JPS596583A - Znse blue light emitting diode - Google Patents
Znse blue light emitting diodeInfo
- Publication number
- JPS596583A JPS596583A JP57115894A JP11589482A JPS596583A JP S596583 A JPS596583 A JP S596583A JP 57115894 A JP57115894 A JP 57115894A JP 11589482 A JP11589482 A JP 11589482A JP S596583 A JPS596583 A JP S596583A
- Authority
- JP
- Japan
- Prior art keywords
- type
- temperature
- solution
- quartz
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/823—Materials of the light-emitting regions comprising only Group II-VI materials, e.g. ZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/012—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group II-IV materials
Landscapes
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はZn5eの半導体装置に関し、特にエピタキシ
ャル成長によって構成した発光ダイオよりも広い禁制布
巾を有することがら、緑色よりも高エネルギー側(短波
長側)における発光が期待される結晶である。このうち
特にZnS e。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Zn5e semiconductor device, which is expected to emit light on the higher energy side (shorter wavelength side) than green because it has a wider barrier than a light-emitting diode constructed by epitaxial growth. It is a crystal. Among these, ZnS e in particular.
結晶は、禁制布巾が室温で2.67eVであり波長に直
すと465nmK相当し、丁度青色となる。The forbidden voltage of the crystal is 2.67 eV at room temperature, which corresponds to a wavelength of 465 nmK, which is exactly blue.
従ってZn5eはバンドギャップの広いZnS など
と異なり深い単位などを用いなくともバンド間遷移で効
率の良い青色発光が可能な直接遷移型の結晶である。Therefore, unlike ZnS, which has a wide band gap, Zn5e is a direct transition crystal that can efficiently emit blue light through interband transition without using deep units.
この目的−のまめに各所で精力的な努力がなされた結果
、 p−n接合に関する種々の報告があるが、n形Zn
5eKSeの格子位置と置換しp形の不純物となり5る
PあるいはAsをイオン注入することによってp−n接
合が形成されたとの報告が比較的信頼性の高いものであ
る。しかしながらこの場合にも、p−n接合から得られ
る順方向での発光は、深い準位からの発光が優勢で、禁
制帝巾近傍からの発光は全く観察されていない。As a result of strenuous efforts made in various places for this purpose, there have been various reports on p-n junctions, but n-type Zn
There is a relatively reliable report that a pn junction is formed by ion implantation of P or As, which becomes a p-type impurity and replaces the lattice position of 5eKSe. However, in this case as well, the forward light emission obtained from the pn junction is dominated by light emission from deep levels, and no light emission from the vicinity of the forbidden band is observed at all.
この原因としては2つ考えられ、第一には成長した結晶
の結晶性の問題であり■族元素より■族元素の蒸気圧が
高いZn5eにおいては、成長した結晶中に■族元素の
Seの空路゛子点を多数発生し、これがドナとして働く
ために通常n形結晶しか得られず実用的なp形結晶は得
られないために、p−n接合、が形成されていなかった
。There are two possible reasons for this. The first is a problem with the crystallinity of the grown crystal. In Zn5e, where the vapor pressure of group Ⅰ elements is higher than that of group Ⅰ elements, Se, a group Ⅰ element, is present in the grown crystals. Since a large number of empty dots are generated and these act as donors, normally only an n-type crystal can be obtained, and a practical p-type crystal cannot be obtained, so that a pn junction has not been formed.
即ち■族元素の空格子点と不純物が結びつくと非発光中
心として働くか深い準位が形成されるので、たとえp−
n接合ができたとしても発光効ff!極めて低いものか
もしくは深い準位からの発光が優勢なものしかできない
ことになる。In other words, when a vacancy of a group II element and an impurity combine, they act as a non-luminescent center or form a deep level, so even if p-
Even if an n-junction is formed, the luminous effect is ff! This means that only extremely low levels or those in which light emission is predominant from deep levels can be produced.
第二点としては、禁制布中の浅い準位にレベルを作る不
純物をいかなる条件で添加するかが重要なポイントであ
るcp形Zn5e結晶を得るための不純物としては、■
族格千点に置換する1aあるいG′!Ib元素かもしく
は、■族格子点に置換するvb族元素が核当するわけで
ある。The second point is that the important point is under what conditions the impurity that creates a level in the shallow level in the forbidden cloth is added.
1a or G' to be replaced with genus case 1000 points! The nucleus is either an Ib element or a Vb group element substituting at a group (■) lattice point.
いづれの元素についても、p形化への期待からイオン注
入や拡散によって添加実験が行なわれているが、いづれ
も深い不純物準位が形成されてしまう。この原因として
は、良好な結晶が成長できていないために、い(ら不純
物を添加しても不純物と欠陥による複合体による深い準
位が形成されてしまうためと考えられている。For each element, experiments have been conducted to add it by ion implantation or diffusion in hopes of making it p-type, but in each case a deep impurity level is formed. The reason for this is thought to be that a good crystal cannot be grown, so even if impurities are added, a deep level is formed due to a complex of impurities and defects.
これらの欠点を取り除き、禁制布巾近傍にのみ発光ピー
クを有する効率の良い青色発光ダイオードを得るために
はn形結晶中にイオン注入が望ましい。しかしながら従
来性なわれている成長法では高純度のp形エピタキシャ
ル成長層が得られていなかった。In order to eliminate these drawbacks and obtain an efficient blue light emitting diode having an emission peak only near the forbidden area, it is desirable to implant ions into the n-type crystal. However, a p-type epitaxially grown layer of high purity has not been obtained using conventional growth methods.
本発明者はこの目的を達成するために、既に蒸気圧制御
温度差法を提案し、Seを溶媒としZnの蒸気圧を制御
したエピタキシャル成長法を特願昭55−78620号
及び特願昭55−149693号で提供している。この
方法を用1乳
いることによりI−V化合物と同様にエピタキシャル成
長によって完全性の高いp−n接合の形成が可能となる
。この具体的な成長手順を第1図に示す。In order to achieve this objective, the present inventor has already proposed a vapor pressure controlled temperature difference method, and has proposed an epitaxial growth method in which the vapor pressure of Zn is controlled using Se as a solvent in Japanese Patent Application No. 55-78620 and Japanese Patent Application No. 55-78. No. 149693. By using this method, it is possible to form a highly perfect pn junction by epitaxial growth, similar to the IV compound. This specific growth procedure is shown in FIG.
第1図のように石英アンプルl中に例えばn形Zn5e
基板3上に、Se4を溶媒として用い、p形不純物のI
a及びIb族の不純物を溶媒中に添加し、温度差を形成
した溶液の高温側にソース結晶のZnS’e5を配置し
、溶液が平衡に達した後に石英アンプル全体を縦にして
n形基板と溶液の低温側とを接触させる。第1図の右側
に示す温度i1+%’起因する拡散現象によって一宏温
度でエピタキシャル成長が進行するものである。For example, n-type Zn5e is placed in a quartz ampoule l as shown in Figure 1.
A p-type impurity I is deposited on the substrate 3 using Se4 as a solvent.
A and Ib group impurities are added to the solvent to form a temperature difference. A source crystal, ZnS'e5, is placed on the high temperature side of the solution, and after the solution reaches equilibrium, the entire quartz ampoule is turned vertically and placed on an n-type substrate. and the cold side of the solution. Epitaxial growth progresses at the Kazuhiro temperature due to a diffusion phenomenon caused by the temperature i1+%' shown on the right side of FIG.
更に亘族元素のZn7Eを制御するために、成長室とは
内径の細い石英管で接読されたものと等価の石英製ヌペ
ーサ2を経てZn室中に金属Zn6を入れ、この室の温
度が最適に制御される。Furthermore, in order to control Zn7E, which is a Wataru group element, metal Zn6 was introduced into the Zn chamber through a quartz Nupesa 2, which is equivalent to a quartz tube with a narrow inner diameter, and the temperature of this chamber was Optimally controlled.
必要な時間成長後、溶液と基板とを分離して成長を終了
しp−n接合が形成される。After growth for a required period of time, the solution and substrate are separated to complete the growth and form a pn junction.
逆にp形基板を用いて、この上Kn形層を形成すること
によりp−n接合を製造することも勿論可能である。Conversely, it is of course possible to manufacture a pn junction by using a p-type substrate and forming a Kn-type layer thereon.
エピタキシャル成長によって自在Kn形基板上へのp形
層及びp形基板上へのn形層の成長が可能となると、当
然最適なデバイス構造が問題となる。When epitaxial growth allows the growth of p-type layers on flexible Kn-type substrates and n-type layers on p-type substrates, the question of optimal device structure naturally arises.
本発明では結晶の移動度に注目して最適なデバイス構造
を提供するものである。一般に報告されているZn5e
台結晶のp形及びn形の移動度は下記の通りである。The present invention focuses on crystal mobility to provide an optimal device structure. Generally reported Zn5e
The p-type and n-type mobilities of the platform crystal are as follows.
移動度(crn2/■・5ee)
ZnSe n (電子) 600
p (正孔) 40
注目しなければならない点は移動度を比較するとp形層
の方が御粘以上も小さくかつ数10 cm2/ V・S
eeという極めて小さい値であることが問題となって(
る。Mobility (crn2/■・5ee) ZnSe n (electron) 600 p (hole) 40 The point that must be noted is that when comparing the mobility, the p-type layer is much smaller than the viscosity, and is several tens of cm2/V.・S
The problem is that the extremely small value of ee (
Ru.
この拳(1何を意味するかと云うと、アインシ二り:正
孔拡散係数、μ:移動度より Zn5eの正孔の移動度
を20〜100 CIrL”/ V ” 8 e 00
間にあると仮定すると、室温におけるそれぞれの拡散係
数りは
a (cm2/V* s e c) D (c
In2/5ee)20 0.5
2100 2.6となり、キ
ャリア寿命τを最大に見積ってlμ5(io−’秒)と
してみると拡散距離りはL=□で
μ=20ffiし■・8ec−・1L卓0.72pfn
10(Lσ1VIIsec e1* L :1.6
0μfiとなるので、p形層の厚さとしては、10〜2
4゜0μmあれば充分であり、5μmでも満足すべきで
、これ以上厚くした場合には、p形層は単に直列抵抗と
して効いてくるだけである。What this fist (1) means is: Insigni: hole diffusion coefficient, μ: mobility.
Assuming that the respective diffusion coefficients at room temperature are between a (cm2/V* s e c) D (c
In2/5ee)20 0.5
2100 2.6, and if we estimate the carrier life τ to the maximum and set it as lμ5 (io-' seconds), the diffusion distance is L = □ and μ = 20ffi, and ■・8ec−・1L table 0.72pfn
10(Lσ1VIIsec e1*L:1.6
Since it is 0 μfi, the thickness of the p-type layer is 10 to 2
A thickness of 4.0 .mu.m is sufficient, and a thickness of 5 .mu.m should also be satisfactory; if the thickness is made thicker than this, the p-type layer merely acts as a series resistance.
従ってエピタキシャル成長によってZn5eのp−n接
合を形成して直列抵抗の小さなダ・イオードを製作する
際には、基板としてn形結晶を用い、この上に薄いp形
層を成長することが好ましい。p形層の厚さとしては、
5〜20μmで、特に10μm前後が好ましい。Therefore, when manufacturing a diode with low series resistance by forming a Zn5e p-n junction by epitaxial growth, it is preferable to use an n-type crystal as the substrate and grow a thin p-type layer thereon. The thickness of the p-type layer is
The thickness is preferably 5 to 20 μm, particularly preferably around 10 μm.
n形Zn5e基板を用いてp形エピタキシャル成長層を
成長して製作した発光ダイオードでは、p形′層の厚さ
によってI−V特性に顕著な差異が見い出され、p形層
の不純物密度が1013〜10 ” 7cm”程度では
、10μm以上の厚さになると直列抵抗が大きくなるこ
とが第2図のように測定された。In light emitting diodes manufactured by growing a p-type epitaxial growth layer using an n-type Zn5e substrate, a remarkable difference in IV characteristics was found depending on the thickness of the p-type' layer, and the impurity density of the p-type layer was 1013 ~ As shown in FIG. 2, it was measured that when the thickness was about 10"7 cm", the series resistance increased when the thickness was 10 .mu.m or more.
以上のような構造にすることにより高効率青色Zn5e
発光ダイオードが得られ、工業的価値の高bQtlので
あると考えられる。With the above structure, high efficiency blue Zn5e can be produced.
A light emitting diode is obtained and is considered to be of high bQtl of industrial value.
図面の説明
第1図は本発明に用いられた石英アンブル及び温度分布
、第2図は製作されたZn5e青色発光ダイオードのp
形層の厚みと電圧−電流特性との関係である。Description of the Drawings Figure 1 shows the quartz amble and temperature distribution used in the present invention, and Figure 2 shows the p of the manufactured Zn5e blue light emitting diode.
This is the relationship between the thickness of the shaped layer and the voltage-current characteristics.
1・・・石英アンプル、2−・石英製ヌペーサ、3−−
−jl形Zn5e基板、4 拳**36 、5 se+
+zISe ソー メ1i9k、6・・eznO特許出
願人1...Quartz ampule, 2--Quartz Nupesa, 3--
-jl type Zn5e substrate, 4 fist**36, 5 se+
+zISe Sorme 1i9k, 6...eznO patent applicant
Claims (1)
形層を形成したことを特徴とするZn5e 責 色#5
光り゛イオード。A thin p-type layer is formed by epitaxial growth on a low-resistance n-type crystal.
Zn5e color #5 characterized by the formation of a shape layer
Shining iode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57115894A JPS596583A (en) | 1982-07-02 | 1982-07-02 | Znse blue light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57115894A JPS596583A (en) | 1982-07-02 | 1982-07-02 | Znse blue light emitting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS596583A true JPS596583A (en) | 1984-01-13 |
Family
ID=14673824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57115894A Pending JPS596583A (en) | 1982-07-02 | 1982-07-02 | Znse blue light emitting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS596583A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868615A (en) * | 1986-09-26 | 1989-09-19 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device using group I and group VII dopants |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218188A (en) * | 1975-08-01 | 1977-02-10 | Nippon Telegr & Teleph Corp <Ntt> | Zinc selenide light emitting diode process |
JPS577131A (en) * | 1980-06-16 | 1982-01-14 | Junichi Nishizawa | Manufacture of p-n junction |
-
1982
- 1982-07-02 JP JP57115894A patent/JPS596583A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218188A (en) * | 1975-08-01 | 1977-02-10 | Nippon Telegr & Teleph Corp <Ntt> | Zinc selenide light emitting diode process |
JPS577131A (en) * | 1980-06-16 | 1982-01-14 | Junichi Nishizawa | Manufacture of p-n junction |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868615A (en) * | 1986-09-26 | 1989-09-19 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device using group I and group VII dopants |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02264483A (en) | Semiconductor light emitting element and manufacture thereof | |
US4755856A (en) | Znse green light emitting diode | |
JPS596583A (en) | Znse blue light emitting diode | |
JP2817577B2 (en) | GaP pure green light emitting element substrate | |
JPH055191B2 (en) | ||
JP2719870B2 (en) | GaP-based light emitting device substrate and method of manufacturing the same | |
US5032539A (en) | Method of manufacturing green light emitting diode | |
JPS5846686A (en) | Blue light emitting diode | |
JP3662832B2 (en) | Light emitting device and manufacturing method thereof | |
KR100389738B1 (en) | SHORT WAVELENGTH ZnO LED AND METHOD FOR PRODUCING OF THE SAME | |
JPS63213378A (en) | Manufacturing method of semiconductor light emitting device | |
KR100719915B1 (en) | Method for manufacturing short wavelength light emitting device using zinc oxide | |
JP3326261B2 (en) | Gallium phosphide green light emitting diode and method of manufacturing the same | |
JPH05304314A (en) | Light emitting diode | |
JP2604019B2 (en) | Semiconductor light emitting device | |
JPS6244835B2 (en) | ||
JP2540229B2 (en) | Compound semiconductor light emitting device | |
JP2783580B2 (en) | Double hetero-type infrared light emitting device | |
JPH05251736A (en) | Semiconductor light emitting device | |
JPS5972717A (en) | Manufacture of semiconductor single crystal | |
JPS59172278A (en) | Znse polychrome light-emitting element | |
JP2000228540A (en) | Manufacture optoelectric transducer element | |
JPH02262380A (en) | Semiconductor light emitting element | |
JPH0324775A (en) | Diamond electronic device | |
JPS63232379A (en) | Semiconductor light emitting element |