JPS5983972A - Manufacture of ceramic porous body - Google Patents
Manufacture of ceramic porous bodyInfo
- Publication number
- JPS5983972A JPS5983972A JP19304782A JP19304782A JPS5983972A JP S5983972 A JPS5983972 A JP S5983972A JP 19304782 A JP19304782 A JP 19304782A JP 19304782 A JP19304782 A JP 19304782A JP S5983972 A JPS5983972 A JP S5983972A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ceramic
- binder
- organic solvent
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000011230 binding agent Substances 0.000 claims description 19
- 239000003960 organic solvent Substances 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 6
- 239000011236 particulate material Substances 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 4
- 239000011148 porous material Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000008187 granular material Substances 0.000 description 8
- 238000000605 extraction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000013618 particulate matter Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- TXIPVVLKTCCGPA-UHFFFAOYSA-N 2-[3-[2-[[1-(cyclopropanecarbonyl)piperidin-3-yl]amino]pyrimidin-4-yl]-2-quinolin-2-ylimidazol-4-yl]acetonitrile Chemical compound C1(CC1)C(=O)N1CC(CCC1)NC1=NC=CC(=N1)N1C(=NC=C1CC#N)C1=NC2=CC=CC=C2C=C1 TXIPVVLKTCCGPA-UHFFFAOYSA-N 0.000 description 1
- MCJYFCRORMMYBR-UHFFFAOYSA-N 2-methylbut-1-en-1-one Chemical compound CCC(C)=C=O MCJYFCRORMMYBR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- -1 borisdyrene Polymers 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052670 petalite Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Landscapes
- Filtering Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はセラミックス多孔質体の製造方法に関し、更に
詳しくはフィルタ等に使用されるセラミックス多孔質体
の溶媒抽出による製造方法の改良に関づるものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous ceramic body, and more particularly to an improvement in the method for producing a porous ceramic body used in filters and the like by solvent extraction.
一般的に自動車用排ガスフィルタなどに使用されるセラ
ミックス多孔質体の製造方法は、その中に灼熱減量の大
きい炭酸塩などを多量に配合し、焼成中の熱分解により
気泡を発生さけ、その気泡にJ、り多孔質に形成したり
、その他、樹脂粉体を多量に配合して同様に熱分解によ
りセラミックス中からガスとして除去し、ぞの樹脂がガ
スとなって扱けた跡にJ、り多孔質に形成していた。Generally, the manufacturing method of ceramic porous bodies used for automobile exhaust gas filters, etc. is to mix a large amount of carbonate, etc., which has a large loss on ignition, and to prevent the generation of air bubbles due to thermal decomposition during firing. In addition, by mixing a large amount of resin powder and removing it as a gas from the ceramic by thermal decomposition, the resin can be treated as a gas and left behind. It was formed in a porous manner.
ところが、これらの方法によると、気体発生が熱分解に
にっでいるため、悪臭を発し、空気を馬乗し、作業上不
安全不衛生であり、公害防止に特別な配慮を必要とした
。更にこれら分解物は全て使い捨てになるわ()である
から、省資源の上からも好ましくなく、ロス1〜高を招
いた。又、この熱分解用樹脂の粉砕は(の可撓性、粘着
性から困難である。まして粒径のそろった樹脂粉体は収
率よく得ることはできない。イの光泡工稈においてもゼ
ラミックスの材質あるいは大ぎさの違いにより、加熱の
偏りや加熱速度に違いを生じ均一な気泡の生成が困難ど
なる。これらのことから品質管理」−2の問題を生じ歩
留低下の原因になっていた。However, according to these methods, gas generation is associated with thermal decomposition, so they emit a foul odor, cause air to flow, and are unsafe and unsanitary to work with, requiring special consideration to prevent pollution. Furthermore, all of these decomposed products are disposable (), which is not desirable from the standpoint of resource conservation, resulting in losses of 1 to 10%. In addition, it is difficult to crush this resin for pyrolysis due to its flexibility and stickiness.It is even more difficult to obtain resin powder with uniform particle size in a high yield. Differences in the material or size of the mix cause uneven heating and differences in heating speed, making it difficult to generate uniform air bubbles.These problems cause quality control problems and reduce yield. Ta.
このため熱分解によらず、焼成前のセラミックス中の樹
脂を有機溶媒により抽出することにより、樹脂を溶出し
、セラミックス中に樹脂が扱は出した気孔を形成づる方
法、例えば特開昭57−42563 ”jがあイ)。し
かしこの方法では、加熱による分解発泡法よりも多義に
用いる樹脂が完全に抜り出さり゛、結局残留りる樹脂を
熱分解しなければならず、前記と同様t【問題が生じた
。更に有機溶媒庖抽出処理口、冒こ多義に取り扱うため
、作業上安全衛生性が一層悪化した。Therefore, instead of using thermal decomposition, the resin in the ceramics before firing is extracted with an organic solvent to elute the resin and form pores in the ceramics where the resin has been removed. However, in this method, the resin used for various purposes is completely extracted compared to the decomposition and foaming method by heating, and the remaining resin must be thermally decomposed, and the process is similar to the above. t [Problems arose. Furthermore, the organic solvent extraction processing port was handled in a blasphemous manner, further deteriorating operational safety and hygiene.
イこぐ本発明者等は鋭意ω1究の結果、有機溶媒不溶f
1かつ水溶性の物質を用い、水による抽出を行うことに
J、す、上記問題点を解決できることを見い出し、本発
明を完成した。As a result of intensive research on ω1, the present inventors found that f is insoluble in organic solvents.
The inventors have discovered that the above problems can be solved by using a water-soluble substance and performing extraction with water, and have completed the present invention.
即ち、本発明の要旨とづるところは、水と相溶性の11
機溶媒に溶解され!、:バインダ及び該有機溶媒に不溶
な水溶性粒状物質をレラミツク原料粉末と混練し、成形
し、次いで水中にて上記有機溶媒及び水溶性粒状物質を
抽出処IM! L/、焼成Jることを1h徴どづるセラ
ミックス多孔質体の製造方法にある。That is, the gist of the present invention is that 11
Dissolved in organic solvent! : The binder and the water-soluble granular material insoluble in the organic solvent are kneaded with the Reramitsu raw material powder, molded, and then the organic solvent and the water-soluble granular material are extracted in water IM! A method for producing a porous ceramic body includes firing for 1 hour.
ここで・使用される、水と相溶性の有機溶媒とは例えば
ジメブルホルムアミド、]]ニチルアル=1−ルメf)
レノIル]J−ル、プロピルファルーン、メチルエチル
ケ1ヘン、ジメチルスルフ4キシド等が挙げられる。バ
インダとしては有機溶媒に可溶の各種ポリマーであり、
例えばポリウレタン、ボリスヂレン、ポリビニルブチラ
ール、塩化ビニル、ニトロセル[」−ス、ポリアクリル
、ニブルセル[1−ス等が挙げられる。このバインダは
上記有機溶媒に溶解して用いられるが、その濃度は20
〜35重量%が好ましく、20重開気未満であると薄過
ぎるので、バインダとしての性能を発揮さゼるためには
溶液を多量に配合しなければならない。しかし、このに
うに(ると生のセラミックスの粘度が低下しC流動性を
持ち始め保形性が低下覆るので、成形不可能となる。又
、35重坐%を越えると、溶液自体粘度が高くなり過ぎ
、生のセラミックスが堅くなり押出等の機械による成形
が困難どなる。尚、バインダを溶液どして配合量る場合
、バインダを最初から全溶媒に溶解さ「ず、一部の溶媒
に溶解させた溶液を他のセラミックス原わ1に配合した
後、残りの溶媒を生のセラミックスの堅さ調整とし℃加
える方法を用いCも良く、最終的にバインダの濃度20
〜351fi%のものを加えたことになればよい。次に
このilili度のバインダ溶液の配合量は、セラミッ
クス原料粉末100中吊部に対して25〜50重間部が
好ましく、25千ID部未満ひあるとバインダの量が少
なくなり過ぎで生のしラミックスの保形性が低下し、成
形1時あるいはその後の水中での抽出処理時に生のしラ
ミックス成形体がくずれてしまう。又、50!′T8t
r1部を越えるとバインダの儀が多くなり過ぎて、セラ
ミックス焼成時、その気孔径、気孔率に影響を5えるど
几に、燃焼ガスが大量に発生し、安全1!ti ’I−
、公害上の問題どなり、本発明方法の目的に反しCしま
う。The water-compatible organic solvent used here is, for example, dimebylformamide,]]nitylal=1-lumef)
Examples thereof include lenoyl, propylfalloon, methylethylketene, dimethylsulfoxide, and the like. The binder is various polymers that are soluble in organic solvents.
Examples include polyurethane, borisdyrene, polyvinyl butyral, vinyl chloride, nitrocell['-s], polyacrylic, nibblecel[1-s], and the like. This binder is used after being dissolved in the above organic solvent, and its concentration is 20
It is preferably 35% by weight, and if it is less than 20% by weight, it is too thin, and a large amount of the solution must be blended in order to exhibit its performance as a binder. However, when this happens, the viscosity of the raw ceramic decreases, and it begins to have C fluidity and loses shape retention, making it impossible to mold.Also, if it exceeds 35% by weight, the viscosity of the solution itself decreases. If the temperature becomes too high, the raw ceramic becomes hard and difficult to mold using machines such as extrusion.In addition, when blending the binder by dissolving it in solution, the binder is not dissolved in all the solvent from the beginning, but may be dissolved in some of the solvent. After blending the dissolved solution with another ceramic raw material 1, the remaining solvent is added to adjust the hardness of the raw ceramic by adding C to the final binder concentration of 20.
It suffices if ~351fi% of the material is added. Next, the blending amount of the binder solution with this high degree of strength is preferably 25 to 50 parts by weight per 100 parts of ceramic raw material powder, and if it is less than 25,000 ID parts, the amount of binder becomes too small and raw material The shape-retaining properties of the raw raw ceramic lamix deteriorate, and the green raw lamic molded body collapses during the first molding process or during the subsequent extraction treatment in water. Again, 50! 'T8t
If it exceeds 1 part, there will be too much binder, which will affect the pore size and porosity during ceramic firing, and a large amount of combustion gas will be generated, making it unsafe! ti'I-
This would cause pollution problems and defeat the purpose of the method of the present invention.
1記水ど相溶性の41機溶媒に不溶な物質とは例えば塩
化アンモニウム、塩化〕1〜リウム、塩化カリウム、水
酸化ノー1〜リウム、水酸化カリウム、塩、9 Mアン
モニウム、り1ン酸アンモニウム、クエン酸ノ1〜リウ
ム、炭酸アンモニウム、炭酸ナトリウ11、炭酸カリウ
ム、リン酸水素ノ′ンモニウム、リン酸ノ1−リウム、
リン酸ノJリウム、リン酸水素ナトリウム、リン酸水素
カリウム、グリコーゲン、3−アミノリリチル酸、γー
アミノ酪酸、L−Δキシグルタミン酸等が挙げられ、こ
れらは所望の気孔径、気孔率に適合させ(、所定用がイ
の設定された粒径に粉砕されて用いられる。」、記物質
はこのように焼成後のセラミックスの気孔径と気孔率が
所望の状態になる如く配合されるのであるが、その粒径
があまりに大き過ぎると気孔径が大きくなって、気孔内
表面積が小さくなり、フィルタ、酵素やイオン交換樹脂
等の担体、吸光材等には好ましくなく、又、逆にその粒
径があまりに小さ過ぎると、空気中又は溶媒中の湿気や
水分を吸収しやすく、抽出処理前に溶は出したり、固ま
ったりするので、一般的には25〜300μの粒子が使
用される。又、その州は多過ぎると焼成されたセラミッ
クスの強電が低下し、逆に少な過ぎると多孔質体として
の効果がなくなるので、一般に、他の不揮発性原料10
0重邑重邑対して3〜50Φ量部添加づる。1. Water-compatible 41Substances insoluble in solvents include, for example, ammonium chloride, chlorium chloride, potassium chloride, hydroxide, potassium hydroxide, salt, 9 M ammonium, phosphoric acid. Ammonium, mono-lium citrate, ammonium carbonate, sodium carbonate-11, potassium carbonate, mono-lium hydrogen phosphate, mono-lium phosphate,
Examples include phosphoric acid, sodium hydrogen phosphate, potassium hydrogen phosphate, glycogen, 3-aminolyrithylic acid, γ-aminobutyric acid, L-Δxyglutamic acid, etc., and these can be adjusted to the desired pore size and porosity ( The materials used for the specified purpose are crushed to a predetermined particle size and used.''The above substances are blended in such a way that the pore size and porosity of the ceramic after firing are in the desired state. If the particle size is too large, the pore size becomes large and the inner surface area of the pore becomes small, making it undesirable for filters, carriers for enzymes and ion exchange resins, light absorbing materials, etc. If the particles are too small, they will easily absorb moisture and moisture in the air or solvent, and will dissolve or solidify before the extraction process, so particles of 25 to 300 μ are generally used. If the amount is too large, the strong electric potential of the fired ceramic will decrease, and if it is too small, the porous material will no longer be effective.
Add 3 to 50 Φ parts per 0.
粉砕方法は一般に用いられる粉砕り法を用いて、実施で
き、例えばボールミル、振動ミル、ロッドミル、ロール
クラッシャ、ミクロパルベライザ等の粉砕方法を使用し
、必要に応じて、篩にかけて粒子径をそろえて用いる。The pulverization method can be carried out using a commonly used pulverization method, for example, using a pulverization method such as a ball mill, vibration mill, rod mill, roll crusher, or micropulverizer, and if necessary, sieving to make the particle size uniform. used.
セラミックスの原料は通常セラミックス焼成体を形成づ
るために使用されるものは全て適用可能であり、例えば
、滑石、粘土、アルミナ、珪石、マグネシア、長石、石
灰石、ジルコニア、ペタライi〜、ドロマイト等が挙げ
られ、これらは必要に応じて適当な細度の乾燥したね体
で用いられる。As raw materials for ceramics, all those normally used to form fired ceramic bodies can be used, such as talc, clay, alumina, silica, magnesia, feldspar, limestone, zirconia, petalite, dolomite, etc. These are used in dry bodies of appropriate fineness as required.
上記原料を用いて、本発明の製造方法は次のようになさ
れる。Using the above raw materials, the manufacturing method of the present invention is carried out as follows.
バインダ溶液、水溶性粒状物質及びセラミックス原料の
混練及び成形は一般にセラミックス原材料を混練又は成
形する機器類が使用可能である。For kneading and molding the binder solution, water-soluble granular material, and ceramic raw material, equipment that generally kneads or molds ceramic raw materials can be used.
この混純の際、水は含まれていないので、水溶性粒状物
質はイのままの形で、混練成形された生のセラミックス
中に存在する。During this mixing and purification, water is not included, so the water-soluble particulate matter exists in the kneaded and molded raw ceramic in its original form.
上記成形体を水中にて抽出処理“する方法は、単に成形
体を水で満たされた容器に浸漬してもよいが、抽出効率
を上げるため、流水中に浸漬してもよい。更に水の温度
を−[げて抽出Jるのも効果的である。この抽出処理に
より、水との相溶性のため有機溶媒が水中へ移行し、そ
のあとへ水が侵入覆る。この侵入水が水溶性粒状物質に
達Jるとその粒状物質が溶出し、そこが空孔となる。こ
のことにより生のセラミックスの多孔質体が得られる。In the above-mentioned method of extracting the molded product in water, the molded product may be simply immersed in a container filled with water, but in order to increase the extraction efficiency, it may also be immersed in running water. It is also effective to extract at a lower temperature.Due to this extraction process, the organic solvent migrates into water due to its compatibility with water, and then water enters and covers it.This intruded water causes water-soluble When the granular material is reached, the granular material is eluted and becomes pores.This results in a raw ceramic porous body.
この水による抽出時、セラミックス成形体が分解しない
のは、水溶性粒状物質が水に抽出されるのと同時にセラ
ミックス成形体中のバインダを溶解していた有機溶媒も
水に抽出され、バインダが溶媒を失って固化し、セラミ
ックスの形状を保持づるからである。この場合バインダ
が[ラミックス中に残り、焼成時分解するが、バインダ
程度の饋では既に生成している気孔径に影彎を与えたり
、悪臭、汚染の原因とはならない。The reason why the ceramic molded body does not decompose during extraction with water is that at the same time as the water-soluble particulate matter is extracted with water, the organic solvent that had dissolved the binder in the ceramic molded body is also extracted with water, and the binder is dissolved in the solvent. This is because it solidifies and retains the shape of the ceramic. In this case, the binder remains in the lamix and decomposes during firing, but the amount of binder does not affect the already formed pore size or cause odor or pollution.
上記の如く、水により抽出され、多孔質体となった生の
セラミックス成形体は、乾燥された後、通常の焼成条件
で焼成されて、所望の気孔径を右するセラミックス多孔
質体となる。As described above, the raw ceramic molded body extracted with water and turned into a porous body is dried and then fired under normal firing conditions to become a porous ceramic body having a desired pore size.
以−lム詳述した如く、本発明の製造方法によれば水と
相溶性の有機溶媒に溶解されたバインダ及び該有機溶媒
に不溶な水溶性粒状物質をセラミックス原料粉末と混練
し、成形し、次いで水中にて上記有機溶媒及び水溶性粒
状物質を抽出処理し、焼成することにより、水溶性粒状
物質の最ににっで気孔量をコントロールし、更に、物質
の粒度にJ:って気孔径をコン1〜ロールすることが極
めて容易となり、品質の向上に貢献する。更に、多量の
IM nft類の熱分解がなされないため、悪臭、大気
汚染の問題が牛しることがない。その上、水中に溶出し
た水溶性粒状物質は別途再結晶化等させて回収できるた
め、省資源及びコス]〜ダウンにつながる。このように
して’IJ tiされたセラミックス多孔質体は、自動
車用排ガスフィルタ、各種工業用フィルタ、軽量耐熱構
造材、吸音材、吸光材、ピー1−パイプのウィック、酵
素の担体あるいはイオン交換樹脂の担体等に用いて有益
である。As described in detail above, according to the manufacturing method of the present invention, a binder dissolved in an organic solvent that is compatible with water and a water-soluble particulate material that is insoluble in the organic solvent are kneaded with ceramic raw material powder, and then molded. Then, by extracting the organic solvent and the water-soluble particulate material in water and baking it, the amount of pores in the water-soluble particulate material can be controlled, and the particle size of the material can be adjusted to J:. It is extremely easy to control the pore diameter from 1 to 1, contributing to improved quality. Furthermore, since a large amount of IM nfts is not thermally decomposed, problems of bad odor and air pollution are eliminated. Moreover, the water-soluble particulate matter eluted into water can be recovered by recrystallization separately, leading to resource saving and cost reduction. The ceramic porous body subjected to 'IJti' in this way can be used for automobile exhaust gas filters, various industrial filters, lightweight heat-resistant structural materials, sound absorbing materials, light absorbing materials, P1-pipe wicks, enzyme carriers, and ion exchange resins. It is useful for use as a carrier, etc.
次に本発明をその実施例に基づぎ具体的に説明づる。Next, the present invention will be specifically explained based on examples thereof.
実施例−1
■セラミックス原料
滑石 200重量部
粘土 222 〃
アルミナ 78II
■バインダ溶液
ポリウレタン樹脂 30重量%
ジメチルホルムアミド 70 〃
■の原1′、!l素地500(Iに対して水溶性粒状物
質として塩化アンモニウム(試薬1級)又はυ゛ツカロ
ース所定量配合し、乾式混合した後、■を素地全体に対
して35重齢%加え、土練機で15分上練した後、成形
機にてハニカム状に押し出した。Example-1 ■Ceramics raw material talc 200 parts by weight Clay 222 Alumina 78II ■Binder solution Polyurethane resin 30% by weight Dimethylformamide 70 ■Hara 1',! l base material 500 (add a predetermined amount of ammonium chloride (grade 1 reagent) or υ゛tucharose as a water-soluble granular material to I, dry mix it, add 35% by weight of ■ to the entire base material, and mix it in a clay kneading machine. After kneading for 15 minutes, the mixture was extruded into a honeycomb shape using a molding machine.
これを流水槽中に約6時間保持した後乾燥させ、多孔質
ハニカム成形体を得た。これを電気炉にて、酸化雰囲気
中1400℃で6時間焼成し、コーディエライト質の多
孔質ハニカム状セラミックスを得た。This was kept in a running water tank for about 6 hours and then dried to obtain a porous honeycomb molded body. This was fired in an electric furnace at 1400° C. for 6 hours in an oxidizing atmosphere to obtain a cordierite porous honeycomb ceramic.
実施例−2
■セラミックス原料
実施例−1と回し
くツバインダ溶液
ポリビールブチラール 25重バ1%(活水化学社製
−LスレツクBMS)
土1−ルアル]−ル 75 II水溶性粒状物
質として炭酸アンモニウム(試薬1級)、グリーJ−グ
ン又はγ−アミノ酪酸を用いた以外は、実施例−1と同
様にしく多孔質ハニカム1大レーノミツクスを得Iこ。Example-2 ■ Ceramic raw material Example-1 and the binder solution Polyvinyl butyral 25% heavy duty bar 1% (manufactured by Katsuzu Kagaku Co., Ltd. - L Sletsk BMS) Soil 1-rual]-ru 75 II Ammonium carbonate as water-soluble granular material A porous honeycomb single rayonomics was obtained in the same manner as in Example 1, except that (1st class reagent), Gree J-gun, or γ-aminobutyric acid was used.
実施例−33
■eラミックス16目+1
実施例−1とl1jlじ
(2)ハインタ溶液
メタクリル酸土スプル樹脂 35重量%アL?l−ン
(35u水溶(11粒状物質としてり」
−ン酸アンLニウムを用い1J以外は、実施例−1と同
様にして多孔質ハーカlい状セラミックスを19だ。Example-33 ■e Lamix 16th +1 Same as Example-1 (2) Hinta solution methacrylic acid earth sprue resin 35% by weight A L? l-n
(35u water soluble (as 11 particulate matter)
A porous shell-shaped ceramic was prepared in the same manner as in Example 1, except that 1J of ammonium salt was used.
−1記実施例−1にJ3いて水溶性粒状物質を何も配合
しないしのを比較t?lとして、同様な方法でハニカム
状セラミックスを19だ。Compare J3 with Example-1 without adding any water-soluble particulate matter? Honeycomb-shaped ceramics were prepared using the same method as 19.
各実施例、比較例で1!lられた多孔質ハニカム状セラ
ミックスの吸水率及び平均気孔径の測定データを第1表
に示1j1.ただし平均気孔径は水銀0−人法で行ない
、吸水率の測定は次のように11つだ。1 for each example and comparative example! Table 1 shows the measurement data of the water absorption rate and average pore diameter of the porous honeycomb-shaped ceramics. However, the average pore diameter was measured using the mercury 0-human method, and the water absorption rate was measured in 11 ways as follows.
吸水率測定方法
完全に乾燥した際の重量と水中で飽水さじた!!I’!
1夫
第1表におりる水溶性粒状物質の粒径(μ)を横軸で対
数目盛、セラミックスの平均気孔径(μ)を縦軸で酋通
目盛と覆ると第1図の如くの直線のグラフとなる。又、
水溶性粒状物質の配合割合(重量%)を1#軸で対数目
盛、気孔かに該当づる吸水率(%)を縦軸で酋通目盛と
覆ると第2図の如くの直線のグラフとなる。How to measure water absorption: Weight when completely dry and saturated spoonful in water! ! I'!
If we plot the particle size (μ) of the water-soluble granular substances listed in Table 1 on a logarithmic scale on the horizontal axis and the average pore diameter (μ) of ceramics on a logarithmic scale on the vertical axis, we get a straight line as shown in Figure 1. The graph becomes or,
If we plot the proportion of water-soluble particulate matter (wt%) on a logarithmic scale on the 1# axis and the water absorption rate (%) corresponding to pores on a vertical scale, we get a straight line graph as shown in Figure 2. .
この結果から、次のことがわかった1、セラミックスの
焼成時はと/υど燃焼ガスが発生せず安全語生上問題を
生じなかった。又、抽出に使用した水から水溶↑111
1粒状物質結晶づ゛ることにJ、す、配合量の65)〜
70%が回収でさた。発泡状態ら所望通って′、均一性
も良好であった。The results revealed the following: 1. No combustion gas was generated during firing of ceramics, and no safety problems were caused. In addition, water-soluble ↑111 from the water used for extraction
For one particulate matter crystal, the amount of J, S, 65) ~
70% was recovered. The foaming state was as desired and the uniformity was also good.
第1図は水溶性粒状物質の粒径ど焼成され1.−けラミ
ックスの平均気孔径どをプIIツ1〜(ツノ、=グラフ
、第2図は水溶11粒状物質の配合割合と焼成されたセ
ラミックスの吸水率とをブ[lツ1〜し)、:グラフを
表わす。Figure 1 shows the particle size of water-soluble granular material after firing. - What is the average pore diameter of ceramic ceramics? ,: represents a graph.
Claims (1)
有機溶媒に不溶な水溶性粒状物質をセラミックス原1′
31粉末と混練し、成形し、次いで水中にて上記有機溶
媒及び水溶性粒状物質を抽出処理し、焼成することを特
徴どするセラミックス多孔質体の製造方法。1 A binder dissolved in a water-compatible organic solvent and a water-soluble particulate material insoluble in the organic solvent are mixed into a ceramic raw material 1'.
31 powder, molding, then extracting the organic solvent and water-soluble particulate material in water, and firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19304782A JPS5983972A (en) | 1982-11-02 | 1982-11-02 | Manufacture of ceramic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19304782A JPS5983972A (en) | 1982-11-02 | 1982-11-02 | Manufacture of ceramic porous body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5983972A true JPS5983972A (en) | 1984-05-15 |
JPS6339545B2 JPS6339545B2 (en) | 1988-08-05 |
Family
ID=16301289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19304782A Granted JPS5983972A (en) | 1982-11-02 | 1982-11-02 | Manufacture of ceramic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983972A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5082607A (en) * | 1987-04-30 | 1992-01-21 | Okura Kogyo Kabushiki Kaisha | Process of producing porous ceramics |
US5998523A (en) * | 1997-07-18 | 1999-12-07 | The Dow Chemical Company | Composition comprising a metal salt and metal powder therefrom by the calcining thereof |
US6211285B1 (en) | 1996-07-22 | 2001-04-03 | The Dow Chemical Company | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
WO2004039748A1 (en) * | 2002-10-18 | 2004-05-13 | Forschungszentrum Jülich GmbH | Method for the production of near net-shaped metallic and/or ceramic parts |
GB2426975A (en) * | 2005-06-10 | 2006-12-13 | John William Carson | Binder for mineral aggregates |
US7195735B2 (en) | 2002-07-15 | 2007-03-27 | Hitachi Metals, Ltd. | Porous sintered metal and filter thereof, and method for producing porous sintered metal |
WO2008078779A1 (en) * | 2006-12-26 | 2008-07-03 | Nippon Sheet Glass Company, Limited | Method for producing porous ceramic article |
WO2012023617A1 (en) * | 2010-08-19 | 2012-02-23 | 日立金属株式会社 | Manufacturing method for ceramic honeycomb structure |
CN108689722A (en) * | 2018-06-13 | 2018-10-23 | 肖然 | A kind of preparation method of the adjustable porous ceramics in aperture |
-
1982
- 1982-11-02 JP JP19304782A patent/JPS5983972A/en active Granted
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5082607A (en) * | 1987-04-30 | 1992-01-21 | Okura Kogyo Kabushiki Kaisha | Process of producing porous ceramics |
US6211285B1 (en) | 1996-07-22 | 2001-04-03 | The Dow Chemical Company | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
US5998523A (en) * | 1997-07-18 | 1999-12-07 | The Dow Chemical Company | Composition comprising a metal salt and metal powder therefrom by the calcining thereof |
US7195735B2 (en) | 2002-07-15 | 2007-03-27 | Hitachi Metals, Ltd. | Porous sintered metal and filter thereof, and method for producing porous sintered metal |
US7351371B2 (en) | 2002-10-18 | 2008-04-01 | Forschungszentrum Julich Gmbh | Method for the production of near net-shaped metallic and/or ceramic parts |
WO2004039748A1 (en) * | 2002-10-18 | 2004-05-13 | Forschungszentrum Jülich GmbH | Method for the production of near net-shaped metallic and/or ceramic parts |
AU2003271541B2 (en) * | 2002-10-18 | 2009-04-23 | Forschungszentrum Julich Gmbh | Method for the production of near net-shaped metallic and/or ceramic parts |
GB2426975A (en) * | 2005-06-10 | 2006-12-13 | John William Carson | Binder for mineral aggregates |
GB2426975B (en) * | 2005-06-10 | 2010-09-29 | John William Carson | Improved building construction |
WO2008078779A1 (en) * | 2006-12-26 | 2008-07-03 | Nippon Sheet Glass Company, Limited | Method for producing porous ceramic article |
WO2012023617A1 (en) * | 2010-08-19 | 2012-02-23 | 日立金属株式会社 | Manufacturing method for ceramic honeycomb structure |
US9085091B2 (en) | 2010-08-19 | 2015-07-21 | Hitachi Metals, Ltd. | Production method of ceramic honeycomb structure |
CN108689722A (en) * | 2018-06-13 | 2018-10-23 | 肖然 | A kind of preparation method of the adjustable porous ceramics in aperture |
CN108689722B (en) * | 2018-06-13 | 2021-04-06 | 绍兴市梓昂新材料有限公司 | Preparation method of porous ceramic with adjustable pore diameter |
Also Published As
Publication number | Publication date |
---|---|
JPS6339545B2 (en) | 1988-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0968067B1 (en) | Process for shaping parts from ceramic and metal powders comprising a gel formation | |
JP5658136B2 (en) | Porous ceramic sintered body and method for producing the same | |
JPS5983972A (en) | Manufacture of ceramic porous body | |
DE2322593A1 (en) | FIRE RESISTANT LIGHT MATERIAL | |
KR20130097146A (en) | Production method of ceramic honeycomb structure | |
DE2753819C2 (en) | ||
US5667548A (en) | Process for producing ceramic green compacts by double layer compression | |
JP2000026141A (en) | Carbon black for coloring cement and method for coloring cement molded articles | |
JPH07762B2 (en) | Pencil lead manufacturing method | |
JP4676066B2 (en) | Boron carbide casting | |
US5922272A (en) | Manufacture of ceramic articles | |
JPS6341865B2 (en) | ||
DE2342948B2 (en) | METHOD FOR MANUFACTURING CERAMIC MATERIAL HOLLOW BODIES AND THEIR USE | |
JP2694900B2 (en) | Method for producing zeolite from clayey raw material | |
KR20240143804A (en) | Porous media manufacturing method using furnace slag | |
DE2109193A1 (en) | Means for drying organic gaseous polymerization-sensitive compounds having carbon-carbon unsaturated bonds while preventing the polymerization of these compounds | |
JPH0331661B2 (en) | ||
KR20240143806A (en) | Porous media manufacturing method using fly ash | |
KR20240143805A (en) | Porous media manufacturing method using zeolite | |
JPH04357157A (en) | Production of granulated ceramic powder for forming | |
JP3672598B2 (en) | Plastic molding slurry composition, method for producing the plastic molding slurry composition, plastic molding clay obtained by subjecting the plastic molding slurry composition to dehydration and kneading, and use of the plastic molding clay Molding method of plastic molded body, plastic molded body molded by the molding method, and dried plastic molded body obtained by drying the plastic molded body | |
KR20240143803A (en) | Porous media manufacturing method using carbon black | |
US1239152A (en) | Art of molding. | |
CN119390474A (en) | Preparation method and application of porous ceramic material with high porosity | |
JP3006729B2 (en) | Zirconia refractory setter and method for producing the same |