JPS5976167A - Number-of-phase converter - Google Patents
Number-of-phase converterInfo
- Publication number
- JPS5976167A JPS5976167A JP18464882A JP18464882A JPS5976167A JP S5976167 A JPS5976167 A JP S5976167A JP 18464882 A JP18464882 A JP 18464882A JP 18464882 A JP18464882 A JP 18464882A JP S5976167 A JPS5976167 A JP S5976167A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- phase
- voltage
- load
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K47/00—Dynamo-electric converters
- H02K47/18—AC/AC converters
- H02K47/30—Single-armature phase-number converters without frequency conversion
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
(、) 技術分野の説明
本発明は単相交流を三相交流に変換する回転電機形の相
数変換装置の改良に関し、特に各相の出力電圧を平衡に
する技術に関する。[Detailed Description of the Invention] (,) Description of the Technical Field The present invention relates to an improvement of a rotating electric machine type phase number conversion device that converts single-phase alternating current to three-phase alternating current, and particularly relates to a technique for balancing the output voltage of each phase. Regarding.
(b) 従来技術の説明
交流電気車では電気車駆動用の主電動機の外に、主電動
機冷却用の送風電動機、変圧器の冷却油用゛電動機、抵
抗器用送風電動機等数個の低圧補助電動機を使用してい
る。しかし架線電源が単相交流であるため、前記低圧補
助電動機に単相の誘導電動機を使用すると起動コンデン
サ、接触器等を個々にノーとし、重量及び取付寸法が増
加する欠点があるため、小形軽量で安価な、しかも保守
の容易な並相誘導電動機を使用し、電源には、単相交流
の架線電源を回転電機形の、相数変換器によ−り変換し
た三相電源を専ら用いている。(b) Description of Prior Art In AC electric cars, in addition to the main motor for driving the electric car, several low-voltage auxiliary motors are used, such as a blower motor for cooling the main motor, a motor for cooling oil of the transformer, and a blower motor for resistors. are using. However, since the overhead line power source is single-phase AC, if a single-phase induction motor is used as the low-voltage auxiliary motor, the starting capacitor, contactor, etc. will be required individually, and the weight and installation dimensions will increase. A parallel-phase induction motor, which is inexpensive and easy to maintain, is used, and the power source is exclusively a three-phase power source that is converted from a single-phase AC overhead line power source using a rotating electrical machine-type phase converter. There is.
第1図に従来の相数変換装置の回路を示した。FIG. 1 shows a circuit of a conventional phase number converter.
第1図で10は変圧器で、架線に接触されたパンタグラ
フ11から給電を受ける1次巻線12と2次巻線13,
3次巻線14の出力巻線を持っている。2次巻線13は
整流装置15を介して車両駆動用の主直流電動機(−図
示せず)に接続されている。3次巻線14は中間タップ
を持ち、相数変換機16に給電する。In FIG. 1, 10 is a transformer, which has a primary winding 12 and a secondary winding 13, which receive power from a pantograph 11 that is connected to an overhead wire.
It has a tertiary winding 14 output winding. The secondary winding 13 is connected via a rectifier 15 to a main DC motor (not shown) for driving the vehicle. The tertiary winding 14 has a center tap and supplies power to the phase number converter 16.
相数変換機16は単相の誘導電動機として抵抗分相起動
方式を用いて起動する。即ち、主巻線16aと補助巻線
16bを有しており、補助巻線16bに直列に起動抵抗
17を接触器18を介して挿入し、主巻。The phase number converter 16 is started as a single-phase induction motor using a resistance split phase starting method. That is, it has a main winding 16a and an auxiliary winding 16b, and a starting resistor 17 is inserted in series with the auxiliary winding 16b via a contactor 18.
線16aの作る磁束と補助巻線16bの作る磁束の位相
をずらして回転磁界を作り、起動回転力発生させて起動
し、回転数が上昇した後に起動抵抗17を接触機18に
より切り離し、負荷接触器19を投入して前記した三相
誘導電動機等の負荷群20に三相交流を供給する。A rotating magnetic field is created by shifting the phase of the magnetic flux created by the wire 16a and the magnetic flux created by the auxiliary winding 16b, generating a starting rotational force for starting, and after the rotational speed increases, the starting resistor 17 is separated by the contactor 18, and the load is contacted. 19 to supply three-phase alternating current to a load group 20 such as the three-phase induction motor described above.
前記相数変換機16は主巻線16aと補助巻線16bの
2巻線の組合せにより三相交流電圧を出力しているため
、架線電圧、即ち変圧器10の3次巻線14よりの入力
電圧の変動、および負荷変動により、三相出力電圧は平
衡電圧とはならず不平衡電圧となる。即ち第2図に示し
た相数変換機の出力電圧のベクトル図の如く、相数変換
機16の補助巻線16bの作る無負荷時の電圧ベクトル
Z−W、は、平衡状態の場合の電圧ベクトルZ−W、に
較べて大きく。Since the phase number converter 16 outputs a three-phase AC voltage by a combination of two windings, the main winding 16a and the auxiliary winding 16b, the overhead line voltage, that is, the input from the tertiary winding 14 of the transformer 10 Due to voltage fluctuations and load fluctuations, the three-phase output voltage becomes an unbalanced voltage instead of a balanced voltage. That is, as shown in the vector diagram of the output voltage of the phase number converter shown in FIG. It is larger than the vector Z-W.
また主巻線16aのU−V相の電圧ベクトルU−Vに対
する位相差も大きい、−力負荷時に作る補助巻線16b
の電圧ベクトルZ−W、は平衡状態の場合の電圧ベクト
ルZ−W0に較べて小さく、また主巻線16aのU−V
相の電圧ベクトルU−,Vに対する位相差も大きく小さ
い。Also, the phase difference between the UV phase of the main winding 16a and the voltage vector UV is large.
The voltage vector Z-W of the main winding 16a is smaller than the voltage vector Z-W0 in the balanced state, and
The phase difference between the phase voltage vectors U- and V is also large and small.
第3図に相数変換機16の入力電圧疎び負荷を変えた場
合の相数変換機16の出力電圧不平衡率を示した。電圧
不平衡率はJEC114(同期機)規格(二より正相゛
電圧(+?、I)と逆相電圧(+?、l)の比(1※2
1 / l VII X 100%)で表わされ、不平
衡率カー大きければ逆相電圧が大きいことになる。第4
図乃至第6図に、相数変換器16の負荷として誘導′電
動機を接続した場合の相数変換器16の出力電圧不平衡
率(二対する各相の出力電圧、各相電流、および誘導電
動機の各相巻線の温度上昇の関係を曲線図で示した。FIG. 3 shows the output voltage unbalance rate of the phase number converter 16 when the input voltage and load of the phase number converter 16 are changed. The voltage unbalance rate is determined by the JEC114 (synchronous machine) standard (ratio of positive-sequence voltage (+?, I) and negative-sequence voltage (+?, l) (1*2
1/l VII x 100%), and the larger the unbalance factor, the larger the negative sequence voltage. Fourth
6 to 6 show the output voltage unbalance rate of the phase number converter 16 (the output voltage of each phase for two, each phase current, and the induction motor The relationship between the temperature rise of each phase winding is shown in a curve diagram.
即ち、従来は上記した不平衡電圧による逆相電流で、誘
導電動機巻線の温度上昇の増加を考慮し、平衡電圧で使
用した場合よりも温度上昇に余裕をもった誘導電動−を
使用しなけれ1fならなり・欠、へがあった。In other words, in the past, due to the negative phase current due to the unbalanced voltage mentioned above, it was necessary to take into consideration the increase in temperature rise in the induction motor windings, and to use an induction motor that had more margin for temperature rise than when used with balanced voltage. On the 1st floor, there was a gap, a gap, and a gap.
(C) 発明の目的
本発明は上記の点に鑑みなされたもので、相数変換機の
主巻線に巻線分布の異なる中間端子を設け、変圧器の出
力巻線と前記主巻線の接続を、負荷容量に応じて前記端
子に撰択的;−行ない、相数変換機に接続する負荷の電
圧不平衡を抑制する相数変換装置を提供するものである
。(C) Purpose of the Invention The present invention has been made in view of the above points, and includes providing an intermediate terminal with a different winding distribution in the main winding of a phase number converter, and connecting the output winding of the transformer with the main winding. The present invention provides a phase number converter that selectively connects the terminals according to the load capacity and suppresses voltage unbalance of a load connected to the phase number converter.
(dl 発明の構成
以下本発明の構成について図面を参照しながら説明する
。第7図は本発明の相数変換装置の一実施例を示した主
回路図で、変圧器10、バンタグララ11、変圧器10
の一次巻線12および三次巻線14、起動抵抗器17、
起動接触器18は従来の構成と同じで、相数変換機21
はU−V端子及びUl p VIの中間端子を有する主
巻線21aと、Z−W端子を有する補助巻線21bを備
え、主巻線21aの各端子U、V。(dl Structure of the Invention The structure of the present invention will be explained below with reference to the drawings. Fig. 7 is a main circuit diagram showing an embodiment of the phase number converter of the present invention. vessel 10
a primary winding 12 and a tertiary winding 14, a starting resistor 17,
The starting contactor 18 has the same configuration as the conventional one, and the phase number converter 21
comprises a main winding 21a having a UV terminal and an intermediate terminal Ul p VI, and an auxiliary winding 21b having a Z-W terminal, each terminal U, V of the main winding 21a.
馬IV、はサイリスタ等で構成した静止形スイッチ若し
くは電磁接触器等を用いた切換スイッチ22A。Ma IV is a changeover switch 22A that uses a static switch constructed of a thyristor or the like or an electromagnetic contactor.
22B、 22C,22Dを介して変圧器10の出力巻
線即ち三次巻線14に接続する。It is connected to the output or tertiary winding 14 of the transformer 10 via 22B, 22C, and 22D.
上記の回路構成により、負荷(図示しな、い。)の容量
が少ない場合は切換スイッチ22Cおよび22Bを閉成
して主巻線21aの端子U、および■を変圧器10の三
次巻線14;二接続し、負荷の容量が多い場合は切換ス
インy−22Aおよび22Dを閉成して主巻線21aの
端子Uおよび■、を変圧器10の三次巻線14(−接続
し、負荷の容俄か上記以外の中容憾の場合は切換スイ゛
ツチ22Aおよび22Bを閉成して主巻線21aの端子
UおよびvIを変圧器10の三次巻線14に接続する。With the above circuit configuration, when the capacity of the load (not shown) is small, the changeover switches 22C and 22B are closed and the terminals U and 2 of the main winding 21a are connected to the tertiary winding 14 of the transformer 10 ; If the load capacity is large, close switching switches Y-22A and 22D and connect terminals U and ■ of the main winding 21a to the tertiary winding 14 (-) of the transformer 10, and If there is a problem other than the above, the changeover switches 22A and 22B are closed to connect the terminals U and vI of the main winding 21a to the tertiary winding 14 of the transformer 10.
(e) 発明の作用
以下第7図に示した本発明の相数変換装置の作用につい
て図面を参照しながら説明する。(e) Operation of the invention The operation of the phase number converter of the invention shown in FIG. 7 will be explained below with reference to the drawings.
第8図(a)および(b)は第7図に示した相数変換装
置の出力電圧のベクトル図で、相数変換器21の補助巻
線21bの作る無負荷時の電圧ベクトルZ−W、゛およ
び負荷時の電圧ベクトルZ−W、の平衡状態の場合の電
圧ベクトル7、−W、との関係は、大きさおよび位相差
とも従来と変るEとはないが、主巻線21aの作る電圧
ペクト・ルは使用する端子により大きさが異なる。FIGS. 8(a) and 8(b) are vector diagrams of the output voltage of the phase number converter shown in FIG. , ゛ and the voltage vector 7, -W in the case of a balanced state of the voltage vector Z-W at the time of load, although neither the magnitude nor the phase difference is different from the conventional one, E. The voltage generated varies in magnitude depending on the terminal used.
第8図(、)は、第7図で切換スイッチ22Cおよび2
2Bを閉成した負荷の容量が少ない場合の電圧ベクトル
図で、主卒線21aの作る電圧ベクトルは従来のU−V
に対しU、−Vとなり、各相間の電圧は従来に較べて平
衡状態になる。また第8図(1,)は切換スイッチ22
Aおよび22Dを閉成した負荷の容量が多い場合の電圧
ベクトル図で、主巻線21aの作る電圧ベクトルは前記
同様従来のU−Vに対しU−V、となり各相互間の電圧
は従来に較べて平衡状態2になる。Figure 8 (,) shows the selector switches 22C and 2 in Figure 7.
This is a voltage vector diagram when the capacity of the load with 2B closed is small, and the voltage vector created by the main graduation line 21a is the same as that of the conventional U-V
However, the voltages between the phases are more balanced than in the past. In addition, Fig. 8 (1,) shows the changeover switch 22.
This is a voltage vector diagram when the load capacity is large with A and 22D closed, and the voltage vector created by the main winding 21a is U-V compared to the conventional U-V as described above, and the voltage between each is the same as before. In comparison, equilibrium state 2 is reached.
第9図は以上の関係を負荷の容量と出方電圧不平衡率の
関係で示した電圧不平衡率特性図で、曲線(b)は第7
図に示した回路構成で切換スイッチ22Aおよび22B
を閉成した従来の場合、曲線(a)は第7図に示した回
路構成で切換スインf 22C及び2213を閉成した
場合、曲線(C)は切換スイッチ22Aおよび22Dを
閉成した場合のそれぞれ電圧不平衡率特性である。Figure 9 is a voltage unbalance rate characteristic diagram showing the above relationship between the load capacity and the output voltage unbalance rate.
With the circuit configuration shown in the figure, selector switches 22A and 22B
In the conventional case where the changeover switches 22C and 2213 are closed in the circuit configuration shown in FIG. Each is a voltage unbalance rate characteristic.
即ち負荷容量の少ない第9図に示したAの範囲では曲線
(、)を、負荷容量がBの範囲では曲線(b)を貝荷容
咀の多いCの範囲では曲線(c)を使用する。In other words, curve (,) is used in the range A shown in Figure 9 where the load capacity is small, curve (b) is used in the range B where the load capacity is large, and curve (c) is used in the range C where the shellfish capacity is large. .
この結果各負荷容量に対しての各相間の電圧不平衡を改
善し得る。As a result, the voltage unbalance between each phase for each load capacity can be improved.
(f) 発明の詳細
な説明した通り本発明の相数変換装置によれば、相も(
変−換v、覧の主巻線に巻線分布の異なる中間端子を設
け、これ等主巻線の端子を負荷容蒙;二応じて撰択して
変圧器の出力巻線に接続することにより、各相間の電圧
不平衡を改善することができるので、負荷側の機器の不
平衡電圧に起因する発熱を減少することが可能となり、
負荷側機器の小形軽量化ができる。(f) As described in detail, according to the phase number conversion device of the present invention, the phase also changes (
For conversion, intermediate terminals with different winding distributions are provided on the main windings, and the terminals of these main windings are selected depending on the load capacity and connected to the output winding of the transformer. This makes it possible to improve voltage unbalance between each phase, thereby reducing heat generation caused by unbalanced voltage in equipment on the load side.
The load side equipment can be made smaller and lighter.
第1図は従来の相数変換回路の図、第2図及び第3図は
@1図の特性を示した図、第4図乃至第6図は特性説明
図、第7図は本発明の実施例を示した図、第8図及び第
9図は第7図の特性を説明するための図である。
10・・・変圧器
14・・・変圧器出力巻線
16.21・・・相数変換機
16a 、 21a・・・主巻線
16b 、 21b・・・補助巻線
22A 、 2:2B 、 22C,22D・・・切換
スイッチ第1図
0
第2図
W。
第3図
勇狗各t(kVA)
第4図
室圧不平#f年(2)
第7図
第8図(1;L) 第8図3.)Figure 1 is a diagram of a conventional phase number conversion circuit, Figures 2 and 3 are diagrams showing the characteristics of Figure @1, Figures 4 to 6 are explanatory diagrams of characteristics, and Figure 7 is a diagram of the present invention. The figures showing the embodiment, FIGS. 8 and 9, are diagrams for explaining the characteristics of FIG. 7. 10...Transformer 14...Transformer output winding 16.21...Phase number converter 16a, 21a...Main winding 16b, 21b...Auxiliary winding 22A, 2:2B, 22C , 22D...Choice switch Fig. 1 0 Fig. 2 W. Fig. 3. Each t (kVA) of Yugu Fig. 4. Room pressure complaint #f year (2) Fig. 7 Fig. 8 (1; L) Fig. 8 3. )
Claims (1)
線及び補助巻線を有する相数変換機と、負荷の総量に応
じて前記端子な撰択的に変圧器の出力巻線に接続する切
換スイッチを備えたことを特徴とする相数変換装置。A phase number converter having a main winding and an auxiliary winding provided with at least two or more terminals with different winding distributions, and the terminals being selectively connected to the output winding of the transformer depending on the total amount of load. A phase number conversion device characterized by being equipped with a changeover switch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18464882A JPS5976167A (en) | 1982-10-22 | 1982-10-22 | Number-of-phase converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18464882A JPS5976167A (en) | 1982-10-22 | 1982-10-22 | Number-of-phase converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5976167A true JPS5976167A (en) | 1984-05-01 |
Family
ID=16156905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18464882A Pending JPS5976167A (en) | 1982-10-22 | 1982-10-22 | Number-of-phase converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976167A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4899268A (en) * | 1989-05-10 | 1990-02-06 | Apc-Onsite, Inc. | Frequency-dependent single-phase to three-phase AC power conversion |
US4908744A (en) * | 1989-05-10 | 1990-03-13 | Apc-Onsite, Inc. | Frequency-independent single-phase to three-phase AC power conversion |
WO1999029020A1 (en) * | 1997-11-28 | 1999-06-10 | Abb Ab | Electricity supply system |
-
1982
- 1982-10-22 JP JP18464882A patent/JPS5976167A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4899268A (en) * | 1989-05-10 | 1990-02-06 | Apc-Onsite, Inc. | Frequency-dependent single-phase to three-phase AC power conversion |
US4908744A (en) * | 1989-05-10 | 1990-03-13 | Apc-Onsite, Inc. | Frequency-independent single-phase to three-phase AC power conversion |
WO1999029020A1 (en) * | 1997-11-28 | 1999-06-10 | Abb Ab | Electricity supply system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140146584A1 (en) | Electronically isolated method for an auto transformer based 12-pulse rectification scheme suitable for use with variable frequency drives | |
KR20240108558A (en) | Energy storage power using winding-rotor induction machine (WRIM) to charge and discharge energy storage elements (ESES) | |
RU2177883C2 (en) | Method of and electric circuit for converting electric energy | |
JPS5976167A (en) | Number-of-phase converter | |
JPH05299161A (en) | Power feeding method for induction furnace | |
JP3431506B2 (en) | Multiple inverter device | |
US5731971A (en) | Apparatus for providing multiple, phase-shifted power outputs | |
JP2980426B2 (en) | AC electric vehicle control device | |
JPH07147777A (en) | Electronic isolation transformer | |
JPS5925582A (en) | Phase converter | |
US2549405A (en) | Locomotive power system | |
US20240388156A1 (en) | Electric motor with asymmetric-turn windings and a vehicle having the same | |
Kusko et al. | Application of 12-pulse converters to reduce electrical interference and audible noise from DC motor drives | |
JP2895586B2 (en) | Transformer | |
SU1464279A1 (en) | Electric drive | |
JPS5927177B2 (en) | Phase number converter for AC electric vehicles | |
JP2003272935A (en) | Voltage transformer and electric circuit | |
US2796573A (en) | Single-phase alternating current fed driving arrangement for electric traction purposes | |
JPS58198101A (en) | Number-of-phase converter | |
JP2773096B2 (en) | Power distribution equipment | |
JP3092195B2 (en) | Power converter | |
SU930537A1 (en) | 12-phase ac-to-dc voltage converter | |
Soheli et al. | Phase motor by using 3 phase star delta starter voltage reducing method with iinverter | |
SU1760613A1 (en) | Ac-to-dc voltage converter | |
JPH0453160Y2 (en) |