[go: up one dir, main page]

JPS598669B2 - power generator - Google Patents

power generator

Info

Publication number
JPS598669B2
JPS598669B2 JP51045279A JP4527976A JPS598669B2 JP S598669 B2 JPS598669 B2 JP S598669B2 JP 51045279 A JP51045279 A JP 51045279A JP 4527976 A JP4527976 A JP 4527976A JP S598669 B2 JPS598669 B2 JP S598669B2
Authority
JP
Japan
Prior art keywords
generator
manganese
prime mover
aluminum
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51045279A
Other languages
Japanese (ja)
Other versions
JPS52129855A (en
Inventor
國徳 東
治久 古石
崇夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51045279A priority Critical patent/JPS598669B2/en
Publication of JPS52129855A publication Critical patent/JPS52129855A/en
Publication of JPS598669B2 publication Critical patent/JPS598669B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【発明の詳細な説明】 本発明は風力、波浪などの変動しやすい流体エネルギー
を利用して発電を行う発電装置に関し、さらに詳しくは
風車,水車などの流体原動機によって流体エネルギーを
機械エネルギーの回転力に変換し、その回転力でもって
発電機を回して電気エネルギーに変換し、その電気でも
って蓄電池を充電し、蓄電池から安定した電気を供給す
るようにした発電装置に関し、特に風力を利用して発電
を行う風力発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation device that generates power by using fluctuating fluid energy such as wind power and waves. This refers to a power generation device that uses wind power to convert the energy into electricity, uses the rotational force to turn a generator, converts it into electrical energy, charges a storage battery with the electricity, and supplies stable electricity from the storage battery. The present invention relates to a wind power generation device that generates electricity.

この種発電装置においては、風力などの変動しやすい流
体エネルギーを機械エネルギーの回転力に変換した際に
は少しでも安定した回転数と寿るよう、可変ピッチ型プ
ロペラと、この回転数を制御するための例えば遠心力に
よる機械ガバナーとによって、エネルギー変動および回
転数を平滑化している。
This type of power generation equipment uses a variable pitch propeller and controls the rotation speed to maintain a stable rotation speed when converting fluid energy such as wind power, which is easily fluctuated, into rotational force of mechanical energy. For example, a mechanical governor using centrifugal force is used to smooth energy fluctuations and rotational speed.

このようにして得た回転力によって発電機を回すわけで
あるが、従来は発電機として、有鉄心型巻線回転子また
は有鉄心型巻線固定子を使用した他励型または自励型の
発電機が用いられていた。
The rotational force obtained in this way is used to turn a generator. Conventionally, generators have been separately excited or self-excited using a core-wound rotor or a core-wound stator. A generator was used.

これら発電機は起動に要する回転トルクが大きい。These generators require a large rotational torque to start.

したがって、上記プロペラの回転を直接発電機に伝達し
ても、発電機がゆっくりと回転し所望とする大きさの電
気を発生することができない。
Therefore, even if the rotation of the propeller is directly transmitted to the generator, the generator rotates slowly and cannot generate the desired amount of electricity.

そのため、プロペラの回転を増速機に伝えて回転数を高
め、増速機の回転でもって発電機を回して所望とする大
きさの電気を発生するようにしていた。
For this reason, the rotation of the propeller is transmitted to the speed increaser to increase the rotation speed, and the rotation of the speed increaser turns the generator to generate the desired amount of electricity.

また、一般に風力などのトルクエネルギーは小さい場合
が多いため、上記ガバナーと増.速機との間に機械的に
ラッチを介在させ、プロペラの回転数とそのトルクがあ
る所定値(発電機を十分に回すだけの値)に達するまで
はクラッチを切離しておいてプロペラを空回りさせてお
き、プロペラの回転数とトルクが上記所定値に上昇する
とクラッチを連結して発電機を回すようにしだものが多
い。
In addition, since torque energy such as wind power is generally small, it is necessary to increase the torque energy with the governor mentioned above. A latch is mechanically interposed between the propeller and the propeller, and the clutch is disengaged to allow the propeller to idle until the propeller rotation speed and torque reach a certain value (a value that is sufficient to rotate the generator). In many cases, the clutch is connected to turn the generator when the propeller rotation speed and torque rise to the above-mentioned predetermined values.

本発明は、異方向性マンガン.アルミニューム系永久磁
石からなる多極着磁の回転子と空心型巻線固定子とを有
する起動回転トルクの小さい発電機を用いることにより
、風力,波浪などの流体エネルギーが小さく、かつ不安
定なときでもクラッチや増速機などの複雑な機械的伝達
機構を必要としないようにし、発電性能を低下させるこ
となく装置の簡素化を図ったものである。
The present invention provides anisotropic manganese. By using a generator with low starting torque that has a multi-pole magnetized rotor made of aluminum permanent magnets and an air-core winding stator, fluid energy such as wind and waves is small and unstable. This eliminates the need for complex mechanical transmission mechanisms such as clutches and speed increasers, and simplifies the device without degrading power generation performance.

以下、本発明の実施例を図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は風力発電装置の全体構成を示し、第2図はその
要部の外観を示す。
FIG. 1 shows the overall configuration of the wind power generator, and FIG. 2 shows the appearance of its main parts.

図において、1は風力原動機としての可変ピッチ型プロ
ペラで、回転軸2を持っている。
In the figure, reference numeral 1 denotes a variable pitch propeller serving as a wind motor, and has a rotating shaft 2.

3は尾翼、4は支柱、5は支柱4の上端に回転自在に取
付けたターンテーブルである。
3 is a tail wing, 4 is a strut, and 5 is a turntable rotatably attached to the upper end of the strut 4.

プロペラ1と尾翼3とは尾翼30作用によってプロペラ
1が常に風上を向くようにしてターンテーブル5に装備
されている。
The propeller 1 and the tail 3 are mounted on the turntable 5 so that the propeller 1 always faces upwind due to the action of the tail 30.

プロペラ1は遠心力によって働くガバナー6を備えてお
り、プロペラの回転数が所定値以上に上昇するとガバナ
ー6の働きでプロペラのピッチを切換えてプロペラの回
転数の安定化を図る。
The propeller 1 is equipped with a governor 6 that operates by centrifugal force, and when the number of revolutions of the propeller increases above a predetermined value, the governor 6 works to change the pitch of the propeller to stabilize the number of revolutions of the propeller.

7はプロペラ1の回転軸2に直結した発電機で、ここで
得た電力は定電圧装置8を介して蓄電池9へ充電され、
蓄電池9から安定した電力が負荷10へ供給される。
7 is a generator directly connected to the rotating shaft 2 of the propeller 1, and the electric power obtained here is charged to a storage battery 9 via a constant voltage device 8.
Stable power is supplied from the storage battery 9 to the load 10.

第3図および第4図は上記発電機7の構成を示す。3 and 4 show the configuration of the generator 7. FIG.

図において、21はプロペラ10回転軸2に直結された
回転軸、22は回転軸21と一体となって回転する回転
子、23は回転子22の外周に配置された空心型巻線固
定子、24は外ケース兼用鉄ヨーク、25は軸受である
In the figure, 21 is a rotating shaft directly connected to the rotating shaft 2 of the propeller 10, 22 is a rotor that rotates integrally with the rotating shaft 21, 23 is an air-core wire-wound stator disposed on the outer periphery of the rotor 22, 24 is an iron yoke that also serves as an outer case, and 25 is a bearing.

なお、回転子22は異方向性マンガン・アルミニューム
系永久磁石からなり、直径万同に多極着磁を施している
The rotor 22 is made of a non-directional manganese-aluminum permanent magnet, and is magnetized with multiple poles throughout its diameter.

また、空心型巻線固定子23とは、巻線固定子に鉄心な
どの磁性体を有しない固定子を言い、例えば巻線コイル
を合成樹脂で固着したもの、または合成樹脂などの非磁
性絶縁物からなる担体の両面に印刷配線技術により導体
群からなるコイルを形成したものなどがある。
In addition, the air-core type winding stator 23 refers to a stator that does not have a magnetic material such as an iron core in the winding stator, for example, a winding coil fixed with synthetic resin, or a non-magnetic insulator such as synthetic resin. There is one in which coils made of a group of conductors are formed on both sides of a carrier made of material using printed wiring technology.

異方性マンガン,アルミニューム系永久磁石は、68.
0 〜73.owt%のマンガン(Mn ) , (
1/10Mn −6.6)〜( ’/3 M n −
2 2. 2 ) wt%の炭素(C),残部のアルミ
ニューム(At)を基本組成とするMn−ht−C系合
金であり、溶解鋳造後に必要な熱処理を施し、ついで5
36)〜830℃の温度範囲で温間塑性加工することに
よって異方性化されたものである。
Anisotropic manganese and aluminum permanent magnets are 68.
0 to 73. owt% manganese (Mn), (
1/10Mn-6.6)~('/3Mn-
2 2. 2) It is an Mn-ht-C alloy with a basic composition of wt% carbon (C) and the balance aluminum (At), and is subjected to the necessary heat treatment after melting and casting, and then
36) It is made anisotropic by warm plastic working in the temperature range of ~830°C.

その磁気特性はBr−6000〜6500G,BHc−
2000〜3000Qe,(BH)max=5 〜8X
1 0’ G,Qeに達する。
Its magnetic properties are Br-6000~6500G, BHc-
2000~3000Qe, (BH)max=5~8X
1 0' G, reaches Qe.

また、温間塑性加工として押出力ロエした場合は軸方向
異方性磁石が得られ、据込加工した場合は直径方向異方
性磁石が得られる。
Further, when extrusion force is applied as warm plastic working, an axially anisotropic magnet is obtained, and when upsetting is performed, a diametrically anisotropic magnet is obtained.

また、この湛間塑性加工によって機械的強度が極めて強
靭な永久磁石となり、例えば、引張り強さ5 0 kg
/’−mm2t抗折力30kg/1n7IL2,抗圧力
2 5 0 k(j/TILIIL2に達し、従来のフ
エライト系磁石やアルニコ系磁石の数倍の強度をもたせ
ることが出来、且つ、切削加工も出来る程の靭性をもた
せることが出来る。
In addition, this plastic working process results in a permanent magnet with extremely strong mechanical strength, for example, a tensile strength of 50 kg.
/'-mm2t transverse rupture strength 30kg/1n7IL2, anti-pressure 250k (j/TILIIL2), it can have several times the strength of conventional ferrite magnets and alnico magnets, and can also be cut. It can have a certain degree of toughness.

また、従来のフエライト系磁石やアルニコ系磁石では、
異方性化させるためには、磁場中での成型や磁場中での
熱処理を必要とするため、直径方向に異方性化した多極
着磁が極めて困難であり、4〜8極着磁が限界とされて
来たが、異方性マンガン・アルミニューム磁石は、無磁
場での温間据込加工成型によってすべての直径方向に異
方性化させることが出来るため、極数には無制限の径方
向多極着磁が可能である。
In addition, with conventional ferrite magnets and alnico magnets,
In order to achieve anisotropy, molding in a magnetic field and heat treatment in a magnetic field are required, so multi-pole magnetization with anisotropy in the diametrical direction is extremely difficult. However, anisotropic manganese/aluminum magnets can be made anisotropic in all diametrical directions by warm upsetting molding without a magnetic field, so there is no limit to the number of poles. radial multipole magnetization is possible.

また、比重が約5.1と軽く、磁束の温度係数も約0.
1 %/’cと小さく、耐熱性,耐候性,耐熱ショッ
ク性にも優れて居る。
In addition, the specific gravity is light at approximately 5.1, and the temperature coefficient of magnetic flux is approximately 0.
It is as small as 1%/'c and has excellent heat resistance, weather resistance, and heat shock resistance.

第4図では発電機の回転子磁石として、直径方向に12
極着磁した異方性マンガン・アルミニューム磁石回転子
の例を示したが、この極数を更に増加させられることは
言うまでもない。
In Figure 4, the rotor magnet of the generator is 12 mm in the diameter direction.
Although an example of a polarized anisotropic manganese aluminum magnet rotor has been shown, it goes without saying that the number of poles can be further increased.

また、回転子磁石として、軸方向異方性のマンガンアル
ミニューム磁石を使用して多極着磁することも可能であ
り、また、複数の永久磁石を回転軸の周囲に圧入等の方
法で装入して、回転子を構成しうろこともできる。
It is also possible to use manganese aluminum magnets with axial anisotropy as rotor magnets for multipole magnetization, and multiple permanent magnets can be mounted around the rotating shaft by methods such as press-fitting. It can also be used to construct a rotor.

以上のように本発明によれば、直径方向に多極着磁した
異方性マンガンアルミニューム磁石を回転子とした発電
機を用いることによって、低速回転でも大出力の発電が
可能となり、増速機構が不・要となる。
As described above, according to the present invention, by using a generator whose rotor is an anisotropic manganese aluminum magnet magnetized with multiple poles in the diametrical direction, it is possible to generate large output power even at low speed rotation, and the speed can be increased. Mechanism becomes unnecessary/necessary.

また、回転子磁石の機械的強度が大きく、靭性に富むた
め、例えば、強風等によって回転数が増大した場合も、
回転子が強固で安全である。
In addition, because the rotor magnet has high mechanical strength and high toughness, even when the rotation speed increases due to strong winds, etc.
The rotor is strong and safe.

また、回転子磁石への軸取付も圧入等の組立合理化も出
来る。
In addition, it is possible to rationalize assembly by press-fitting the shaft to the rotor magnet.

また、回転子磁石が軽量であり、且つ、固定子として空
心巻線固定子を用いるため、起動トルクが/」・さく、
クラッチ等を必要としない。
In addition, since the rotor magnet is lightweight and an air-core winding stator is used as the stator, the starting torque is low.
No clutch etc. required.

また、空心巻線部分を固定子として用い、回転させない
為に、高速回転による巻線部の損傷がなく、構造的にも
製作が容易で、且つ、ブラシなども不必要となるため、
長寿命である。
In addition, since the air-core winding part is used as a stator and is not rotated, there is no damage to the winding part due to high-speed rotation, and the structure is easy to manufacture, and brushes are not required.
It has a long lifespan.

さらに回転子磁石として、保磁力(BHc)が大きい異
方向性マンガン.アルミニューム系永久磁石を用いてい
るため、従来のアルニコ系磁石の如き組立着磁が不要と
なり、組立工程が簡易化される。
Furthermore, as a rotor magnet, anisotropic manganese with a large coercive force (BHc) is used. Since aluminum permanent magnets are used, there is no need for assembly and magnetization as with conventional alnico magnets, simplifying the assembly process.

発電機として、軽量化,小型化が可能となり、クラッチ
,増速機等の伝達機構も不要となるため、例えば風力発
電などの場合、風向きによって方向を変え易く、応答性
が良好となる。
As a generator, it is possible to reduce the weight and size, and there is no need for a transmission mechanism such as a clutch or a speed increaser, so in the case of wind power generation, for example, the direction can be easily changed depending on the direction of the wind, and responsiveness is good.

従って、メインテナンスも容易となり、長寿命で経済的
な発電をさせることが出来、且つ省資源化の点でも効果
が大きい。
Therefore, maintenance is easy, long life and economical power generation can be achieved, and there is a great effect in terms of resource saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における風力発電装置の全体
構成図、第2図はその要部の外観斜視図、第3図および
第4図はその発電機の断面図である。 1・・・プロペラ(流体原動機)、2・・・回転軸、1
・・・発電機、8・・・定電圧装置、9・・・蓄電池、
10・・・負荷、21・・・回転軸、22・・・回転子
、23・・・固定子。
FIG. 1 is an overall configuration diagram of a wind power generator according to an embodiment of the present invention, FIG. 2 is an external perspective view of the main parts thereof, and FIGS. 3 and 4 are sectional views of the generator. 1... Propeller (fluid prime mover), 2... Rotating shaft, 1
... Generator, 8... Constant voltage device, 9... Storage battery,
DESCRIPTION OF SYMBOLS 10... Load, 21... Rotating shaft, 22... Rotor, 23... Stator.

Claims (1)

【特許請求の範囲】 1 風力,波浪などの変動しやすい流体エネルギーを機
械エネノ吋1の回転力に変換する流体原動機と、この原
動機の回転力により回転子を回し機械エネルギーを電気
エネルギーに変換する発電機と、発電機で発生した電気
を蓄電池に充電し蓄電池から負荷へ供給する電力安定化
回路とを備え、発電機は異方向性マンガン.アルミニュ
ーム系久磁石からなり直径方向に多極着磁した回転子と
、空心型巻線固定子とを有する発電機であシ、この発電
機を増速機やクラッチを介することなく流体原動機の回
転軸に直結したことを特徴とする発電装置。 2 異方向性マンガン・アルミニューム系永久磁石は、
6 8.0〜7 3.Ow t %の.・マンガンと、
(’/ioMn6.6 )〜( ”/3Mn−2 2.
2 )wt%の炭素と、残部のアルミニュームとを含有
した合金である特.・許請求の範囲第1項記載の発電装
置。 3 流体原動機は風力によって回る風力原動機である特
許請求の範囲第1項または第2項記載の発電装置。
[Scope of Claims] 1. A fluid prime mover that converts fluctuating fluid energy such as wind power and waves into rotational force of mechanical energy, and a rotor that is rotated by the rotational force of this prime mover and converts mechanical energy into electrical energy. It is equipped with a generator and a power stabilization circuit that charges electricity generated by the generator into a storage battery and supplies it from the storage battery to the load.The generator is made of anisotropic manganese. This generator has a diametrically multi-pole magnetized rotor made of aluminum-based permanent magnets and an air-core winding stator. A power generation device characterized by being directly connected to a rotating shaft. 2 Anisotropic manganese/aluminum permanent magnets are
6 8.0-7 3. Of %.・Manganese and
('/ioMn6.6)~(''/3Mn-2 2.
2) A special alloy containing wt% carbon and the balance aluminum. - The power generation device according to claim 1. 3. The power generation device according to claim 1 or 2, wherein the fluid prime mover is a wind prime mover that rotates by wind power.
JP51045279A 1976-04-20 1976-04-20 power generator Expired JPS598669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51045279A JPS598669B2 (en) 1976-04-20 1976-04-20 power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51045279A JPS598669B2 (en) 1976-04-20 1976-04-20 power generator

Publications (2)

Publication Number Publication Date
JPS52129855A JPS52129855A (en) 1977-10-31
JPS598669B2 true JPS598669B2 (en) 1984-02-25

Family

ID=12714860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51045279A Expired JPS598669B2 (en) 1976-04-20 1976-04-20 power generator

Country Status (1)

Country Link
JP (1) JPS598669B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285890A (en) * 1997-03-31 1998-10-23 Mitsuhiro Fukada Permanent magnet type generator
KR20020071290A (en) * 2001-03-06 2002-09-12 양태열 Tidal Current Power Generation System

Also Published As

Publication number Publication date
JPS52129855A (en) 1977-10-31

Similar Documents

Publication Publication Date Title
JP2554859B2 (en) Servo motor using a magnet having high energy intensity
JPH11511948A (en) Double salient magnet generator
WO2009129708A1 (en) Direct driving combined type permanent magnet motor
KR101454805B1 (en) Generator
KR101938888B1 (en) Mechanical drive to the motor and alternator
KR101955030B1 (en) Two rotors using generators
KR20160121341A (en) Advanced generator
JP2014086731A (en) Nd-Fe-B PERMANENT MAGNET WITHOUT Dy, ROTOR ASSEMBLY, ELECTROMECHANICAL TRANSDUCER, WIND TURBINE
CN109412370A (en) Magnetic flux suitching type Linear-rotation permanent-magnet actuator
CN1272716A (en) Mixed magnetic circuit polygon coupling electric machine
CN105743309A (en) Permanent magnet excitation electric generator
JPS598669B2 (en) power generator
CN105871118B (en) Tricycle warming power generation all-in-one machine
CN109639035A (en) Motor and the double-deck accumulated energy flywheel based on two-level rotor structure
US2257824A (en) Rotor
CN116488421A (en) Variable air gap type axial flux permanent magnet synchronous motor
WO2010126392A1 (en) Permanent-magnet generator
CN116418188A (en) Motor
CN218124526U (en) Low-resistance permanent magnet generator
CN107528441A (en) A kind of external rotor wind driven electric generator
CN208445460U (en) A kind of spoke type for electric vehicle interlocks rotor permanent magnet synchronous motor
EP2762402A2 (en) Propulsion arrangement for a vessel
Zheng et al. Design of a high-speed permanent magnet motor with a spinning magnet source for mechanical antenna
CN101026327A (en) Non negative torque outer-rotor permanent magnet motor
CN107465322B (en) Electric vehicle range extender grid rotor motor