JPS5966236A - Wavelength multiplex communicating method - Google Patents
Wavelength multiplex communicating methodInfo
- Publication number
- JPS5966236A JPS5966236A JP57177239A JP17723982A JPS5966236A JP S5966236 A JPS5966236 A JP S5966236A JP 57177239 A JP57177239 A JP 57177239A JP 17723982 A JP17723982 A JP 17723982A JP S5966236 A JPS5966236 A JP S5966236A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- wavelength
- channel
- communication method
- wavelengths
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/03—WDM arrangements
- H04J14/0307—Multiplexers; Demultiplexers
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野 ′ □
本発明は半導体レーザを角いた波長多重通信方法に関す
る。[Detailed Description of the Invention] Industrial Application Field' □ The present invention relates to a wavelength division multiplexing communication method using an angular semiconductor laser.
従来例の構成とそあ問題点“
光通信において波長多重通信は1つの伝送路を用いるだ
けで伝送容量を増大することが出来、また送信局から受
信局へ□異)る信号を伝送する□場合にも非常に有効な
□手段であるたm”;” 肩発な励究開発が行なわれて
いる。 □
現在実用化されている半導体ルー−を用いた光通信方法
の一例を第1図に示す。変調信号源1゜2;3,4によ
シ変調される半導体し□−ザ1’、2’。Conventional configurations and their problems In optical communications, wavelength division multiplexing can increase transmission capacity by using only one transmission path, and it also transmits different signals from the transmitting station to the receiving station. □It is a very effective □ method in some cases, and is currently being actively developed. □ An example of an optical communication method using semiconductor loops currently in practical use is shown in Figure 1. The semiconductor lasers □-the 1', 2' are modulated by the modulating signal sources 1, 2; 3, 4.
キ、4′の発振波長はそれぞれすべて異な為値をもつも
・のである0すなわちこの光通信機は4波多重システム
の例である。どれら半導体レニザ光が例えば光ファイバ
1’、2”・、3”、4’に結合され、また合波器6で
合波される。合波器6で多重化された信号は単一の伝送
路らにより伝送され、受信局側で分波器γにより異なる
波長の光に分波され、各波長の光信号が検知器8.9
、’ 10 、11で受信され、また受信回路8”、
9’、 10’、 11’で受信信号を検出する1合波
器6あるいは分波器7は木質的には光学的には等価な物
品であるが、現在多層膜ツィルダ、プリ身ム2回折格子
を用いたものが実用化されている。Since the oscillation wavelengths of A and 4' are all different, they have values. In other words, this optical communication device is an example of a four-wave multiplex system. The semiconductor laser beams are coupled to, for example, optical fibers 1', 2'', 3'', and 4', and are multiplexed by a multiplexer 6. The signal multiplexed by the multiplexer 6 is transmitted through a single transmission path, and at the receiving station, it is demultiplexed into light of different wavelengths by the demultiplexer γ, and the optical signal of each wavelength is sent to the detector 8.9.
, '10, 11, and the receiving circuit 8'',
The multiplexer 6 or demultiplexer 7, which detects the received signal at 9', 10', and 11', are optically equivalent products in terms of wood, but currently they are A method using a grid has been put into practical use.
この波長多重光通信を見て明らかな如く、各半導体レー
ザの変調帯域が決まっていれば、全伝送容量は半導体レ
ーザの集積数により決定される。As is clear from this wavelength multiplexed optical communication, if the modulation band of each semiconductor laser is determined, the total transmission capacity is determined by the number of integrated semiconductor lasers.
また現在実用イピされている波長多重光通信では、半導
体レーザの発振波長間隔は100人〜200八にも及ぶ
もめで′あ6゜このように半導体レーザの発振波長間隔
が大きいのは合波器及び分波器の波長分散能が十分でな
いことによることもさることながら、所望の発振波長の
複数個の半導体レーザを、精度よくかつ大量・低価格で
得ることが現状では困難なことによる。このような半導
体lノーザを得るためDFBレーザあるいはDBRレー
ザのように波長が精度よく制御できる半導体レーザが積
版的に研究されている。In addition, in the wavelength division multiplexing optical communication that is currently in practical use, the oscillation wavelength interval of semiconductor lasers is a matter of 100 to 2008 times. This is partly due to the insufficient wavelength dispersion ability of the wavelength demultiplexer and demultiplexer, but also because it is currently difficult to obtain multiple semiconductor lasers with a desired oscillation wavelength with high precision, in large quantities, and at low cost. In order to obtain such a semiconductor laser, semiconductor lasers whose wavelength can be precisely controlled, such as DFB lasers or DBR lasers, have been extensively researched.
しか(−1これらの波長の制御性のよい半導体レーザを
用いても、もともと1つの半導体レーザを光波長多重通
信の1つのチャンネルとして使用することには変わりは
なく、各半導体レーザの波長間隔を精度よく設定するこ
とに限界がある。さらに、合波器6は複数個の半導体レ
ーザからの異なる波長の光を合波することを目的とする
素子であるため、現状では不可欠の部品であり、これに
よる結合損失も無視することは出来ないものである。However, (-1) Even if these semiconductor lasers with good wavelength controllability are used, one semiconductor laser is originally used as one channel of optical wavelength multiplexing communication, and the wavelength interval of each semiconductor laser is There is a limit to how accurate the settings can be.Furthermore, since the multiplexer 6 is an element whose purpose is to multiplex lights of different wavelengths from a plurality of semiconductor lasers, it is currently an indispensable component. The coupling loss caused by this cannot be ignored.
発明の目的
本発明は一ト記従来の欠点を除去するものであり、新た
な観点から波長多重光通信方法を提案する。OBJECTS OF THE INVENTION The present invention eliminates all the drawbacks of the conventional technology and proposes a wavelength division multiplexing optical communication method from a new perspective.
すなわち、従来例で述べたように1つの半導体レー→ド
を波長多重通信の1つのチャンネルとして使用ず乙こと
なく、1つの半導体レーザのいくつかの発振波長つまり
縦多モードのうち、各縦モード波長の1つ1つを各伝送
チャンネルとして波長多重通信を行なうことを[」的と
する。In other words, instead of using one semiconductor laser as one channel of wavelength multiplexed communication as described in the conventional example, each longitudinal mode of several oscillation wavelengths of one semiconductor laser, that is, longitudinal multiple modes, can be The objective is to perform wavelength multiplexing communication using each wavelength as each transmission channel.
発明の構成
本発明の波長多重通信方法は半導体レーザの複数の縦モ
ード波長のそれぞれをチャンネル波長とし2、前記半導
体レーザのモード分布形を変調することにより信号伝送
を行なうことを特徴とするものである。Structure of the Invention The wavelength multiplexing communication method of the present invention is characterized in that each of a plurality of longitudinal mode wavelengths of a semiconductor laser is used as a channel wavelength 2, and signal transmission is performed by modulating the mode distribution shape of the semiconductor laser. be.
実施例の説明
以下本発明の実施例を従来と比較しつつ説明する。第2
図(a)は従来の波長多重通信方法で用いる半導体レー
ザのスペクトルを示している。すなわち、異なる半導体
レーザ1’ 、 2′、 3’より発する光は異なる発
振波長λz −1、Ax、 侍+Iを有している。この
場合、発振波長λ、2ニー、1トλ工、λ工とλL+1
の間隔は100人〜2o〇八である。寸た、このような
3個の詐導体レーザを用いた従来の波長多重通信機の送
信局を第2図(b)に示す。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described while comparing them with conventional ones. Second
Figure (a) shows the spectrum of a semiconductor laser used in a conventional wavelength division multiplexing communication method. That is, the lights emitted from different semiconductor lasers 1', 2', and 3' have different oscillation wavelengths λz-1, Ax, and Samurai+I. In this case, the oscillation wavelength λ, 2 knee, 1 t λ work, λ work and λL+1
The spacing is 100 to 208 people. FIG. 2(b) shows a transmitting station of a conventional wavelength division multiplexing communication device using three such imposter lasers.
−力、第3図し)は本発明の波長多重通信方法で用いる
半導体レーザのスペクトルを示している。3) shows the spectrum of the semiconductor laser used in the wavelength division multiplexing communication method of the present invention.
本実施例による多重通信方法では、1つの半導体レーザ
12′からいくつかの縦モード(本実施例では3個の縦
モードとした)の各々の長波!、、、、。In the multiplex communication method according to this embodiment, each of the long waves of several longitudinal modes (three longitudinal modes in this embodiment) is transmitted from one semiconductor laser 12'! ,,,,.
λM、λy、−+をそれぞれチャンネル1.チャンネル
2、チャンネル3とするわけである。このような半導体
レーザを用いた送信局を第3図(b)に示すが、第2図
(b)と比較すれば明らかなように従来3つの半導体レ
ーザが必要であったのが1つ半導体レーザですむ。また
異なる半導体レーザがらの光を合波するために必要であ
った合波器が本実施例にPける方法では不用となる。さ
らに、各スペクトルの間隔が数人に小さくなっている。λM, λy, -+ are respectively channel 1. Channel 2 and channel 3 will be used. A transmitting station using such a semiconductor laser is shown in Fig. 3 (b), but as is clear from a comparison with Fig. 2 (b), instead of three semiconductor lasers that were conventionally required, one semiconductor laser is required. All you need is a laser. Furthermore, the method of this embodiment eliminates the need for a multiplexer, which was necessary for multiplexing lights from different semiconductor lasers. Additionally, the spacing of each spectrum has become several times smaller.
例えば第2図(b)、及び第3図(b)のような送信局
に2いての各波長に対応するチャンネルに′Q1′のデ
ジタル変調信号を乗せるとする。For example, it is assumed that a digital modulated signal of 'Q1' is placed on a channel corresponding to each wavelength at a transmitting station as shown in FIGS. 2(b) and 3(b).
第4図(lに示したような時系列信号を従来例である第
2図(b)および本発明の実施例の通信方法に2ける第
3図(b)の送信局でそれぞれ変調を行なうと、従来例
のような通信方法では各:′1′導体レーザへの駆動電
流をオン(ON)、オフ(OFF)することによシ達成
される。The time-series signal as shown in FIG. 4(l) is modulated at the transmitting station of FIG. 2(b) in the conventional example and FIG. 3(b) in the communication method according to the embodiment of the present invention. In the conventional communication method, this is achieved by turning on (ON) and turning off (OFF) the drive current to each '1' conductor laser.
一方、本発明の実施例の通信方法においては1つの半導
体レーザの縦モードの各々を各チャンネルに充当するこ
とにより、第4図(b)に示したヨウに半導体レーザの
発振群モードスベク1−ルが時々刻々と変化することに
より信号伝送されるわけである。つまり時間的に任意に
半導体レーザの出カメベクトルを制御できればよいわけ
で、これには波長制御型半導体レーザ、あるいは外部光
帰還型半導体レーザ等を用いることにより可能なもので
ある。また1つの半導体レーザに充当するチャンネル数
つまり縦モード数が0本あるとすると、従来m個の半導
体レーザを用いた波長多重通信方法では全チャンネル数
がm個であったものが、本発明の実施例の通信方法にP
いてはm個の半導体レーデを適用すれば(nxm )個
の全チャン゛トル数をもつことになり、伝送容量を極め
て大きくす ″ることか可能となる。On the other hand, in the communication method of the embodiment of the present invention, by allocating each longitudinal mode of one semiconductor laser to each channel, the oscillation group mode spectrum of the semiconductor laser is Signals are transmitted by changing from moment to moment. In other words, it is sufficient to be able to control the output vector of the semiconductor laser arbitrarily in terms of time, and this is possible by using a wavelength control type semiconductor laser, an external light feedback type semiconductor laser, or the like. Furthermore, assuming that the number of channels appropriate for one semiconductor laser, that is, the number of longitudinal modes, is 0, the total number of channels in the conventional wavelength division multiplexing communication method using m semiconductor lasers was m, but in the present invention, the total number of channels is m. P for the communication method of the example
In other words, if m semiconductor radars are used, the total number of channels will be (nxm), making it possible to extremely increase the transmission capacity.
なお、チャンネル波長間隔を密にすることにより、分岐
器、の波長分散能力を→」ニさせる必要があ。Note that it is necessary to increase the wavelength dispersion ability of the splitter by making the channel wavelength spacing denser.
るが、例えば高分解能分光器に用いられているようヶ、
8□□5え6□ン□77.4え。4発明に用いる高分解
な分波器を:作製することが出来る。However, for example, the filter used in high-resolution spectrometers,
8□□5e6□n□77.4e. 4. A high-resolution duplexer used in the invention can be manufactured.
発明の幼果 ・。The young fruit of invention.
本発明の波長多重通信方法を従来の波長多重通信方法と
比較すると、従来においてm波多重通信を行なう場合m
個の半導体レーザ及び駆動回路及びm波長合波器が必要
であシ、かつ合波器郷における光損失が不可避であった
もの力、数本発明では、::′
n本の波長が発振制御の可能な1個の半導砧レーザを用
いることにより、m = nなら1げただj′−)の半
導体レーザでm個の半導体レーザの機能を有することに
なり、また合波器が不用となるため光損失をおさえるこ
とが出来、システム自体も簡素化される。f、た本シス
テムを従来のようなm個の半導体レーザをもつシステム
に適応すれば、伝送チャンネル数を(nxm)個とする
ことが出来、伝送容量は飛躍的に増□大することが出歩
る。Comparing the wavelength division multiplexing communication method of the present invention with the conventional wavelength division multiplexing communication method, it is found that in the conventional wavelength division multiplexing communication method, m
However, in the present invention, n wavelengths can be controlled for oscillation. By using one semiconductor laser capable of Therefore, optical loss can be suppressed and the system itself can be simplified. f. If this system is applied to a conventional system with m semiconductor lasers, the number of transmission channels can be increased to (nxm), and the transmission capacity can be dramatically increased. walk
第1図は従来の疲長多:重、−信を脱晶するための□図
、第2図(4)は従来の波長多重通信方法における信号
チャンネルと波長スペクトルを示す図。
第2図(b)は同通信方法に;ける送信局の構成を示す
図、第3図(りは本発明の実施例の波長多重通信方法に
おける信号チャンネルと波長スペクトルを示す図、第3
図(b)は同通門方法における送信局の構成を示す図で
ある。第4図(、、a)は従来例及び本発明の実施例の
波長多重通信方法における時系列信号を示す図、第4図
(kl)は本発明の波長多重通信方法にゲける1つの半
導体レーザの発振スペクトルを示す図である。
1.2,3.ム”Hln v −v’RmF@□9゜1
’ 、 2’ 、 3’ 、 4’・・・波条重用半導
体レーザ、1″、2″′。
3′/、4′・・・光ファ・fバ、6・・・合波器、6
・・・光ファイバ、7・・・分波器、8,9,10.1
1・・・検出器。
8′、9′、10′、11′・・・受信回路、12・・
・半導体レーザ変調用信号源、12′・・・波長制御型
半導体レーザO
代理人の氏名 弁理士 中 尾 敏 男 ほか1名r−
’ −−一″′−’ −’−−’−−’−−−−’−−
−”−−−’−−11
ヒ吻−―−□飾□□□□□□□−轡1□□□トh−第2
図
第4図 (α)
(bン
へシ″1 ハル 八1lff シ文文181−FIG. 1 is a diagram for decrystallizing a conventional fatigue-length multiplex, -wavelength signal, and FIG. 2 (4) is a diagram showing a signal channel and a wavelength spectrum in a conventional wavelength multiplex communication method. FIG. 2(b) is a diagram showing the configuration of a transmitting station in the same communication method; FIG.
Figure (b) is a diagram showing the configuration of a transmitting station in the same gate access method. FIG. 4(,,a) is a diagram showing time-series signals in the wavelength division multiplexing communication method of the conventional example and the embodiment of the present invention, and FIG. FIG. 3 is a diagram showing a laser oscillation spectrum. 1.2,3. M"Hln v -v'RmF@□9゜1
', 2', 3', 4'... Wave-heavy semiconductor laser, 1'', 2'''. 3'/, 4'... Optical fiber/f-bar, 6... Multiplexer, 6
... Optical fiber, 7... Brancher, 8, 9, 10.1
1...Detector. 8', 9', 10', 11'...receiving circuit, 12...
- Semiconductor laser modulation signal source, 12'...Wavelength controlled semiconductor laser O Name of agent: Patent attorney Toshio Nakao and one other person r-
'−−1″′−'−'−−'−−'−−−−'−−
−”−−−'−−11 H −−□Decoration□□□□□□□−轡1□□□th−2nd
Figure 4 (α)
Claims (1)
ネル波長としJ前記半導体レーザの縦モード分布形を変
調することに□より信号伝挾を行なうことを特徴とす乞
波長多重通信方法A wavelength multiplexing communication method characterized in that each of a plurality of vertical mode wavelengths of a semiconductor laser is used as a channel wavelength, and signal transmission is carried out by modulating the longitudinal mode distribution shape of the semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57177239A JPS5966236A (en) | 1982-10-07 | 1982-10-07 | Wavelength multiplex communicating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57177239A JPS5966236A (en) | 1982-10-07 | 1982-10-07 | Wavelength multiplex communicating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5966236A true JPS5966236A (en) | 1984-04-14 |
Family
ID=16027576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57177239A Pending JPS5966236A (en) | 1982-10-07 | 1982-10-07 | Wavelength multiplex communicating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5966236A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0201825A2 (en) * | 1985-05-10 | 1986-11-20 | International Standard Electric Corporation New York | Optical fiber communication with Frequency-Division-Multiplexing |
JPS63110828A (en) * | 1986-10-28 | 1988-05-16 | Nec Corp | Wavelength divided multiplex optical communication equipment |
JPS63148726A (en) * | 1986-12-12 | 1988-06-21 | Nec Corp | Wavelength-division multiplex bidirectional optical communication equipment |
JPH02209788A (en) * | 1989-02-09 | 1990-08-21 | Olympus Optical Co Ltd | Flexible wiring board and method of fixing it |
WO1996041436A3 (en) * | 1995-06-07 | 1997-02-27 | Apa Optics Inc | Wavelength division multiplexor for multi and single mode optical carrier |
-
1982
- 1982-10-07 JP JP57177239A patent/JPS5966236A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0201825A2 (en) * | 1985-05-10 | 1986-11-20 | International Standard Electric Corporation New York | Optical fiber communication with Frequency-Division-Multiplexing |
EP0201825A3 (en) * | 1985-05-10 | 1988-03-16 | International Standard Electric Corporation New York | Optical fiber communication with frequency-division-multiplexing |
JPS63110828A (en) * | 1986-10-28 | 1988-05-16 | Nec Corp | Wavelength divided multiplex optical communication equipment |
JPS63148726A (en) * | 1986-12-12 | 1988-06-21 | Nec Corp | Wavelength-division multiplex bidirectional optical communication equipment |
JPH02209788A (en) * | 1989-02-09 | 1990-08-21 | Olympus Optical Co Ltd | Flexible wiring board and method of fixing it |
WO1996041436A3 (en) * | 1995-06-07 | 1997-02-27 | Apa Optics Inc | Wavelength division multiplexor for multi and single mode optical carrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1323455C (en) | Wavelength division multiplexing using a tunable acousto-optic filter | |
EP0654917B1 (en) | High-density optical wavelength division multiplexing | |
EP0636908B1 (en) | Wavelength division multiplexed optical communication transmitters | |
US5859945A (en) | Array type light emitting element module and manufacturing method therefor | |
EP2391039A2 (en) | Tunable multi-wavelength optical transmitter and transceiver for optical communications based on wavelength division multiplexing | |
EP2390971A2 (en) | Tunable multi-wavelength semiconductor laser array for optical communications based on wavelength division multiplexing | |
EP0264119A2 (en) | An optical wavelength-division switching system | |
CA2154018C (en) | Digitally-tuned integrated laser with multi-frequency operation | |
EP0918447B1 (en) | Optical filter device operating in a wavelength-synchronised mode | |
JPH05102946A (en) | Wavelength multiplexing device | |
GB2346219A (en) | Electrically tuneable optical filter | |
JPS5966236A (en) | Wavelength multiplex communicating method | |
CA1204532A (en) | Nonlinear all-optical time division multiplexer and demultiplexer | |
US9876582B2 (en) | Integrated multichannel photonic receiver | |
JP2890031B2 (en) | Millimeter-wave signal optical multiplex transmission system and device | |
JPS56149838A (en) | Light wave length multiplexing equipment | |
US6549319B2 (en) | Apparatus for optical wavelength conversion | |
EP1274192A1 (en) | OTDM device | |
JP4029515B2 (en) | Wavelength converter and wavelength converter | |
JP3513675B2 (en) | Optical frequency converter | |
JPH0723024A (en) | Optical frequency multiplexed signal transmitting circuit | |
SE9802254L (en) | Wavelength selective switch and method for switching wavelength channels in an optical network | |
JP2005244261A (en) | Multichannel optical modulator and multichannel optical transmitter | |
JP2006005531A (en) | Multichannel optical transmitter | |
JP2658114B2 (en) | Wavelength conversion switch |