JPS5963340A - Variable compression ratio engine - Google Patents
Variable compression ratio engineInfo
- Publication number
- JPS5963340A JPS5963340A JP57174759A JP17475982A JPS5963340A JP S5963340 A JPS5963340 A JP S5963340A JP 57174759 A JP57174759 A JP 57174759A JP 17475982 A JP17475982 A JP 17475982A JP S5963340 A JPS5963340 A JP S5963340A
- Authority
- JP
- Japan
- Prior art keywords
- compression ratio
- exhaust gas
- temperature
- sensor
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D15/00—Varying compression ratio
- F02D15/04—Varying compression ratio by alteration of volume of compression space without changing piston stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/0245—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【発明の詳細な説明】
は排気通路に触媒式排気浄化装置を設けた可変圧縮比エ
ンジンに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable compression ratio engine in which a catalytic exhaust purification device is provided in an exhaust passage.
ガソリンエンジン等の内燃機関にあっては周知のように
、圧縮比を上げると熱効率が良くなる。しかし圧縮比を
金りに高(設定すると、特に充填効率が高くなる高負荷
時にノッキングが生じやすくなる。そこで例えば実開昭
5 6−796.39号公報に示されるように、エンジ
ン燃焼室の容積を変える容積可変装置を設け、該容積可
変装置をエンジン運転状態に対応させて、あるいはノッ
キング発生の有無に応じて制御し、ノッキングを起こす
ことなく可能な限り高圧縮比で運転できるようにした可
変圧縮比エンジンが提案されている。As is well known in internal combustion engines such as gasoline engines, increasing the compression ratio improves thermal efficiency. However, if the compression ratio is set too high, knocking is likely to occur, especially at high loads when the charging efficiency is high. A volume variable device that changes the volume is provided, and the volume variable device is controlled in response to engine operating conditions or in accordance with the presence or absence of knocking, so that the engine can be operated at the highest possible compression ratio without causing knocking. Variable compression ratio engines have been proposed.
一方今日では、自動車等に搭載されるエンジンの多(は
、排気通路に触媒式の排気浄化装置を備えている。この
種の排気浄化装置に用いられる触媒は、一般に200〜
300℃程度以上の温度に維持しないと活性を失い、十
分な排気ガストfI化作用を果たさない。On the other hand, today, many engines installed in automobiles, etc. are equipped with a catalytic exhaust purification device in the exhaust passage.The catalyst used in this type of exhaust purification device is generally
If the temperature is not maintained at about 300° C. or higher, the activity will be lost and the exhaust gas will not have a sufficient effect of converting the exhaust gas to fI.
ところが、このような触媒式排気浄化装置が前述した6
J変圧縮比エンジンに取り伺けられた場合には、圧縮比
が大きく上げられて燃焼効率が向上し排気ガス温度が低
下することから、特に低負荷域での触媒温度が十分に保
たれず排気ガス浄化機能が損なわれる、という不具合が
生じることがある。However, such a catalytic exhaust purification device has the above-mentioned 6 problems.
If a J-variable compression ratio engine is used, the compression ratio will be greatly increased, improving combustion efficiency and lowering the exhaust gas temperature, so the catalyst temperature will not be maintained sufficiently, especially in the low load range. A problem may occur in which the exhaust gas purification function is impaired.
本発明は、上記不具合を解消した可変圧縮比エンジンを
提供することを目的とするものである。An object of the present invention is to provide a variable compression ratio engine that eliminates the above-mentioned problems.
本発明の可変圧縮比エンジンは、前述したような触媒式
排気浄化装置を設けた可変圧縮比エンジンにおいて、触
媒温度センサを設けて触媒温度を検出するとともに、該
触媒温度が所定温度以下になって触媒の活性が失われそ
うになったときには、上記センサの出力を受ける制御装
置によって、燃焼室容積可変装置を圧縮比低下方向に作
動させるようにしたことをfl′徴とするものである。The variable compression ratio engine of the present invention is a variable compression ratio engine equipped with a catalytic exhaust purification device as described above, which is equipped with a catalyst temperature sensor to detect the catalyst temperature, and when the catalyst temperature becomes below a predetermined temperature. When the activity of the catalyst is about to be lost, the control device that receives the output of the sensor operates the combustion chamber volume variable device in the direction of lowering the compression ratio, which is considered as the fl' sign.
圧縮比が低下されれば排気ガス温度が上昇し、触IjL
温度も上列して、触媒による排気ガス浄化様能が良好に
維持される。If the compression ratio is lowered, the exhaust gas temperature will rise and the
The temperature is also on the same level, and the exhaust gas purification ability of the catalyst is maintained well.
なお、触媒温度センサは触媒が浄化機能を十分に果す温
度状態にあるか否かを検出できれはよいもので、温度セ
ンサを触媒式排気浄化装置内に設けて直接装置の温度を
検出してもよいし、触媒式排気浄化装置周囲の雰囲気温
度、あるいは、触媒浄化装置上流または下流の排気通路
中の排気ガス温度を検出することにより間接的に検出す
るようにしてもよい。Note that the catalyst temperature sensor is good because it can detect whether the catalyst is at a temperature that is sufficient to perform its purification function. Alternatively, the temperature may be detected indirectly by detecting the ambient temperature around the catalytic exhaust purification device or the exhaust gas temperature in the exhaust passage upstream or downstream of the catalytic exhaust purification device.
以下、図面を参照して本発明の実施例について説明する
。Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の1実施例によるE]変圧縮比エンジン
を概略的に示すものである。シリンダ1とピストン2と
により画成される燃焼室3には、排気弁4が設けられた
排気ボート5が開口され、該排気ボート5は排気通路6
に連通している。排気通路6には触媒により、排気ガス
中のCO1■IC,NOx等の酸化、還元を促進し、こ
れらの物質を排気ガス中から除去する触媒式排気浄化装
置7が設けられている。この排気浄化装置7の触媒は、
周知のように200〜300℃程贋以上の温度に維持さ
れないと、十分な触媒活性を示さない。また上記排気浄
化装置7には、該排気浄化装置7の触媒の温度を検出す
る触媒温度センサ8が設けられている。FIG. 1 schematically shows a variable compression ratio engine according to one embodiment of the present invention. An exhaust boat 5 provided with an exhaust valve 4 is opened in the combustion chamber 3 defined by the cylinder 1 and the piston 2, and the exhaust boat 5 is connected to an exhaust passage 6.
is connected to. The exhaust passage 6 is provided with a catalytic exhaust purification device 7 that uses a catalyst to promote the oxidation and reduction of CO1, IC, NOx, etc. in the exhaust gas and removes these substances from the exhaust gas. The catalyst of this exhaust purification device 7 is
As is well known, sufficient catalytic activity is not exhibited unless the temperature is maintained at about 200 to 300° C. or above. Further, the exhaust gas purification device 7 is provided with a catalyst temperature sensor 8 that detects the temperature of the catalyst of the exhaust gas purification device 7.
一方シリンダヘッド部には、前記燃焼室3に連通ずる第
2シリンダ9が形成され、この第2シリンダ9内には圧
縮比可変ピストン10が摺動自在に収められている。こ
の圧縮比0]変ピストン10に連結されたロッド11の
端部は、パワーシリンダ12内に摺動自在に配されたパ
ワーピストン13に連結されている。On the other hand, a second cylinder 9 is formed in the cylinder head portion and communicates with the combustion chamber 3, and a variable compression ratio piston 10 is slidably housed in the second cylinder 9. The end of the rod 11 connected to the compression ratio 0] variable piston 10 is connected to a power piston 13 slidably disposed within the power cylinder 12.
パワーシリンダ12には、上記パワーピストン130両
側(図中上下)において2つの油路14,14’が連通
され、これら油路14゜14’はスプール弁15に接続
されている。パワーシリンダ12には、オイル詔め16
に貯えられ油圧ポンプ17に吸入された作動油が、吐出
配管18、スプール弁15を介して圧送され、そして該
パワーシリンダ12のパワーピストン13を作動させ、
圧力が低下した作動油はスプール弁15、戻し配管19
を通って前記オイル溜め16に戻されるようになってい
る。Two oil passages 14 and 14' communicate with the power cylinder 12 on both sides (upper and lower in the figure) of the power piston 130, and these oil passages 14 and 14' are connected to a spool valve 15. The power cylinder 12 contains oil 16
Hydraulic oil stored in the hydraulic pump 17 is pumped through the discharge pipe 18 and the spool valve 15, and operates the power piston 13 of the power cylinder 12.
The hydraulic oil whose pressure has decreased is removed from the spool valve 15 and the return pipe 19.
The oil is returned to the oil reservoir 16 through the oil reservoir 16.
このスプール弁15は、パワーシリンダ装置の制御のた
めに従来から用いられているものであり、スプール15
aの変位方向(図中上下方向)と変位量により、油路1
4,14’を介してのパワーシリンダ12への圧油供給
をHilJ 1141 L、該パワーピストン13の図
中上下方向位置を¥ii制御する。すなわちスプール1
5aが基準位置から上方に変位するとパワーピストン1
3は上方に移動し、反対にスプール15aが下方に変位
するとパワーピストン13は下方に移動する。This spool valve 15 is conventionally used to control a power cylinder device, and the spool valve 15
Depending on the displacement direction (vertical direction in the figure) and displacement amount of a, oil path 1
The HilJ 1141L controls the supply of pressure oil to the power cylinder 12 via the pistons 4 and 14', and controls the vertical position of the power piston 13 in the figure. i.e. spool 1
When 5a is displaced upward from the reference position, the power piston 1
3 moves upward, and conversely, when the spool 15a moves downward, the power piston 13 moves downward.
上記スプール弁15のスプール15aには、支点20を
中心に回動自在に支持されたリンク21が連結され、該
リンク21はアクチュエータ22によって図中上下方向
に移動されるロッド23に連結されている。上記アクチ
ュエータ22が駆動されてリンク21が動かされ、スプ
ール15aが図中上下方向に変位して、パワーピストン
13が上下方向に変位すると、該パワーピストン13に
ロッド11を介して接続された圧縮比可変ピストン10
の、第2シリンダ9内上下位置が変えられる。A link 21 rotatably supported around a fulcrum 20 is connected to the spool 15a of the spool valve 15, and the link 21 is connected to a rod 23 that is moved vertically in the figure by an actuator 22. . When the actuator 22 is driven and the link 21 is moved, the spool 15a is displaced in the vertical direction in the figure, and the power piston 13 is displaced in the vertical direction, the compression ratio connected to the power piston 13 via the rod 11 is variable piston 10
The vertical position within the second cylinder 9 can be changed.
それによって燃焼室3容イ貢が変えられ、一定のストロ
ークで往復動するピストン2によって圧縮される混合気
の圧縮比が変えられる。As a result, the volume of the combustion chamber 3 is changed, and the compression ratio of the air-fuel mixture compressed by the piston 2, which reciprocates with a constant stroke, is changed.
すなわち、圧縮比可変ピストン10が図中」一方に位置
するほど燃焼室3容積が増大して圧縮比は低下し、圧縮
比可変ピストン10が図中下方に位置するほど燃焼室3
答積が減小して圧縮比は太き(なる。That is, the further the variable compression ratio piston 10 is located in the drawing, the larger the volume of the combustion chamber 3 is, and the lower the compression ratio is.
The answer product decreases and the compression ratio increases.
以下、上記圧縮比可変ピストン10の制御について説明
する。この圧縮比可変ピストン10を駆動させるアクチ
ュエータ22は、電イiB装置(図示せず)によりロッ
ド23を移動させるものであり、該電磁装置は開側j回
路24から出力される駆動信号S6によって駆動される
。上記1u(]制御回路4には、スロットル弁(図示せ
ずンの開度を検出することによってエンジン負荷を検出
する負荷センサ25が出力する負荷信号S1と、例えば
クランクシャフトに固定したパルス発生器とパルスカウ
ンタ等からなる回転数センサ26が出力する回転数信号
S2と、前記触媒温度センサ8が出力ずろ触媒温度信号
S3と、燃焼室3に臨む位置に設けられノッキング発生
を検出する、例えばピエゾ累子からなるノックセンサ2
7の出力信号S4と、前記パワーピストン13に固定さ
れた位置検出ロッド28の位置を検出することにより圧
縮比可変ピストンlOの位置を検出するピストン位置セ
ンサ29が出力するピストン位置信号S5とが入力され
るようになっている。Control of the variable compression ratio piston 10 will be explained below. The actuator 22 that drives the variable compression ratio piston 10 moves the rod 23 by an electric iB device (not shown), and this electromagnetic device is driven by a drive signal S6 output from the open side j circuit 24. be done. The 1u () control circuit 4 receives a load signal S1 output from a load sensor 25 that detects engine load by detecting the opening degree of a throttle valve (not shown), and a pulse generator fixed to the crankshaft, for example. and a rotation speed signal S2 outputted by a rotation speed sensor 26 consisting of a pulse counter or the like, and a catalyst temperature signal S3 output by the catalyst temperature sensor 8. Knock sensor 2 consisting of a child
7 and a piston position signal S5 output by a piston position sensor 29 that detects the position of the variable compression ratio piston IO by detecting the position of the position detection rod 28 fixed to the power piston 13. It is now possible to do so.
制御回路24は、上記負荷信号S1と回転数信号S2を
処理して、5駆動信号S6を出力し、アクチュエータ2
2を駆動して圧縮比可変ピストン10の位置を制御し、
例えば第2図に示されるようにエンジン負荷、回転数に
応じて圧縮比を設定する。この第2図釦示ずような圧縮
比の設定パターンは、例えばH,(、l M等の記憶装
置にマツプにして記憶させておいてもよいし、また関数
発生器等を用いて形成するようにしてもよい。」−記憶
2図の圧縮比設定パターンにおいて、エンジン回転数が
低いほど圧縮比を低く設定しているのは、そのような運
転狐域ではノッキングが生じやすいからである。また本
実施例においてはエンジン負荷をスロットル開度で検出
しているため、エンジン負荷をスロットル開度で抑えた
設定がなされているが、エンジン負荷はその他吸気負圧
等で検出することも勿論可能であり、そのような揚台に
は各負荷検出手段に合わせた圧縮比設定パターンを形成
すればよい。The control circuit 24 processes the load signal S1 and the rotation speed signal S2, outputs a five-drive signal S6, and controls the actuator 2.
2 to control the position of the variable compression ratio piston 10,
For example, as shown in FIG. 2, the compression ratio is set depending on the engine load and engine speed. The compression ratio setting pattern as shown in the button in Figure 2 may be mapped and stored in a storage device such as H, (, lM, etc.), or it may be created using a function generator or the like. In the compression ratio setting pattern shown in Figure 2, the reason why the compression ratio is set lower as the engine speed is lower is because knocking is more likely to occur in such operating ranges. In addition, in this example, the engine load is detected by the throttle opening, so the setting is such that the engine load is suppressed by the throttle opening, but the engine load can of course be detected by other means such as intake negative pressure. Therefore, a compression ratio setting pattern suitable for each load detection means may be formed on such a platform.
圧縮比可変ピストン100位ii7;は、燃焼室3谷槓
、ひいては圧縮比に対応するから、制御回路24はピス
トン位箭信号S5により圧縮比を検出し、その圧縮比と
設定値とをつき合わせ、もし両者間に偏差が南れば偏差
を無くすように駆動信号S6を補正する。Since the variable compression ratio piston 100 position ii7 corresponds to the three valleys of the combustion chamber and, in turn, to the compression ratio, the control circuit 24 detects the compression ratio based on the piston position signal S5, and matches the compression ratio with the set value. , if there is a deviation between the two, the drive signal S6 is corrected to eliminate the deviation.
また11J腫御回路24は、ノックセンサ出力信号S4
によりノンキング発生を検知すると、アクチュエータ2
2のロッド23を上方に変位させるように、つまり圧縮
比可変ピストン]0が上方に変位するように駆動信号S
6を補正し、圧縮比を第2図の設定パターンから外して
低下させ、ノンキング発生を抑制する。In addition, the 11J tumor circuit 24 outputs a knock sensor output signal S4.
When the occurrence of non-king is detected, actuator 2
The drive signal S is applied so as to displace the rod 23 of No. 2 upward, that is, to displace the compression ratio variable piston] 0 upward.
6 is corrected, and the compression ratio is lowered outside of the setting pattern shown in FIG. 2, thereby suppressing the occurrence of non-king.
以上説明した制御回路240機能は、従来の可変圧縮比
エンジンの制御装置にも備えられているものであるが、
本実施例・のb」袈圧縮比エンジンにおいてはさらに」
二記制御回路24により、前述した触媒式排気浄化装置
7の排気ガス浄化機能が常に良好に確保されるようにな
っている。以下、その点を詳述する。制御回路24ば、
触媒温度信号S3を受けて、排気浄化装j’t 7の触
媒の温度が所定温度以下になったことを検出すると、駆
動信号S6を、アクチュエータ220ロツド23が上方
に変位するように、つまり圧縮比可変ピストン10が上
方に変位するように駆動信号S6を補正する。The control circuit 240 function described above is also provided in a conventional control device for a variable compression ratio engine.
In this embodiment, in the case of "b" compression ratio engine, further "
The second control circuit 24 ensures that the exhaust gas purification function of the catalytic exhaust purification device 7 described above is always maintained satisfactorily. This point will be explained in detail below. The control circuit 24,
When receiving the catalyst temperature signal S3 and detecting that the temperature of the catalyst of the exhaust purification device j't7 has fallen below a predetermined temperature, the drive signal S6 is changed so that the actuator 220 rod 23 is displaced upward, that is, compressed. The drive signal S6 is corrected so that the variable ratio piston 10 is displaced upward.
上記所定温度は、触媒が十分な活性を維持し得る温度、
あるいは余裕をみてそれよりもやや高い温度に設定され
る。なお前記のような触媒温度の低下は、エンジン運転
中、圧縮比がかなり高く設定されて混合気が急速燃焼し
、それによって排気ガス温度が低下したときに生じる。The predetermined temperature is a temperature at which the catalyst can maintain sufficient activity;
Alternatively, the temperature may be set to a slightly higher temperature with some margin. Note that the catalyst temperature decrease as described above occurs when the compression ratio is set quite high during engine operation, causing rapid combustion of the air-fuel mixture, thereby lowering the exhaust gas temperature.
駆jlJ/l侶号S6が補正されて圧縮比可変ピストン
10が上方に変位すれば、燃焼室3芥櫃が増大し、圧縮
比が低下する。それにより燃焼速度が低下し、排気ガス
温度が上昇して触媒温度も前記所定温度以上に上昇し、
触媒の活性が良好に保たれて、排気浄化装置7は十分な
排気ガス浄化機能を絹持ず4)。If the compression ratio variable piston 10 is displaced upward by correcting the drive ratio S6, the combustion chamber size increases and the compression ratio decreases. As a result, the combustion rate decreases, the exhaust gas temperature increases, and the catalyst temperature also increases above the predetermined temperature,
Since the activity of the catalyst is maintained well, the exhaust purification device 7 has a sufficient exhaust gas purification function 4).
以上詳細に説明した辿り本発明の可変圧縮比エンジンは
、圧縮比を可変にして尚(・熱効率で運転され得、しか
も圧縮比不適設定による排気浄化装置の劣化を招かない
ので、火事搭載に即したものとなっている。As described in detail above, the variable compression ratio engine of the present invention can be operated with variable compression ratio (・thermal efficiency), and does not cause deterioration of the exhaust purification device due to inappropriate setting of the compression ratio. It has become.
第1図は本発明の1実施例を示す概略図、第2図は圧縮
比設定パターンの一例を示すグラフである。
3・・・・・・燃 焼 室 6・・・・・・排気通路7
・・・・・・触媒式排気浄化装置
8 ・・・触媒温度センサ 9・・・・・・第2シリ
ンダ10・・・・・・圧縮比可変ピストン
12・・・・・・パワーシリンダ 13・・・・・・
パワーピストン15・・・・・・スプール弁 22・・
・・・アクチュエータ24・・・・・・制御回路FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a graph showing an example of a compression ratio setting pattern. 3... Combustion chamber 6... Exhaust passage 7
... Catalytic exhaust purification device 8 ... Catalyst temperature sensor 9 ... Second cylinder 10 ... Compression ratio variable piston 12 ... Power cylinder 13.・・・・・・
Power piston 15...Spool valve 22...
... Actuator 24 ... Control circuit
Claims (1)
装置を設けた可変圧縮比エンジンにおいて、前記排気浄
化装置の触媒温度を検出する触媒温度センサと、この触
媒温間センサの出力を受は触媒温度が所ボ温度以下にな
ったとき前記燃焼室容積可変装置を圧縮比低下方向に作
動させる制御装置とを設けたことを特徴とする可変圧縮
比エンジン。In a variable compression ratio engine equipped with a combustion chamber volume variable device and a catalytic exhaust purification device in the exhaust passage, there is provided a catalyst temperature sensor for detecting the catalyst temperature of the exhaust gas purification device, and a catalyst temperature sensor that receives the output of the catalyst warm sensor. A variable compression ratio engine, comprising: a control device that operates the variable combustion chamber volume device in a direction to lower the compression ratio when the catalyst temperature becomes equal to or lower than a predetermined engine temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57174759A JPS5963340A (en) | 1982-10-05 | 1982-10-05 | Variable compression ratio engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57174759A JPS5963340A (en) | 1982-10-05 | 1982-10-05 | Variable compression ratio engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5963340A true JPS5963340A (en) | 1984-04-11 |
JPH0428893B2 JPH0428893B2 (en) | 1992-05-15 |
Family
ID=15984176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57174759A Granted JPS5963340A (en) | 1982-10-05 | 1982-10-05 | Variable compression ratio engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5963340A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5341771A (en) * | 1991-12-03 | 1994-08-30 | Motive Holdings Limited | Internal combustion engine with variable combustion chambers and increased expansion cycle |
WO2001029383A1 (en) | 1999-10-21 | 2001-04-26 | Volkswagen Aktiengesellschaft | Method for influencing the exhaust gas temperature in an internal combustion engine and a device for influencing the exhaust gas temperature in an internal combustion engine |
KR20030017825A (en) * | 2001-08-23 | 2003-03-04 | 현대자동차주식회사 | Variable device of compression ratio for diesel engine |
JP2006046194A (en) * | 2004-08-05 | 2006-02-16 | Nissan Motor Co Ltd | Compression ratio controller for internal combustion engine |
WO2009061005A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Spark ignition type internal combustion engine |
US20100294245A1 (en) * | 2008-01-16 | 2010-11-25 | Toyota Jidosha Kabushiki Kaisha | Spark ignition type internal combustion engine |
JP2015010528A (en) * | 2013-06-28 | 2015-01-19 | 日産自動車株式会社 | Cooling device of internal combustion engine and cooling method of internal combustion engine |
KR101534709B1 (en) * | 2013-12-18 | 2015-07-08 | 현대자동차 주식회사 | Variable compression ratio engine |
US20150267608A1 (en) * | 2014-03-24 | 2015-09-24 | Freddie Ray Roberts | Variable compression cylinder head, crankshaft, and piston rod and system thereof |
US9907712B2 (en) | 2011-09-20 | 2018-03-06 | Dane Technologies, Inc. | Powered wheelchair with articulating drive wheels |
-
1982
- 1982-10-05 JP JP57174759A patent/JPS5963340A/en active Granted
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5341771A (en) * | 1991-12-03 | 1994-08-30 | Motive Holdings Limited | Internal combustion engine with variable combustion chambers and increased expansion cycle |
WO2001029383A1 (en) | 1999-10-21 | 2001-04-26 | Volkswagen Aktiengesellschaft | Method for influencing the exhaust gas temperature in an internal combustion engine and a device for influencing the exhaust gas temperature in an internal combustion engine |
KR20030017825A (en) * | 2001-08-23 | 2003-03-04 | 현대자동차주식회사 | Variable device of compression ratio for diesel engine |
JP4501584B2 (en) * | 2004-08-05 | 2010-07-14 | 日産自動車株式会社 | COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE |
JP2006046194A (en) * | 2004-08-05 | 2006-02-16 | Nissan Motor Co Ltd | Compression ratio controller for internal combustion engine |
DE112008003291B4 (en) * | 2007-11-08 | 2012-03-01 | Toyota Jidosha Kabushiki Kaisha | Third-ignition internal combustion engine |
CN101796281A (en) * | 2007-11-08 | 2010-08-04 | 丰田自动车株式会社 | Spark ignition type internal combustion engine |
WO2009061005A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Spark ignition type internal combustion engine |
US8392095B2 (en) | 2007-11-08 | 2013-03-05 | Toyota Jidosha Kabushiki Kaisha | Spark ignition type internal combustion engine |
US20100294245A1 (en) * | 2008-01-16 | 2010-11-25 | Toyota Jidosha Kabushiki Kaisha | Spark ignition type internal combustion engine |
US8342143B2 (en) * | 2008-01-16 | 2013-01-01 | Toyota Jidosha Kabushiki Kaisha | Spark ignition type internal combustion engine |
US9907712B2 (en) | 2011-09-20 | 2018-03-06 | Dane Technologies, Inc. | Powered wheelchair with articulating drive wheels |
JP2015010528A (en) * | 2013-06-28 | 2015-01-19 | 日産自動車株式会社 | Cooling device of internal combustion engine and cooling method of internal combustion engine |
KR101534709B1 (en) * | 2013-12-18 | 2015-07-08 | 현대자동차 주식회사 | Variable compression ratio engine |
US9447739B2 (en) | 2013-12-18 | 2016-09-20 | Hyundai Motor Company | Variable compression ratio engine |
US20150267608A1 (en) * | 2014-03-24 | 2015-09-24 | Freddie Ray Roberts | Variable compression cylinder head, crankshaft, and piston rod and system thereof |
US9624826B2 (en) * | 2014-03-24 | 2017-04-18 | Freddie Ray Roberts | Variable compression cylinder head, crankshaft, and piston rod and system thereof |
US20170218838A1 (en) * | 2014-03-24 | 2017-08-03 | Freddie Ray Roberts | Variable compression cylinder head, crankshaft, and piston rod and system thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0428893B2 (en) | 1992-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1427930B1 (en) | Excess air factor control of diesel engine | |
EP1505283B1 (en) | Engine control system | |
US7661407B2 (en) | Control system for internal combustion engine | |
JP3933052B2 (en) | Internal combustion engine operated while switching between compression ratio, air-fuel ratio and supercharging state | |
EP1893851B1 (en) | Method and apparatus for soot filter catalyst temperature control with oxygen flow constraint | |
JP4345307B2 (en) | Control device for internal combustion engine with variable compression ratio mechanism | |
JP5152135B2 (en) | Intake air amount control device for supercharged engine | |
US6877479B2 (en) | Apparatus and a method for controlling an internal combustion engine | |
JPS5963340A (en) | Variable compression ratio engine | |
US8978602B2 (en) | Six-stroke engine power density matching system and method | |
JP4161887B2 (en) | Exhaust purification device | |
US6666177B1 (en) | Method for operating an internal combustion engine comprising at least one working piston | |
JPH0361611A (en) | Fuel injection type two-cycle engine | |
JP4736930B2 (en) | Catalyst control device for internal combustion engine | |
JP4596726B2 (en) | Control device for internal combustion engine | |
KR102078231B1 (en) | Control device for internal combustion engine and control method for internal combustion engine | |
JP3879227B2 (en) | Mirror cycle engine intake / exhaust valve control system | |
JP4285221B2 (en) | Internal combustion engine | |
JPS60230548A (en) | Variable compression-ratio type engine | |
JP2004346854A (en) | Controller of compression ignition operation of internal combustion engine | |
JP2013221427A (en) | Control device for internal combustion engine | |
JP2006152968A (en) | Control device for internal combustion engine with variable valve timing mechanism | |
JPS60230549A (en) | Variable compression-ratio type engine | |
JP4051536B2 (en) | Catalyst thermal deterioration suppressor | |
JP4192813B2 (en) | Engine that performs exhaust gas recirculation |