の形成条件に大きく影響するが、乳化部材に流入す
る液の圧力の調整によって、この渦流の強弱を制御する
ことができる。流入液の圧力を上げれば、乳化力は強く
なり、圧力を下げれば、乳化力は弱くなる。Although this phenomenon is not completely understood, vortex vibrations (Woltenox core) or shear shear are formed between adjacent layers, and each particle receives high energy like high-frequency vibration and becomes smaller. considered to be a thing. In addition to this, it is thought that the process in which the flow flows into the emulsification space and finally flows out from the outflow pores is also subjected to impact or shear due to the movement of the passing flow itself. Although the strength of the vortex greatly influences the conditions for forming emulsified particles, the strength of the vortex can be controlled by adjusting the pressure of the liquid flowing into the emulsifying member. If the pressure of the inflow liquid is increased, the emulsifying power becomes stronger, and if the pressure is lowered, the emulsifying power becomes weaker.
本発明に於ける微小カプセルの製造方法の概略を第2図
に示す構成例に従って一般的に説明する。The outline of the method for manufacturing microcapsules according to the present invention will be generally explained according to the configuration example shown in FIG.
第2図に於て、ステンレス製の保持槽6、定容ポンプ7
及び乳化部材8は、順次、ノ(イブ11a+11b+L
ieによh連結されており、循環システムを構成してい
る。パイプllcは二股に分岐し、一方を保持槽6て他
方を壁膜形成処理槽9に各々、<ルプ12b。In Figure 2, a stainless steel holding tank 6 and a constant volume pump 7 are shown.
and the emulsifying member 8 are sequentially
ie, forming a circulation system. The pipe llc branches into two branches, one connected to the holding tank 6 and the other connected to the wall film forming treatment tank 9, respectively.
12cを介して接続されている。保持槽6の送出口Ic
ハパルブ12aが設けられている。12c. Outlet port Ic of holding tank 6
A Haparub 12a is provided.
従って、パルプ12cのみを閉じた状態で、保持槽6に
乳化すべき二液10を入れ定容゛ポンプ7を始動すれば
、保持槽6より送出された二液は乳化部材8に圧入され
、乳化されて再び保持槽6に戻る。Therefore, with only the pulp 12c closed, if the two liquids 10 to be emulsified are placed in the holding tank 6 and the constant volume pump 7 is started, the two liquids sent out from the holding tank 6 will be press-fitted into the emulsifying member 8. It is emulsified and returns to the holding tank 6 again.
上記の如き乳化処理を平均循環回数を考慮して一定時間
行なった後、パルプ12bを閉じ、パルプ12cを開け
て液を次の壁膜形成処理槽9に移送し、ここで壁膜形成
処理を施して微小カプセルを得る。After carrying out the emulsification treatment as described above for a certain period of time considering the average number of circulation, the pulp 12b is closed, the pulp 12c is opened and the liquid is transferred to the next wall film forming treatment tank 9, where the wall film forming treatment is carried out. to obtain microcapsules.
不発′fJIて於ける水中油滴型エマルジ、ヨンの形成
工程は、特異な乳化空間を有する乳化部材と定容ポンプ
の使用によって実現されるものである。ここに使用され
る乳化部材は、従来の回転翼の如く外部動力によって液
剪断運動を行なうものではなく、液そのものが乳化部材
内を通過する際に渦流及び衝撃による結果として剪断効
果を生ずるものである。The process of forming an oil-in-water type emulsion in the non-explosion process is realized by using an emulsifying member having a unique emulsifying space and a constant volume pump. The emulsifying member used here does not perform liquid shearing motion using external power like conventional rotary blades, but rather produces a shearing effect as a result of vortices and impact when the liquid itself passes through the emulsifying member. be.
この乳化部栃に於ては、流入圧力Pを高くすると粒子径
は小さくなる。液が乳化部材を通過した確率を示す平均
循環回数Nは、乳化すべき混合液の総量をV (ynl
)、定容ポンプの吐出量f:A(=&/秒)、T
乳化処理時間をT(秒)とすれば、N=−一によって求
めることができる。そして、液剪断効率の良否は平均循
環回数に影響するので、処理時間を短縮し乳化効率を上
げるためには、効率の良い液剪断手段を選択することが
必要である。In this emulsifying section, when the inflow pressure P is increased, the particle size becomes smaller. The average number of circulations N, which indicates the probability that the liquid has passed through the emulsifying member, is the total amount of the mixed liquid to be emulsified as V (ynl
), constant volume pump discharge amount f: A (=&/second), T If the emulsification processing time is T (second), it can be determined by N=-1. Since the quality of liquid shearing efficiency affects the average number of circulations, it is necessary to select an efficient liquid shearing means in order to shorten processing time and increase emulsification efficiency.
水中油滴型エマルジョン形成の望ましい条件は、流入圧
力P (Ky/at )については3≦P≦10、平均
循環回数N(回)については1≦N≦20である。Desirable conditions for forming an oil-in-water emulsion are that the inflow pressure P (Ky/at ) is 3≦P≦10, and the average number of circulations N (times) is 1≦N≦20.
流入圧力が上記の上限を超えるとカプセルの粒子径は極
めて小さくなり実用性を失ってし1い、下限未満では処
理時間が長くかかる。一方平均循環回数はこれを多くす
ることにより粒度分布を狭くすることができるが、一定
限度に達した後は、処理時間を徒過するのみで実効は上
がらない。If the inflow pressure exceeds the above upper limit, the particle size of the capsules will become extremely small and will be impractical, while if it is below the lower limit, the processing time will be long. On the other hand, by increasing the average number of circulations, the particle size distribution can be narrowed, but once a certain limit is reached, the processing time is simply elapsed and the effectiveness is not improved.
本発明:′c使用する乳化方法を多価インシアネート溶
液を添加した油性液と水溶性七ツマ−又はポリマーとで
乳化する所謂ポリウレ、タン膜形成の界面重合法を利用
したカプセル化法での工程に適用すると、乳化を長時間
行うことにより、反応性物質が互い:て接触して反応が
始捷り、その反応生成物が流出細孔に堆積され、乳化粒
子の品質が乳化開始時と著しく異なってしまうという欠
点がみられる。又、油性液とゼラチン溶液等で乳化する
所謂コアセルベーション法によるカプセル化法での工程
に適用した場合、品質は申し分ない乳化粒子:が得らす
るが、実生産上は常温でのゼラチンのゼリー化現象を防
止する為の昇温装置、洗浄装置等の附帯設備を乳化部材
にもうけねばならず、コスト及び作業性に問題がある。The present invention: The emulsification method used is an encapsulation method using an interfacial polymerization method for forming a so-called polyurethane film, in which an oily liquid containing a polyvalent incyanate solution is emulsified with a water-soluble hexamer or polymer. When applied to the process, by performing emulsification for a long time, the reactive substances come into contact with each other and the reaction begins, and the reaction products are deposited in the outflow pores, resulting in the quality of the emulsified particles being the same as at the beginning of emulsification. The drawback is that they are significantly different. In addition, when applied to the encapsulation process using the so-called coacervation method in which oily liquid and gelatin solution are emulsified, emulsified particles of perfect quality are obtained, but in actual production, it is difficult to form gelatin particles at room temperature. The emulsifying member must be equipped with incidental equipment such as a heating device and a cleaning device to prevent the jelly-forming phenomenon, which poses problems in cost and workability.
尿素−ホルマリン又はメラミン−ホルマリンの樹脂カプ
セルの製造に際しては、蒸上の如き問題はなく、更に形
成された水中油滴型エマルジョン、る
を寮の温度及びPHを制御しながら壁膜を硬化させる壁
膜形成処理も比較的容易である。In the production of urea-formalin or melamine-formalin resin capsules, there are no problems such as steaming, and the oil-in-water emulsion formed can be cured while controlling the temperature and pH of the dormitory. The film forming process is also relatively easy.
本発明に於て使用する水溶性のモノマー又はポリマーは
、従来の尿素−ホルマリン又はメラミン−ホルマリンの
樹脂カプセルの製造法に使用されているものと異なるこ
とはない。例示すれば、アイ不
クリルスチレンスルホン酸共重合籾、ポレピニルメチル
エーテル無水マレイン酸共重合体、エチレ体、イソシア
ン酸変性ゼラチン等を挙げることができる。The water-soluble monomers or polymers used in the present invention are not different from those used in conventional methods for producing urea-formalin or melamine-formalin resin capsules. Examples include i-unacrylic styrene sulfonic acid copolymerized rice, polypinyl methyl ether maleic anhydride copolymer, ethylene form, and isocyanic acid-modified gelatin.
本発明により達成される効果は次の通pである。The effects achieved by the present invention are as follows.
(1)カプセルの平均粒子径の制御が、乳化部材への流
入圧力の調節により容易に行なえる。(1) The average particle diameter of the capsules can be easily controlled by adjusting the inflow pressure to the emulsifying member.
(2)粒度分布が狭く、安定した品質のカプセルが得ら
れる。(2) Capsules with a narrow particle size distribution and stable quality can be obtained.
(3)従来のバッチ処理に変わる連続的なカプセルの製
造を可能にする。(3) Enables continuous capsule manufacturing as an alternative to traditional batch processing.
(4)乳化翼を回転させるモータを使用しないので、カ
プセル製造現場に於ける騒音が著しく低減される。(4) Since no motor is used to rotate the emulsifying blade, noise at the capsule manufacturing site is significantly reduced.
(5)製造設備が簡素化されると共に、効率良いカプセ
ルの製造が実現される。(5) Manufacturing equipment is simplified and efficient capsule manufacturing is realized.
(6)複数の乳化部材を並列に設置することで、容易に
量産効夫を上げることができる。(6) Mass production efficiency can be easily increased by installing a plurality of emulsifying members in parallel.
以下14−1第2図に示すシステムを使用したマイクロ
カブ=l−の製造方法を実施例によって説明する。岡、
以下に於て襲及び部は重量によるチ及び部を示す。14-1 A method for manufacturing Micro Cub=l- using the system shown in FIG. 2 will be described below with reference to Examples. hill,
In the following, parts and parts refer to parts and parts by weight.
実施例
アクリルスチレンスルホン酸共重合体の10%水溶液1
00部に、尿素10部、レゾルシノール1部及び水20
0部を添加混合した。その後、20%水酸化ナトリウム
水溶液を用いて系のPHを3.4に調節して水溶性高分
子溶液を調製した。一方、ジアリルエタノ油(商品名ハ
イゾールSAS、日本石油化学製)194部に感圧複写
紙用染料であるクリスタルバイオレットラクトン4部と
ベンゾイルロイコメチレンブルー2部を溶解して油性液
200部を調製した。Example 10% aqueous solution of acrylic styrene sulfonic acid copolymer 1
00 parts, 10 parts of urea, 1 part of resorcinol, and 20 parts of water.
0 parts were added and mixed. Thereafter, the pH of the system was adjusted to 3.4 using a 20% aqueous sodium hydroxide solution to prepare a water-soluble polymer solution. Separately, 4 parts of crystal violet lactone, which is a dye for pressure-sensitive copying paper, and 2 parts of benzoyl leucomethylene blue were dissolved in 194 parts of diallyl ethano oil (trade name: Hysol SAS, manufactured by Nippon Petrochemicals) to prepare 200 parts of an oily liquid.
以上の如く調製した水溶性高分子溶液と油性液の総量2
000部を保持槽6に入れ軽く攪拌した。Total amount of water-soluble polymer solution and oily liquid prepared as above 2
000 parts were placed in the holding tank 6 and lightly stirred.
その後定容ポンプ7を始動して乳化を行なった。Thereafter, the constant volume pump 7 was started to perform emulsification.
使用した乳化部材8はハイドロシェア乳化機H8−2型
(米ゴーリン社製)であり、流入圧力5にり/Ca。The emulsifying member 8 used was a Hydroshear emulsifying machine H8-2 type (manufactured by Gorlin, Inc., USA), and the inflow pressure was 5°/Ca.
平均循環回数10回で乳化を停止し、得られたエマルジ
ョン分散液を壁膜形成処理槽9に移し、37%ホルムア
ルデヒド水溶液102部を加え55℃になるまで加温し
た。55℃で2時間保持した後、熱源を切り室温になる
迄放冷すると、尿素−ホI・ムアルデヒド重合体をカプ
セル壁膜とする感圧複写紙用の単核微小カプセルの分散
液ができた。Emulsification was stopped after an average circulation of 10 times, and the obtained emulsion dispersion was transferred to wall film forming treatment tank 9, 102 parts of a 37% formaldehyde aqueous solution was added, and the temperature was heated to 55°C. After being held at 55°C for 2 hours, the heat source was turned off and the mixture was left to cool to room temperature, yielding a dispersion of mononuclear microcapsules for pressure-sensitive copying paper whose capsule walls were made of urea-foI-maldehyde polymer. .
コールタ−カウンターでカプセルの粒度分布を測定した
ところ、第3図に示す通り最大ピークを中心とした3チ
ヤンネルに含まれる粒子の割合は75.2%、平均粒子
径は4.8μであった。上記カプセルを塗布して得られ
た上葉紙と顕色剤を塗布した下葉紙とを重ね合わせた感
圧複写紙は、耐汚染性に優れ、記録発色性も良好であっ
た。When the particle size distribution of the capsules was measured using a Coulter counter, as shown in Figure 3, the proportion of particles contained in three channels centered around the maximum peak was 75.2%, and the average particle diameter was 4.8 microns. A pressure-sensitive copying paper obtained by laminating an upper sheet coated with the capsule and a lower sheet coated with a color developer had excellent stain resistance and good recording color development.
〔実施例2〕
カブ−セルの固型分濃度を上げるために、水溶性高分子
溶液の調製に際して水の添加量を100部とした以外は
、実施例1と全く同様に処理して単核マイクロカプセル
の分散液を得た。このマイクロカプセルは、第4図に示
す通り最大ピークを中心とした3チヤンネルに含まれる
粒子の割合が77.8係、平均′!′を子径4.6μで
あった。[Example 2] In order to increase the solid content concentration of the turnip cells, mononuclear cells were treated in the same manner as in Example 1, except that the amount of water added was changed to 100 parts when preparing the water-soluble polymer solution. A dispersion of microcapsules was obtained. As shown in Fig. 4, this microcapsule has an average ratio of particles contained in three channels centered on the maximum peak of 77.8%. ' was 4.6μ in diameter.
上記カプセルを使用した感圧複写紙は耐汚染性、記録発
色1共に優れていた。The pressure-sensitive copying paper using the above capsule was excellent in both stain resistance and recording color development.
〔実施例3〕
エチレン無水マレイン酸共重合体(商品名EMA−31
、モンサントケミカル製ンの10係水溶液100部に、
尿素10部、レゾルシノール1部及び水200部を添加
混合した。その後、20チ水酸化す) IJウム不溶液
を用いて系のPRを3.5に調節して水溶性高分子溶液
を調製した。一方、実施例1と同じ油性液を200部調
製した。以上の卯く調製した水溶性高分子溶液と油性液
の総量2000部を保持槽6に入1と同様にして、微小
カプセルの分散液を得た。[Example 3] Ethylene maleic anhydride copolymer (trade name EMA-31
, to 100 parts of a 10 aqueous solution manufactured by Monsanto Chemical,
10 parts of urea, 1 part of resorcinol, and 200 parts of water were added and mixed. Thereafter, a water-soluble polymer solution was prepared by adjusting the PR of the system to 3.5 using an insoluble solution of 20% hydrogen hydroxide. On the other hand, 200 parts of the same oily liquid as in Example 1 was prepared. A total of 2,000 parts of the water-soluble polymer solution and oily liquid prepared above were placed in a holding tank 6 in the same manner as in 1 to obtain a dispersion of microcapsules.
コールタ−カウンターでカプセルの粒度分布ヲ測定した
ところ、第5図に示す通り最大ピークを中心とした3チ
ヤンネルに含まれる粒子の割合は732%、平均粒子径
は4.6μであった。上記カプセルを使用した感圧複写
紙は、耐汚染性に優れ、記録発色性も良好であった。When the particle size distribution of the capsules was measured using a Coulter counter, as shown in Figure 5, the proportion of particles contained in three channels centered around the maximum peak was 732%, and the average particle diameter was 4.6 microns. Pressure-sensitive copying paper using the above capsules had excellent stain resistance and good recording color development.
第1図は従来の代表的な乳化機の朕覗図、第2図は本発
明の実施例で使用する装置の駅間図である。第3.4.
5勿チ樗図は、各々実施例1.2.3#−?に於けるコ
ールタ−刀つンターの測定結果を示すチャートの部分図
である。
1・・・乳化槽、2・・・モータ、4・・・乳化具、6
・・・保持槽、7・・・定容ポンプ、8・・・乳化部材
、9・・・壁膜形成処理槽。
し ニー−1’:1
8−3図
I+ゆ
第4図
+、6ノ
茶5図
斗6JJFIG. 1 is a perspective view of a typical conventional emulsifying machine, and FIG. 2 is a station-to-station diagram of the apparatus used in an embodiment of the present invention. Section 3.4.
5. The figures are respectively Example 1.2.3#-? FIG. 3 is a partial diagram of a chart showing the measurement results of Coulter's tester in . 1... Emulsification tank, 2... Motor, 4... Emulsifier, 6
. . . Holding tank, 7. Constant volume pump, 8. Emulsifying member, 9. Wall film forming treatment tank. Shi Knee-1': 1 8-3 Figure I + Yu Figure 4 +, 6 Nocha 5 Figure Doo 6JJ
Claims (2)
ンの樹脂カプセルの製造に於て、?向性液と水溶性のモ
ノマー又はポリマーを含む溶液とを混合し、略紡錘形の
空間を有する乳イヒ部材に対し、その略紡錘形中央部の
接線方向に開口した流入細孔から上記混合液を圧入し、
空間中を渦状に回転させなから略紡錘形の両端に開口し
た流出細孔に至らしめて水中油滴型エマルジョンを形成
した後、壁膜形成処理を施すことにより、微小カプセル
を製造する方法。(1) In the production of urea-formalin or melamine-formalin resin capsules? A tropic liquid and a solution containing a water-soluble monomer or polymer are mixed, and the mixed liquid is forced into a milk member having an approximately spindle-shaped space through an inlet pore opened in a tangential direction at the center of the approximately spindle-shaped space. death,
A method of manufacturing microcapsules by forming an oil-in-water emulsion by rotating it in a vortex in a space until it reaches outflow pores that are open at both ends of a substantially spindle shape, and then subjecting it to a wall film formation treatment.
ことを特徴とする特許請求の範凹第1項記載の微小カプ
セルの製造方法。(2) A method for producing microcapsules according to claim 1, characterized in that an oil-in-water emulsion is formed under the following conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57196036A JPS5987036A (en) | 1982-11-10 | 1982-11-10 | Preparation of microcapsule |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57196036A JPS5987036A (en) | 1982-11-10 | 1982-11-10 | Preparation of microcapsule |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5987036A true JPS5987036A (en) | 1984-05-19 |
JPH0366013B2 JPH0366013B2 (en) | 1991-10-15 |
Family
ID=16351130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57196036A Granted JPS5987036A (en) | 1982-11-10 | 1982-11-10 | Preparation of microcapsule |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5987036A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4619904A (en) * | 1984-10-29 | 1986-10-28 | General Electric Company | Agglutinating immunoassay using protein-coated liquid droplets |
US4634681A (en) * | 1984-10-29 | 1987-01-06 | General Electric Company | Diagnostic method of determining the presence or absence of select proteins in a liquid sample |
JPH02160579A (en) * | 1988-12-14 | 1990-06-20 | Fuji Photo Film Co Ltd | Microcapsule for pressure sensitive recording sheet |
JPH03501940A (en) * | 1987-09-28 | 1991-05-09 | レッデング・ジュニア,ブルース・ケイ | Apparatus and method for microcapsule preparation |
US5194188A (en) * | 1989-07-05 | 1993-03-16 | Patrinove | Process and a device for the direct production of liposomes |
US5558820A (en) * | 1991-02-13 | 1996-09-24 | Fuji Photo Film Co., Ltd. | Process for preparing microcapsules |
-
1982
- 1982-11-10 JP JP57196036A patent/JPS5987036A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4619904A (en) * | 1984-10-29 | 1986-10-28 | General Electric Company | Agglutinating immunoassay using protein-coated liquid droplets |
US4634681A (en) * | 1984-10-29 | 1987-01-06 | General Electric Company | Diagnostic method of determining the presence or absence of select proteins in a liquid sample |
JPH03501940A (en) * | 1987-09-28 | 1991-05-09 | レッデング・ジュニア,ブルース・ケイ | Apparatus and method for microcapsule preparation |
JPH02160579A (en) * | 1988-12-14 | 1990-06-20 | Fuji Photo Film Co Ltd | Microcapsule for pressure sensitive recording sheet |
US5194188A (en) * | 1989-07-05 | 1993-03-16 | Patrinove | Process and a device for the direct production of liposomes |
US5558820A (en) * | 1991-02-13 | 1996-09-24 | Fuji Photo Film Co., Ltd. | Process for preparing microcapsules |
Also Published As
Publication number | Publication date |
---|---|
JPH0366013B2 (en) | 1991-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2729538B2 (en) | Manufacturing method of microcapsules | |
KR101065807B1 (en) | Microcapsules Manufacturing Method Using Droplet-based Microfluidic Chips | |
US5271881A (en) | Apparatus and method for making microcapsules | |
KR880002539B1 (en) | Process for producing microcapsules and microcapsule slurry | |
FI83334B (en) | CONTAINER FRAMSTAELLNING AV MIKROKAPSELDISPERSIONER. | |
US20030176282A1 (en) | Uniform microcapsules | |
US5401443A (en) | Method of continuous production of microcapsules | |
JPS5987036A (en) | Preparation of microcapsule | |
JPH0346170B2 (en) | ||
JP2000218153A (en) | Method and apparatus for producing microcapsules | |
JPH01194939A (en) | Preparation of microcapsule | |
JP3202266B2 (en) | Manufacturing method of microcapsules | |
US20050254342A1 (en) | Shaking device and method, particularly for dispersing or emulsifying two immiscible fluids | |
WO1992011083A1 (en) | Apparatus and method for making microcapsules | |
JPH028774B2 (en) | ||
JPH10249185A (en) | Manufacturing method of microcapsules | |
JPS60238140A (en) | Preparation of microcapsule | |
US20040089961A1 (en) | Micro-capsules comprising a capsule core containing water-soluble substances | |
JPH06102684B2 (en) | Suspension polymerization method | |
JP4858482B2 (en) | Method for producing microcapsules | |
JPH10137577A (en) | Manufacturing method of microcapsules | |
JPH0372943A (en) | Microcapsule, mixture containing microcapsule, and method for encapsulating and dischar- ging encapsulated matter in microcapsule | |
JPS6111138A (en) | Preparation of microcapsule | |
JPH0356501A (en) | Suspension polymerization | |
KR910000711B1 (en) | Recipe of microcapsules |