JPS5975175A - How to measure the current position of a moving object - Google Patents
How to measure the current position of a moving objectInfo
- Publication number
- JPS5975175A JPS5975175A JP57186557A JP18655782A JPS5975175A JP S5975175 A JPS5975175 A JP S5975175A JP 57186557 A JP57186557 A JP 57186557A JP 18655782 A JP18655782 A JP 18655782A JP S5975175 A JPS5975175 A JP S5975175A
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- laser beam
- current position
- moving object
- stations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/87—Combinations of systems using electromagnetic waves other than radio waves
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(司 発明の関連する技術分野
この発明は移動物体、たとえば自動車、航空機、船舶等
の移動に応じて自動的に現在位置を測定する、移動物体
の現在位置測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the current position of a moving object, such as a car, an aircraft, a ship, etc., which automatically measures the current position of the object as it moves. .
(b) 従来技術とその欠点
例えば駐機場内の航空機、工場内の運搬車輌、農作業場
内のトラクターなどの移動物体の移動に伴う現在位置を
正確に把握することはそれらの移動物体の自動誘導を高
精度に行う上で重要である。(b) Prior art and its drawbacks Accurately grasping the current position of moving objects such as aircraft on an apron, transport vehicles in a factory, and tractors in a farm field requires automatic guidance of those moving objects. This is important for high precision.
従来、この移動物体の現在位置を簡単に測定するための
方法として、LORAN、Decca、OMEOAなど
の電波による方法が実用に供されている。しかし、これ
らはいずれも測定装置が大型であり、構成が複雑になる
欠点があった。Conventionally, as a method for easily measuring the current position of a moving object, methods using radio waves such as LORAN, Decca, and OMEOA have been put into practical use. However, all of these have the disadvantage that the measuring devices are large and the configurations are complicated.
(C) 発明の目的
この発明の目的は簡単な構成で高精度に移動物体の現在
位置を測定できる、移動物体の現在位置測定方法を提供
することである。(C) Object of the Invention An object of the present invention is to provide a method for measuring the current position of a moving object, which can measure the current position of a moving object with high precision with a simple configuration.
(d) 発明の構成 この発明は、要約すれば次のようになる。(d) Structure of the invention This invention can be summarized as follows.
3つの固定局においてそれぞれ設けたレーザビーム送出
手段を特定の範囲に走査するとともに移動物体において
一つの受光手段の受光面を全方位に走査する。この受光
手段により前記移動物体側で受光した各固定局からのレ
ーザビームの方向とそのときの受光手段の受光角度との
差に基づく受光レベルの変化から各固定局からのレーザ
ビームに対する受光方位を求める。そして、この発明の
測定方法は以」二のようにして求めた受光方位と、各固
定局の位置座標とに基づき、かつ所定′の演算式にした
がい、前記移動物体の現在位置を求めるようにしたこと
を特徴とする。The laser beam sending means provided at each of the three fixed stations scans a specific range, and the light receiving surface of one light receiving means on the moving object is scanned in all directions. The light receiving direction with respect to the laser beam from each fixed station is determined from the change in the light receiving level based on the difference between the direction of the laser beam from each fixed station received by the light receiving means on the moving object side and the light receiving angle of the light receiving means at that time. demand. Then, the measuring method of the present invention calculates the current position of the moving object based on the light receiving direction determined as described below and the position coordinates of each fixed station, and according to a predetermined calculation formula. It is characterized by what it did.
(e) 実施例の説明
第1図はこの発明の測定方法を実施した自動車自動誘導
システムにおける自動車の現在位置測定原理を示す図で
ある。移動物体としての自動車1は移動エリア内を移動
し、その移動エリア内に3つの固定局A、B、Cが設け
られている。各固定局にはレーザ灯台が固定されている
。各レーザ灯台は順次具なる方位方向に全方位にわたり
レーザビームを走査する装置であり、この発明のレーザ
ビーム送出手段に対応する。各固定局が移動エリアの周
縁部に配設する場合には、各レーザ灯台の走査範囲は全
方位でなくてもよい。(e) Description of Embodiments FIG. 1 is a diagram showing the principle of measuring the current position of a vehicle in an automatic vehicle guidance system that implements the measuring method of the present invention. A car 1 as a moving object moves within a moving area, and three fixed stations A, B, and C are provided within the moving area. A laser lighthouse is fixed to each fixed station. Each laser lighthouse is a device that sequentially scans a laser beam in all directions in a given azimuth direction, and corresponds to the laser beam sending means of the present invention. When each fixed station is arranged at the periphery of the moving area, the scanning range of each laser lighthouse does not have to be omnidirectional.
自動車1には第2図に示す制御部が設けられている。自
動車1の本体の所定個所に一つの受光器2が配置される
。受光器2は駆動モータ7により回転する円筒状回転体
からなり、内部にPINフォトダイオードなどの受光素
子3を有する。受光素子3ばその受光面が回転体側面に
露出するように取り付けられている。駆動モータ7の回
転軸は連結部4によりエンコーダ5の回転軸に連結され
ている。エンコーダ5は受光器2と連動して回転する回
転軸を有し、その微小回転毎にパルス信号を出力する。The automobile 1 is provided with a control section shown in FIG. One light receiver 2 is arranged at a predetermined location on the main body of the automobile 1. The light receiver 2 consists of a cylindrical rotating body rotated by a drive motor 7, and has a light receiving element 3 such as a PIN photodiode inside. The light receiving element 3 is attached so that its light receiving surface is exposed on the side surface of the rotating body. The rotation shaft of the drive motor 7 is connected to the rotation shaft of the encoder 5 by a connecting portion 4 . The encoder 5 has a rotating shaft that rotates in conjunction with the light receiver 2, and outputs a pulse signal every minute rotation thereof.
エンコーダ5には、たとえば回転軸に直結した歯車と固
定磁石ピックアップからなる電磁式パルスエンコーダや
、円周にそってスリットが形成された回転円板を回転軸
に連結し、そのスリットを通る光をホトトランジスタ等
で検出する光学式パルスエンコーダなどを用いる。また
、受光器2の回転開始位置は、例えば受光素子3の受光
面の法線方向が車体の進行方向(第1図のODで示す)
に一致する方向に決められる。この回転開始位置の方向
を基準方向として、エンコーダ5は一回転毎に数個のパ
ルス信号を出力する。受光器2は駆動モータ7により一
定の回転数で回転し、受光素子3の受光面は全方位に走
査される。The encoder 5 may be, for example, an electromagnetic pulse encoder consisting of a gear directly connected to a rotating shaft and a fixed magnet pickup, or a rotating disk with a slit formed along its circumference connected to the rotating shaft, and light passing through the slit. An optical pulse encoder that detects with a phototransistor or the like is used. Further, the rotation start position of the light receiver 2 is such that the normal direction of the light receiving surface of the light receiving element 3 is the traveling direction of the vehicle body (indicated by OD in FIG. 1).
is determined in the direction that corresponds to With the direction of this rotation start position as a reference direction, the encoder 5 outputs several pulse signals for each rotation. The light receiver 2 is rotated by a drive motor 7 at a constant rotation speed, and the light receiving surface of the light receiving element 3 is scanned in all directions.
一回転したときの受光素子3の受光出力を第3図に示す
。同図の横軸方向は回転角度を表し、各出力はエンコー
ダ5よシパルス信号が出力されたときの受光レベル値に
対応する。同図かられかるように3つの固定局からのレ
ーザビームを受光するので受光出力に3つのピークが現
れる。第4図(5)に示すように、レーザビームの入射
方向と受光面の法線方向とが一致す′るとき、そのとき
の受光量が最大となる。一方、第4図(B)に示すよう
に、レーザビームの入射方向と受光面との角度θが直角
でないときの受光量は角度θがより大きくなるか、また
は、より小さくなるにしたがい減少する。このように、
レーザビームの入射方向と受光素子3の受光角度との間
に差が生じ、この差は鈍い指向性をもつ受光素子などを
使用するときには大きくなる。このため、受光素子3の
出力は比較回路8に導かれ、第3図で一点鎖線Eで示す
一定レベル以上の出力のみが取シ出される。比較回路8
の出力およびエンコーダ5の出力はマイクロコンピュー
タ6に導かれる。そして、一定レベル以−にの受光出力
を測定したときの受光角度の平均値を受光方位とし、後
述のマイクロコンピュータ6の演算処理で求められる。FIG. 3 shows the light receiving output of the light receiving element 3 during one rotation. The horizontal axis direction in the figure represents the rotation angle, and each output corresponds to the received light level value when the encoder 5 outputs the cipher signal. As can be seen from the figure, since laser beams from three fixed stations are received, three peaks appear in the received light output. As shown in FIG. 4 (5), when the incident direction of the laser beam and the normal direction of the light receiving surface coincide, the amount of light received at that time is maximum. On the other hand, as shown in FIG. 4(B), when the angle θ between the incident direction of the laser beam and the light-receiving surface is not a right angle, the amount of received light decreases as the angle θ becomes larger or smaller. . in this way,
A difference occurs between the incident direction of the laser beam and the light receiving angle of the light receiving element 3, and this difference increases when a light receiving element with blunt directivity is used. Therefore, the output of the light-receiving element 3 is guided to the comparator circuit 8, and only the output above a certain level shown by the dashed line E in FIG. 3 is taken out. Comparison circuit 8
The output of the encoder 5 and the output of the encoder 5 are guided to the microcomputer 6. Then, the average value of the light receiving angles when the light receiving outputs above a certain level are measured is taken as the light receiving direction, and is determined by the arithmetic processing of the microcomputer 6, which will be described later.
なお、受光面を走査する受光器2の回転速度は各レーザ
灯台のレーザビーム走査速度より十分に大きく設定され
ている。したがって自動車1の移動による受光方位の変
化はその移動に追随して高精度に測定される。また、連
結部4を用いず、直接ステッピングモータに受光器を取
り付けて回転制御を行うようにしてもよい。Note that the rotation speed of the light receiver 2 that scans the light receiving surface is set to be sufficiently larger than the laser beam scanning speed of each laser lighthouse. Therefore, changes in the light receiving direction due to the movement of the automobile 1 can be measured with high accuracy following the movement. Alternatively, the rotation may be controlled by directly attaching a light receiver to the stepping motor without using the connecting portion 4.
」二記のように構成された制御部を有する自動車lば、
前述のように、第1図で矢印ODの方向に向いて移動エ
リア内の地点Oに存在するとする。``An automobile having a control section configured as described in Section 2,
As mentioned above, it is assumed that the object exists at a point O within the movement area facing in the direction of the arrow OD in FIG.
地点0にて受光器2の受光面の走査により各固定局A
、 B 、 Cからのレーザビームの受光を行う。Each fixed station A is detected by scanning the light receiving surface of the light receiver 2 at point 0.
, B, and C.
この受光器2により前述の第3図に示したように3つの
ピークをもつ受光出力が得られる。一定レベル以上の受
光出力を測定したときのエンコーダ5からのパルス信号
に対応する回転角度の平均値カマイクロコンピュータ6
の演算処理で求められる。このようにして求めた値が3
つの固定局からそれぞれ送出されたレーザビームを受光
素子3が受光したときの受光方位角度θA、θB、θC
となる。This light receiver 2 provides a light receiving output having three peaks as shown in FIG. 3 above. The microcomputer 6 calculates the average value of the rotation angle corresponding to the pulse signal from the encoder 5 when the received light output is measured at a certain level or higher.
It can be found by the calculation process. The value obtained in this way is 3
Light-receiving azimuth angles θA, θB, θC when the light-receiving element 3 receives the laser beams sent out from each fixed station
becomes.
これらの受光方位角度は前述したようにODの方向を基
準零度として求められる。この受光方位角度と各固定局
の位置座標とに基づき、以下のマイクロコンピュータ6
の演算処理により自動車1の現在位置が求められる。These light receiving azimuth angles are determined with the direction of OD as the reference zero degree, as described above. Based on this light receiving azimuth angle and the position coordinates of each fixed station, the following microcomputer 6
The current position of the vehicle 1 is determined by the calculation process.
上記演算処理の内容を以下に説明する。The contents of the above calculation processing will be explained below.
3つの固定局A、B、Cの各位置座標はあらかじめ設定
されているので、それらの固定局間の距離は既知である
。そこで、48間、10間、 OA間の距離をそれぞれ
c、a、bとする。また、下式で示すように、受光方位
角度θCとθBとの差をα、OAとθCとの差をβとお
く。Since the position coordinates of the three fixed stations A, B, and C are set in advance, the distance between these fixed stations is known. Therefore, let the distances between 48, 10, and OA be c, a, and b, respectively. Further, as shown in the formula below, the difference between the light receiving azimuth angles θC and θB is set as α, and the difference between OA and θC is set as β.
サラニ、OA間、01間、00間(7)各1ii111
11ff[’3゜J′)+ 、 F2.10 B ’C
をθ1とする。fs、h、f’3.θ1は未知量であり
% Fl、F2.、f’3の何れがとIIとが求まれば
自動車1の現在位置が分かる。Sarani, between OA, between 01, between 00 (7) each 1ii111
11ff ['3゜J')+, F2.10 B 'C
Let be θ1. fs, h, f'3. θ1 is an unknown quantity and % Fl, F2. , f'3 and II, the current position of the vehicle 1 can be determined.
そこで、△OBC,△OCAに正弦定理を用いると下式
が得られる。Therefore, by using the law of sine for △OBC and △OCA, the following formula can be obtained.
5111ps1n(2π−(/ C+a十β+01))
ア3
3、。(/C,−7−1,、θ1−、yr) °
“°(3)上記f21 、 (3)式より、
がなりたつので、この式を展開して整理すると、下式が
得られる。5111ps1n (2π-(/C+a+β+01))
A3 3. (/C, -7-1,, θ1-, yr) °
“°(3) From the above f21, (3), we have, so by expanding and rearranging this equation, we obtain the following equation.
したがって、角度θ1は次の式で求められる。Therefore, the angle θ1 is determined by the following formula.
・・・ (5)
また、θノが求まれば、(2)、(3)式から下式にし
たがい、/′□1.ア2.f3はそれぞれ求められる。... (5) Also, if θ is found, according to the following formula from equations (2) and (3), /'□1. A2. f3 is determined respectively.
sinα
sinα
このように、上記+51 、 +61式にしたがってθ
1.J’1、!?2.f’3が算出される。そして、こ
の算出結果より自動車1の現在位置を知ることができる
。sinα sinα Thus, according to the above formulas +51 and +61, θ
1. J'1,! ? 2. f'3 is calculated. Then, the current position of the automobile 1 can be known from this calculation result.
この実施例では移動物体の制御部にマイクロコンピュタ
を含むが、移動物体と離れたところに情報処理部を設け
、受光器による受光出力をその情報処理部に伝送しても
よい。In this embodiment, the control section of the moving object includes a microcomputer, but an information processing section may be provided at a location separate from the moving object, and the output of light received by the light receiver may be transmitted to the information processing section.
(fl 発明の効果
この発明によれば、レーザビーム送出手段を各固定局に
配置し、また移動物体に受光手段を設けるだけの構成で
あシ、測定装置を小形に、かつ簡素化できる利点がある
。また、受光手段の受光面を全方位に走査して、レーザ
ビームの方向と受光手段の受光角度との差に基づく受光
レベルの変化から求めた受光方位データは高精度なデー
タとなるので、現在位置測定精度を高める利点がある。(fl Effects of the Invention According to the present invention, the configuration is such that the laser beam sending means is placed at each fixed station and the light receiving means is provided on the moving object, and the measuring device can be made compact and simple. In addition, the light receiving direction data obtained by scanning the light receiving surface of the light receiving means in all directions and determining the change in the light receiving level based on the difference between the direction of the laser beam and the light receiving angle of the light receiving means is highly accurate data. , which has the advantage of increasing the accuracy of current position measurement.
第1図はこの発明の測定方法を実施した自動車自動誘導
システムにおける自動車の現在位置測定原理を示す図、
第2図は同自動車に設けられた制御部を示すブロック図
、第3図は同制御部の受光器の受光出力を示す図、第4
図は同受光器の受光面とレーザビームの入射方向との関
係を示す図である。
■・・・自動車(移動物体)、
2・・・受光器、 3・・・受光素子、4・
・・連結部、 5・・・エンコーダ、6・・
・マイクロコンピュータ、
7・・・駆動モータ。
出願人 久保田鉄工株式会社
代理人 弁理士 小森久夫FIG. 1 is a diagram showing the principle of measuring the current position of a car in a car automatic guidance system that implements the measuring method of the present invention.
Figure 2 is a block diagram showing the control unit installed in the same vehicle, Figure 3 is a diagram showing the light receiving output of the light receiver of the control unit, and Figure 4 is a diagram showing the light receiving output of the light receiver of the control unit.
The figure shows the relationship between the light receiving surface of the light receiver and the direction of incidence of the laser beam. ■... Car (moving object), 2... Light receiver, 3... Light receiving element, 4...
...Connection part, 5...Encoder, 6...
- Microcomputer, 7... Drive motor. Applicant Kubota Iron Works Co., Ltd. Agent Patent Attorney Hisao Komori
Claims (3)
つの固定局においてそれぞれ設けたレーザビーム送出手
段を特定の範囲に走査するとともに前記移動物体におい
て一つの受光手段の受光面を全方位に走査し、前記移動
物体で受光する各固定局からのレーザビームの方向と前
記受光手段の受光角度との差に基づく受光レベルの変化
から各固定局からのレーザビームに対する受光方位を求
め、この受光方位と各固定局の位置座標とに基づき、か
つ所定の演算式にしたがい、前記移動物体の現在位置を
求めるようにした、移動物体の現在位置測定方法。(1) A method for measuring the current position of a moving object, comprising:
The laser beam sending means provided at each fixed station scans a specific range, and the light receiving surface of one light receiving means at the moving object is scanned in all directions, and the laser beam from each fixed station is received by the moving object. The light receiving direction for the laser beam from each fixed station is determined from the change in the light receiving level based on the difference between the direction of the light receiving means and the light receiving angle of the light receiving means. A method for measuring the current position of a moving object, wherein the current position of the moving object is determined according to the formula.
ザビーム送出手段のレーザビーム走査速度より大きい、
特許請求の範囲第1項記載の移動物体の現在位置測定方
法。(2) The speed at which the light receiving surface of the light receiving means is scanned is greater than the laser beam scanning speed of the laser beam sending means;
A method for measuring the current position of a moving object according to claim 1.
全方位である、特許請求の範囲第1項記載の移動物体の
現在位置測定方法。(3) The method for measuring the current position of a moving object according to claim 1, wherein the scanning range of the laser beam sent out from each fixed station is omnidirectional.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57186557A JPS5975175A (en) | 1982-10-23 | 1982-10-23 | How to measure the current position of a moving object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57186557A JPS5975175A (en) | 1982-10-23 | 1982-10-23 | How to measure the current position of a moving object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5975175A true JPS5975175A (en) | 1984-04-27 |
Family
ID=16190601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57186557A Pending JPS5975175A (en) | 1982-10-23 | 1982-10-23 | How to measure the current position of a moving object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5975175A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5033424A (en) * | 1973-08-02 | 1975-03-31 |
-
1982
- 1982-10-23 JP JP57186557A patent/JPS5975175A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5033424A (en) * | 1973-08-02 | 1975-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4729660A (en) | Position measuring apparatus of moving vehicle | |
US4456829A (en) | Non-contact sensor, system and method with particular utility for measurement of road profile | |
US7474256B2 (en) | Position detecting system, and transmitting and receiving apparatuses for the position detecting system | |
JPH1068635A (en) | Optical position detector | |
JPH11183174A (en) | Position measuring apparatus for mobile | |
JPS5975175A (en) | How to measure the current position of a moving object | |
JPS642901B2 (en) | ||
JPH0226164B2 (en) | ||
JPS6161070B2 (en) | ||
JP2784481B2 (en) | 2D position and direction measurement device for moving objects | |
JP3239682B2 (en) | Segment position measurement method | |
JPH10339605A (en) | Optical range finder | |
JPH0133789B2 (en) | ||
JPS6287809A (en) | Method for measuring multidirectional distance | |
JPH0259931B2 (en) | ||
JPS5914756Y2 (en) | Photoelectric road moisture detection device | |
JPH0357429B2 (en) | ||
JPH0523363B2 (en) | ||
SU1716977A3 (en) | Device for measuring angular values | |
JPH06222129A (en) | Position detecting device | |
JP2001124515A (en) | Optical position coordinate pointing device | |
JP2542257B2 (en) | Position and heading measurement system for mobile | |
SU1169420A1 (en) | Method of determining angles | |
JPH0363084B2 (en) | ||
JPH0318887Y2 (en) |