JPS5982396A - N3,5-dilithio-5,6-dihydrouracil nucleoside - Google Patents
N3,5-dilithio-5,6-dihydrouracil nucleosideInfo
- Publication number
- JPS5982396A JPS5982396A JP57192900A JP19290082A JPS5982396A JP S5982396 A JPS5982396 A JP S5982396A JP 57192900 A JP57192900 A JP 57192900A JP 19290082 A JP19290082 A JP 19290082A JP S5982396 A JPS5982396 A JP S5982396A
- Authority
- JP
- Japan
- Prior art keywords
- nucleoside
- reaction
- compound
- dilithio
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Saccharide Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、新規かつ有用な合成中間体であるN8゜5−
ジリチオ−5,6−シヒドロウラシルヌクレオシドおよ
びその製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel and useful synthetic intermediate, N8゜5-
This invention relates to dilithio-5,6-sihydrouracil nucleoside and its production method.
有機化合物のリチウム化は、炭素−炭素結合形成反応の
ための重要な手段として認識されるようになってきた。Lithiation of organic compounds has become recognized as an important means for carbon-carbon bond forming reactions.
しかしながら、ヌクレオシド化学の分野Iこおい−は、
このリチウム化反応を応用した例はあまり知られていな
い。これは、従来報告されている結果が、製造上の立場
からみて実用性と
に乏しいものであったこと一関連している。However, in the field of nucleoside chemistry,
There are not many examples of applications of this lithiation reaction. This is related to the fact that the results reported so far have been poor in practicality from a manufacturing standpoint.
本発明者らは、先にウリジン誘導体のりヂウムθ
化ニついて研究し、2’、8’−1−イソプロビリデシ
ー5′−−−メトキシメチルウリジンをリチウムジイソ
プロピルア゛ミド (L D A )と反応さゼると、
C−6位か位置選択的にリチウム化され、N3,6に
一ジリチオ体が得られることを知見した(Hu4icA
cids3ymposiunt3eriesNa8.
88 (1980))っそして、N8,6−ジリチオ
体を種々の親電子試薬と反応させることによって、C−
6位に炭素−炭素結合を介して種々の置換基を導入する
ことに成功した (Nuckic 、4cids 3y
mposium 3eries N(110,1(19
81))。The present inventors previously studied the lithium theta conversion of uridine derivatives, and converted 2',8'-1-isopropylidene 5'--methoxymethyl uridine into lithium diisopropylamide (LDA). When the reaction starts,
It was found that the C-6 position was regioselectively lithiated, resulting in a monodilithio form at N3,6 (Hu4icA).
cids3ymposition3eriesNa8.
88 (1980)) and by reacting the N8,6-dilithio form with various electrophilic reagents, C-
We succeeded in introducing various substituents into the 6-position via a carbon-carbon bond (Nuckic, 4cids 3y
mposium 3eries N(110,1(19
81)).
本発明は、ウラシルヌクレオシドのC−5位1c位置選
択的に炭素−炭素結合を介して種々の置換基を導入しう
る合成中間体を提供する目的のもとに完成されたもので
ある。The present invention was completed with the object of providing a synthetic intermediate capable of selectively introducing various substituents into the C-5 position of uracil nucleoside via a carbon-carbon bond.
すなわち、本発明者らは、ウラシルヌクレオシドをロジ
ウム/アルミナなどの還元触媒を用いて接触還元するこ
とにより得られる5、6−シヒドロウランルヌクレオシ
ドに対してリチウム化剤ニよりリチウム化し、そのリチ
ウム化生成物に親電子試薬として酸ハライドを反応させ
、さらに5−6結合をフェニルセレネニルクロライド−
ピリジンで不飽和化すると、5−アンルウラシルヌクレ
オシドか選択的に得られることを見い出した。したかっ
て、5.6−シヒドロウランルヌクレオシドのリチウム
化物は、化学反応的観点から、N3゜5−ジリチオ−5
,6−シヒドロウラシルヌクレオシドであることが同定
され、このものは各種の親電子試薬との反応により容易
にC−5位に炭素−炭素結合を介して置換基を導入され
、5−置換ウラシルヌクレオシドの合成中間体としてき
わめて有用であることが判明した。That is, the present inventors lithiated 5,6-dihydrouranyl nucleoside obtained by catalytic reduction of uracil nucleoside using a reduction catalyst such as rhodium/alumina using a lithiation agent, and removed the lithium. The reaction product is reacted with an acid halide as an electrophilic reagent, and the 5-6 bond is further converted into phenylselenenyl chloride-
It has been found that 5-anluuracil nucleoside can be selectively obtained by unsaturation with pyridine. Therefore, from the chemical reaction point of view, the lithium compound of 5,6-dihydrouranyl nucleoside is N3゜5-dilithio-5
, 6-dihydrouracil nucleoside, which can be easily substituted at the C-5 position via a carbon-carbon bond by reaction with various electrophilic reagents, resulting in 5-substituted uracil nucleoside. It was found to be extremely useful as an intermediate in the synthesis of nucleosides.
本発明化合物であるN8,5−ジリチオ−5,6−シヒ
ドロウラシルヌクレオシドは、下記一般式%式%
該式中、Rは保護基を有する糖残基を示す。糖残基の具
体例としてはフラノシル基、たとえはβ−D−リボフラ
ノノル基、β−D−2−デオキンリボフラノンル基、β
−1) −8−デオキソリホフラノシル基、β−D−ア
ラビノフラノシル基なとか挙りられる。糖残基の保護基
としては、ヌクレオシド化学番こおいて適用しうるちの
を保護を要する糖水酸基の位置に応じて適宜に選択ずれ
はよい。N8,5-dilithio-5,6-sihydrouracil nucleoside, which is a compound of the present invention, has the following general formula % Formula % In the formula, R represents a sugar residue having a protecting group. Specific examples of sugar residues include furanosyl groups, such as β-D-ribofuranonor group, β-D-2-deoquine ribofuranonol group, and β-D-ribofuranonor group.
-1) Examples include -8-deoxoliphofuranosyl group and β-D-arabinofuranosyl group. The protecting group for the sugar residue may be selected as appropriate depending on the position of the sugar hydroxyl group that requires protection, depending on the nucleoside chemical number.
具体的には、酸処理により容易に脱離しうるものが好ま
しく、たとえは、メトキシメチル基、エトキシエチル基
なとのアルコキシアルキル基、トリデル基、ベンジル基
なとのアラルキル基なと、また糖残基がβ−D−リボフ
ラノシル基である場合、その2′位および8′位水酸基
の同時保護用として、インプロピリデン基、エチリデン
基なとのアルキ本発明化合物は、5.6−シヒドロウラ
シルスクレオシドにリヂウム化剤を反応させることによ
り調製することかできる。Specifically, those that can be easily eliminated by acid treatment are preferred, such as alkoxyalkyl groups such as methoxymethyl groups and ethoxyethyl groups, aralkyl groups such as tridel groups and benzyl groups, and sugar residues. When the group is a β-D-ribofuranosyl group, for the simultaneous protection of the 2'- and 8'-position hydroxyl groups, the alkylated compound of the present invention with an inpropylidene group or an ethylidene group can be 5,6-sihydrouracil. It can be prepared by reacting screoside with a rhidium-forming agent.
原14 化合物の5,6−ジヒ]・ロウラソルヌクレオ
ンドは、下記一般式(IIIで表わされる。The compound 5,6-dihi]-lourasol nucleondo of Gen 14 is represented by the following general formula (III).
該式中、Rは、目的とする本発明化合物のものと対応す
る。この原料化合物は、ロジウム/アルミナを還元触媒
として用いてウラシルヌクレオシドを接触還元する方法
なと公知の方法により製造すルコトカテキル(りとエバ
1.r、 □heIq、 3oc(1,970)244
4参照)。In the formula, R corresponds to that of the target compound of the present invention. This raw material compound is rukotocatekyl (Ritoeva 1.r, □heIq, 3oc(1,970) 244), which is produced by a known method such as the method of catalytic reduction of uracil nucleoside using rhodium/alumina as a reduction catalyst.
(see 4).
リチウム化反応において用いられるリヂウム化剤として
は、LDA、n−ブチルリチウム、フエニルリチウム、
リチウム−n−プロピノ+/アミド、テトラメチルピペ
リジニルリチウムなとか例示される。反応は通′帛エー
テル系溶媒中で行われ、反応溶媒としては、テトラヒド
ロフラン、ジオキサン、ジエヂルエーテル、ジメトキノ
エタン、ジエヂレングリコールジメチルエーテルなどが
適用さエチレンジアミンなどの三級アミンを溶媒中に存
在させることもてきる。反応条件と1.では、無水条件
下で、副反応を防止するため一78〜0°Cの低温条件
が設定される。反応は、数十分〜数時間で完結する。Lidium forming agents used in the lithiation reaction include LDA, n-butyllithium, phenyllithium,
Examples include lithium-n-propino+/amide and tetramethylpiperidinyllithium. The reaction is generally carried out in an ether solvent, and examples of the reaction solvent include tetrahydrofuran, dioxane, diethyl ether, dimethoquinoethane, and diethyl glycol dimethyl ether.A tertiary amine such as ethylenediamine may also be present in the solvent. Ru. Reaction conditions and 1. In this case, low temperature conditions of -78 to 0°C are set under anhydrous conditions to prevent side reactions. The reaction is completed in several tens of minutes to several hours.
本発明化合物は不安定であるため、合成反応液から単離
せずに、そのまま次の反応に供される。Since the compound of the present invention is unstable, it is directly subjected to the next reaction without being isolated from the synthesis reaction solution.
5−置換ウラシルヌクレオンドを得る反応工程は、本発
明化合物に対して、■(、−5位リチウム原子と親電子
試薬との置換反応、および■C−5および6位炭素原子
間結合の不飽和化反応を行う]二程からなる。The reaction step for obtaining the 5-substituted uracil nucleond includes: (1) a substitution reaction between the lithium atom at the -5 position and an electrophilic reagent, and (2) an unsubstituted bond between the carbon atoms at the C-5 and 6 positions on the compound of the present invention. Carry out a saturation reaction] It consists of two steps.
C−5位置換反応に使用される親電子試薬としては、酸
ハライド、アルデヒド、ギ酸エステル、ケトン、エポキ
シド、710ケン化アルキルなとか挙けられる。反応は
、本発明化合物の合成反応液に親電子試薬を添加して行
う。C−5および6位ピリジン複合体の存在下て0°C
〜室温で十数時間反応させてフェニルセレネニル化し、
ピリジンを留去した後、ジクロロメタン中00Cで30
%過酸化水素と反応させてフェニルセレネニル基を酸化
的に脱離する方法なとにより行う。また、/Sロゲン化
アルキルなどの親電子試薬の種類によっては、ル基を酸
化的に脱離させる方法を採用する。Examples of electrophilic reagents used in the C-5 substitution reaction include acid halides, aldehydes, formic acid esters, ketones, epoxides, and 710 saponified alkyls. The reaction is carried out by adding an electrophilic reagent to a reaction solution for synthesizing the compound of the present invention. 0 °C in the presence of C-5 and 6-position pyridine complex
~ React at room temperature for more than ten hours to form phenylselenenylation,
After distilling off the pyridine, at 00C in dichloromethane,
% hydrogen peroxide to oxidatively eliminate the phenylselenenyl group. Further, depending on the type of electrophilic reagent such as /S halogenated alkyl, a method of oxidative elimination of the ru group is adopted.
以下、本発明化合物の合成およびその応用反応例を実施
例として示す。Examples of the synthesis of the compounds of the present invention and their applied reactions will be shown below.
実施例
J、 D A 11. 65 nnnolllを含むテ
トラヒドロフラヂルー5,6−ンヒドロウリジン1.5
49 (4,66+nmolll )を溶解させた溶液
を、乾燥アルコンカス加圧下、−70°Cを越えないよ
うにしながら添加し、1時間撹拌しながら反応させた。Example J, D A 11. Tetrahydrofradi-5,6-hydrouridine containing 65 nnnnoll 1.5
A solution in which 49 (4,66+nmol) was dissolved was added to the dry alcon cass under pressure while not exceeding -70°C, and reacted with stirring for 1 hour.
(=本発明化合物の調製)
以下、本発明化合物の生成を証明する目的を兼ねて、本
発明化合物と親電−r−試薬きしての酸ハライドとの反
応、およびC5−6位の不飽和化反応ダ
を行って種々の題−アシル置換ウリジンを得た。(=Preparation of the compound of the present invention) In the following, for the purpose of proving the production of the compound of the present invention, the reaction of the compound of the present invention with an acid halide using an electrophilic-r-reagent, and the reaction of the compound at the C5-6 position will be described. A saturation reaction was performed to obtain various acyl-substituted uridines.
すなわち、本発明化合物の合成の反応液に、−709C
以下に温度を保ちながらペンソイルクロライド]、、
09 ml (9,82rnmol@l )を少fi’
l スッ滴下し、1時間反応させた。酢酸で反応を停止
さゼ、室温に戻した後、濃縮乾固し、残渣をシリiyゲ
ルカラムクaマドクラフィーにイーした。1%エタン−
ルークロロホルム溶液で溶出し、溶出液を濃縮θ
ビリデン−5′−一−メトキンメチル=5.6−7ヒド
ロウリジン1.61’/(収率796%)を得た。That is, -709C is added to the reaction solution for synthesis of the compound of the present invention.
Penn Soil Chloride while maintaining the temperature below],,
Add 09 ml (9,82rnmol@l) to a small amount
1 dropwise and allowed to react for 1 hour. The reaction was stopped with acetic acid, and after returning to room temperature, it was concentrated to dryness, and the residue was applied to a silica gel column. 1% ethane
The eluate was eluted with a dichloroform solution, and the eluate was concentrated to obtain 5.6-7hydrouridine 1.61'/(yield 796%).
質rJ’分析スペクトル: M+ mlz : 43
4フエニルセレネニルクロライド0.269をジクロロ
メタン25 mlに溶解させ、0°Cに冷却し、ビ’J
シフ 0.12 gヲ加えてフェニルセレネニルクロ
ライド−ピリジン複合体を調製した。Quality rJ' analysis spectrum: M+ mlz: 43
Dissolve 0.269 of 4 phenyl selenenyl chloride in 25 ml of dichloromethane, cool to 0°C, and add Bi'J
A phenylselenenyl chloride-pyridine complex was prepared by adding 0.12 g of Schiff.
5−ベンソイル−2’、8’−11インプロピリチノー
5′−−−メトキシメヂル−5,6−シヒドロウリンン
510 m(/のジクロロメタン7 vtt 溶液を0
0Cて上記複合体25 atに加え、−夜撹拌した、反
応液を濃縮乾固し、ビIIジンをエタノールと共沸させ
て完全に除去し、残渣をジクロ口メタン10FItに溶
解させ、0°Cに冷却し、30%過酸化水素0.1 m
lを加え、0°Cで1時間撹拌した。さらに30%過酸
化水素0.1 mlを加え、0°Cて1時間撹拌を続け
た。反応液に水10tnfを加え、有機溶媒層を分取し
、硫酸ナトリウムで乾燥させ、濾過し、濃縮乾固した。5-benzoyl-2',8'-11-impropyritino 5'--methoxymedyl-5,6-cyhydrourin 510 m (/ of dichloromethane 7 vtt solution to 0
The reaction mixture was added to the above complex 25 at 0° C. and stirred overnight. The reaction solution was concentrated to dryness, the bidine was completely removed by azeotroping with ethanol, and the residue was dissolved in dichloromethane 10 FIt. Cool to 0.1 m of 30% hydrogen peroxide.
1 was added and stirred at 0°C for 1 hour. Further, 0.1 ml of 30% hydrogen peroxide was added, and stirring was continued at 0°C for 1 hour. 10 tnf of water was added to the reaction solution, and the organic solvent layer was separated, dried over sodium sulfate, filtered, and concentrated to dryness.
ソリ力ゲル力うムクロマトクラフイ−(溶出剤=1%エ
タノールークロロホルム溶液)で分離精製して5−ヘン
ソイル−2’、3’Q
−一一−インプロピリデンー5′−1−メトキシメチル
ウリジン456 mg (収率897%)を得た。Separation and purification by gel chromatography (eluent = 1% ethanol-chloroform solution) yielded 5-hensoyl-2',3'Q-11-impropylidene-5'-1-methoxy. 456 mg (yield: 897%) of methyluridine was obtained.
質量分析スペクトル: M+1 +n/z +
488PMRスペクトルニδ8.89 S H−6
5−ペンソイル−2’、 8’−一〜インプロピリデ
ノー5′−1−メI・キシメチルウリジン860 mg
に50%トリフルオロ酢酸水溶液8 mlを加え、室温
で2日間撹拌した。反応液を濃縮乾固し、残渣をシリカ
ケルカラムクロマトグラフィー(溶出剤;5%エタノー
ル−クロロホルム溶液)で分離り、 テ5−ベンゾイル
ウリジン246mg<収率84.3%)を得た。Mass spectrometry spectrum: M+1 +n/z +
488PMR spectrum δ8.89 S H-6
5-pensoyl-2', 8'-1-inpropylideno-5'-1-meI-xymethyluridine 860 mg
8 ml of 50% trifluoroacetic acid aqueous solution was added to the mixture, and the mixture was stirred at room temperature for 2 days. The reaction solution was concentrated to dryness, and the residue was separated by silica gel column chromatography (eluent: 5% ethanol-chloroform solution) to obtain 246 mg of 5-benzoyl uridine (yield: 84.3%).
融点 210〜211°C
元素分析
計算値 C,55,17H,4,68N、 8.04実
測値 C,55,28H,4,68N、 7.85PM
Rスペクトル: (D20. DSS)δ5、98
H−1’
8.52 H−6
745〜7.79 フェニル
本実施例の反応経路を図式化すると以下のとおりである
。なお、Rはフェニル基を示す。Melting point 210-211°C Elemental analysis calculated value C, 55,17H, 4,68N, 8.04 Actual value C, 55,28H, 4,68N, 7.85PM
R spectrum: (D20. DSS) δ5, 98
H-1' 8.52 H-6 745-7.79 Phenyl The reaction route of this example is illustrated as follows. Note that R represents a phenyl group.
(1a)
(2a) (8a)ベンゾイルク
ロライドの代りに種々の酸ノ1ライドを本発明化合物に
反応させた結果は、次表のとおりてあった。(1a) (2a) (8a) The results of reacting various acid nitrides with the compounds of the present invention in place of benzoyl chloride are shown in the following table.
これらの5−アンル置換ウリノンの生成により、本発明
化合物の生成および有用性か確認される。The production of these 5-anyl-substituted urinones confirms the production and usefulness of the compounds of the present invention.
Claims (1)
れるN3,5−ジリチオ−5,6−シヒドロウラシルヌ
クレオシド。 2)一般式(II) ○ 〔式中、Rは保護基を有する糖残基を示ず。、]て表わ
される5、6−シヒドロウランルヌクレメノドにリヂウ
ム化剤を反応させ、一般式〔1〕(式中、Rは前記と同
意義である。Jて表わされるN3,5−ジリチオ−5,
6−シヒドロウラシルヌクレオシドを得ることを特徴と
するN8゜5−ジリチオ−5,6−シヒドロウラシルヌ
クレオンドの製造法。[Claims] 1) General formula (1) In formula 1, R represents a sugar residue having a protecting group. ] N3,5-dilithio-5,6-sihydrouracil nucleoside. 2) General formula (II) ○ [In the formula, R does not represent a sugar residue having a protecting group. , ] is reacted with a rhidium-forming agent to form N3,5-dilithio represented by the general formula [1] (wherein R has the same meaning as above. -5,
A method for producing N8゜5-dilithio-5,6-sihydrouracil nucleoside, which is characterized in that 6-sihydrouracil nucleoside is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57192900A JPS5982396A (en) | 1982-11-02 | 1982-11-02 | N3,5-dilithio-5,6-dihydrouracil nucleoside |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57192900A JPS5982396A (en) | 1982-11-02 | 1982-11-02 | N3,5-dilithio-5,6-dihydrouracil nucleoside |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5982396A true JPS5982396A (en) | 1984-05-12 |
JPH0368879B2 JPH0368879B2 (en) | 1991-10-30 |
Family
ID=16298842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57192900A Granted JPS5982396A (en) | 1982-11-02 | 1982-11-02 | N3,5-dilithio-5,6-dihydrouracil nucleoside |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5982396A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0702675A4 (en) * | 1993-06-14 | 1996-02-02 | Univ Washington | CARBON-CARBON COUPLING PROCESS CATALYZED BY PALLADIUM AND PRODUCTS OBTAINED |
-
1982
- 1982-11-02 JP JP57192900A patent/JPS5982396A/en active Granted
Non-Patent Citations (1)
Title |
---|
TETRAHEDRON LETTERS * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0702675A4 (en) * | 1993-06-14 | 1996-02-02 | Univ Washington | CARBON-CARBON COUPLING PROCESS CATALYZED BY PALLADIUM AND PRODUCTS OBTAINED |
Also Published As
Publication number | Publication date |
---|---|
JPH0368879B2 (en) | 1991-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HU199499B (en) | Process for producing 2',3'-dideoxy-2'-fluoronucleosides and pharmaceutical compositions comprising such active ingredient | |
JP3653292B2 (en) | Mass production of 2 ', 3'-didehydro-3'-deoxythymidine (d4T) using 5-methyluridine | |
JPS61204193A (en) | Production of cytosine nuceoside | |
JP3042073B2 (en) | Nucleoside derivative and method for producing the same | |
US5633366A (en) | Pyrimidine nucleoside derivatives and methods for producing them | |
JPS6029720B2 (en) | Novel production method of 3',4'-dideoxykanamycin B | |
Wetzel et al. | Synthesis and reactions of 6-methylsulfonyl-9-. beta.-D-ribofuranosylpurine | |
JP2670032B2 (en) | Method for producing 1-N-ethylsisomycin | |
US4751293A (en) | Process for preparation of N6 -substituted 3',5'-cyclic adenosine monophosphate and salt thereof | |
JPS5982396A (en) | N3,5-dilithio-5,6-dihydrouracil nucleoside | |
JPH06135988A (en) | Nucleotide derivative | |
JPH0217199A (en) | Production of 2'-deoxy-beta-adenosine | |
HU209310B (en) | Process for producing deoxynucleozides | |
JP2666160B2 (en) | 5-O-pyrimidyl-2,3-dideoxy-1-thiofuranoside derivative, method for producing the same and use | |
JPS5828279B2 (en) | urijinyuudoutainoseizohou | |
JP2003146957A (en) | Method for producing valiolamine and intermediate thereof | |
JPH0272191A (en) | Method for producing 2',3'-dideoxynucleoside | |
GB2096596A (en) | 8-quinolinesulfonyl derivatives and their synthesis and use as coupling agents in nucleotide chemistry | |
JPS5930720B2 (en) | Method for producing 5-bromouracil nucleoside | |
US3954752A (en) | Process for preparing 2',3',5'-tri-0-acetyl-6-azauridine | |
JPH03264582A (en) | 2',3'-dideoxy-2',3'-di-substituted-nucleosides and production thereof | |
JPH06135989A (en) | Nucleotide derivative | |
JP3070863B2 (en) | Method for producing 2 ', 3'-dideoxypyrimidine nucleosides | |
JPH02160799A (en) | Preparation of 2'-deoxy-beta-adenosine | |
JPS637200B2 (en) |