JPS596066B2 - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPS596066B2 JPS596066B2 JP9690978A JP9690978A JPS596066B2 JP S596066 B2 JPS596066 B2 JP S596066B2 JP 9690978 A JP9690978 A JP 9690978A JP 9690978 A JP9690978 A JP 9690978A JP S596066 B2 JPS596066 B2 JP S596066B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- semiconductor
- substrate
- condenser
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000003990 capacitor Substances 0.000 claims description 16
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Die Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体集積回路等において基板に加える電気入
力の電圧変動を小さくするようにした半導体装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that reduces voltage fluctuations in electrical input applied to a substrate in a semiconductor integrated circuit or the like.
従来MOS形集積回路においてはダイナミックRAMの
ように素子基板にバイアス電圧を印加する必要のある場
合、素子の裏面が半導体容器の外部の電源端子VBBに
電気的に接続されるようになつており、半導体容器の外
部からVBB端子を経て基板にバイアス電圧が印加でき
るようになつていた。Conventionally, in a MOS type integrated circuit, when it is necessary to apply a bias voltage to an element substrate, such as in a dynamic RAM, the back surface of the element is electrically connected to a power supply terminal VBB outside the semiconductor container. A bias voltage can be applied to the substrate from the outside of the semiconductor container via the VBB terminal.
しかし、VBB電圧を素子内部で自動発生し、外部から
印加する必要のないものが提案され、スタティックRA
Mやロジック用IC)で実用化されている。この場合、
素子を固着する金属化領域は、外部と接続する端子をも
たず浮遊状態となつている。このVBB自動発生方式を
採用するとVBB端子が省略でき半導体容器の外部接続
用端子を減らせるという利点がある。しかし次のような
欠点があるために、例えばダイナミックRAM等には適
用されていない。以下第1図に示す従来例をとりその欠
点を説明する。第1図において、1は半導体素子、2は
半導体容器に設けられた素子固着領域、3および4は素
子基板の導電形とは反対の導電形の拡散層である。拡散
層3は電源線につながつており拡散層4は内部の信号ラ
イン5に接続されているものとする。Cl、C2はそれ
ぞれ3、4の拡散層ど基板の間に存在する接合容量であ
る。ここで、信号ライン5が”゛H””レベルから゛L
”゛レベルあるいは’!L”レベルから■WHlレベル
に変化すると、C2の容量結合により基板の電圧が変化
する。However, a method has been proposed in which the VBB voltage is automatically generated inside the element and does not require external application, and static RA
It has been put into practical use in M and logic ICs). in this case,
The metallized region that fixes the element is in a floating state without any terminals for connection to the outside. Adopting this VBB automatic generation system has the advantage that the VBB terminal can be omitted and the number of external connection terminals on the semiconductor container can be reduced. However, due to the following drawbacks, it has not been applied to, for example, dynamic RAM. The disadvantages of the conventional example shown in FIG. 1 will be explained below. In FIG. 1, 1 is a semiconductor element, 2 is an element fixing region provided in a semiconductor container, and 3 and 4 are diffusion layers of a conductivity type opposite to that of the element substrate. It is assumed that the diffusion layer 3 is connected to a power supply line, and the diffusion layer 4 is connected to an internal signal line 5. Cl and C2 are junction capacitances existing between the third and fourth diffusion layers and the substrate, respectively. Here, the signal line 5 changes from "H" level to "L" level.
When changing from the "゛ level" or "!L" level to the ■WHl level, the voltage on the substrate changes due to the capacitive coupling of C2.
基板が浮遊状態にあると、この時の電・ 圧変動の大き
さはClとC2の容量比で決定され、C2がClに比べ
て大きいほど電圧変動が大きくなる。一例としてダイナ
ミックRAMではクロックに同期して内部回路が動作す
るので、ある瞬間に内部の信号ラインがクロックと同時
に電圧変化フ を起すタイミングが存在する。この場合
、信号ラインに付随する容量C2はClにくらべて大き
いので、基板が浮遊状態にあるならば、この基板の電圧
変動は素子の動作に悪影響を及ぼすほど大きくなる。When the substrate is in a floating state, the magnitude of voltage fluctuation at this time is determined by the capacitance ratio of Cl and C2, and the larger C2 is compared to Cl, the larger the voltage fluctuation becomes. For example, in a dynamic RAM, the internal circuit operates in synchronization with the clock, so there is a certain moment when the internal signal line causes a voltage change at the same time as the clock. In this case, since the capacitance C2 associated with the signal line is larger than Cl, if the substrate is in a floating state, voltage fluctuations on the substrate will be large enough to adversely affect the operation of the device.
このような悪影響を避けるために、従来、ダイナミツク
RAMではBB自動発生方式は採用せず、基板をVBB
端子を通じて外部のインピーダンスの低い電源VBBに
接続し、さらにVBB端子と他の電源端子の間にコンデ
ンサーを付加して使用するのが一般的であつた。この場
合外部に付加するコンデンサーは第1図のC1と並列に
接続される形となり、みかけ上C1が大きくなる効果が
ある。しかしBB自動発生回路のVBB電源のインピー
ダンスは比較的高く、また基板は浮遊状態にあり外部端
子に接続されていないために、前出のように外部にコン
デンサーを付加することもできない。そのために、VB
B自動発生方式をダイナミツクRAMのように基板の電
圧変動をおこしやすく、またその電圧変動により特性に
悪影響をうけやすい素子に対しては適用できなかつた。
本発明はこのような欠点を解消するためになされたもの
で、半導体容器の金属化層からなる素子固着領域を集積
回路素子外周部にて、該回路素子を囲むように内側領域
と外側領域とに分割し、該内、外側領域間にコンデンサ
ー領域を形成し、外部電圧を該コンデンサー領域を介し
て集積回路素子に印加するように構成することにより、
基板の電圧変動を小さくできるようにした半導体装置を
提供するものである。In order to avoid such negative effects, conventional dynamic RAM did not use the BB automatic generation method, and the board was
It was common to connect to an external low impedance power supply VBB through a terminal, and to add a capacitor between the VBB terminal and another power supply terminal. In this case, the externally added capacitor is connected in parallel with C1 in FIG. 1, which has the effect of apparently increasing C1. However, the impedance of the VBB power supply of the BB automatic generation circuit is relatively high, and since the board is in a floating state and not connected to an external terminal, it is not possible to add an external capacitor as described above. To that end, VB
The automatic generation method B cannot be applied to an element such as a dynamic RAM, which is susceptible to substrate voltage fluctuations and whose characteristics are likely to be adversely affected by such voltage fluctuations.
The present invention has been made in order to eliminate such drawbacks, and the device fixing region made of the metallized layer of the semiconductor container is divided into an inner region and an outer region surrounding the circuit device at the outer periphery of the integrated circuit device. by forming a capacitor region between the inner and outer regions, and applying an external voltage to the integrated circuit element through the capacitor region.
An object of the present invention is to provide a semiconductor device in which voltage fluctuations on a substrate can be reduced.
以下第2図を用いてこの発明の一実施例について詳細に
説明する。An embodiment of the present invention will be described in detail below with reference to FIG.
第2図において、a図は断面図、b図は上面図で、半導
体素子1上には、図示していないが基板バイアス自動発
生回路が設けられている。In FIG. 2, FIG. 2A is a sectional view, and FIG. 2B is a top view, in which an automatic substrate bias generation circuit (not shown) is provided on the semiconductor element 1.
6は半導体容器上に設けられ金属化された素子固着領域
で、これは半導体素子1外周部にてこれを囲むように相
互に分割された内側素子固着領域6aと外側素子固着領
域6bとからなる。Reference numeral 6 denotes a metallized device fixing region provided on the semiconductor container, which consists of an inner device fixing region 6a and an outer device fixing region 6b, which are mutually divided so as to surround the semiconductor device 1 at its outer circumference. .
7は上記内、外側素子固着領域6a,6b間に誘電体を
介在せしめて、上記固着された半導体素子1の外周を囲
むように設置されたコンデンサーを示す。Reference numeral 7 denotes a capacitor installed so as to surround the outer periphery of the semiconductor element 1 fixed above, with a dielectric interposed between the inner and outer element fixing regions 6a and 6b.
また8は上記外側素子固着領域6b上に設けられた電源
であり、これはリード線9により上記半導体素子1の外
部電源端子に接続されている。このように外部電源と素
子基板との間にコンデンサー7を設置することで、電圧
変動を吸収しようとするものである。つまり、電源8を
、固着された半導体素子1の外周を囲むように設置され
たコンデンサー7の外側の外側素子固着領域6b上に置
くことにより、前述のように基板と電源8のあいだにコ
ンデンサー7が挿入されることになり、しかも第1図の
説明に述べたようにC1と並列に接続されることになる
。Reference numeral 8 denotes a power supply provided on the outer element fixing region 6b, which is connected to an external power supply terminal of the semiconductor element 1 by a lead wire 9. By installing the capacitor 7 between the external power source and the element substrate in this way, voltage fluctuations are attempted to be absorbed. In other words, by placing the power supply 8 on the outer element fixing region 6b outside the capacitor 7 installed so as to surround the outer periphery of the fixed semiconductor element 1, the capacitor 7 is placed between the substrate and the power supply 8 as described above. will be inserted, and will be connected in parallel with C1 as described in the explanation of FIG.
従つてこのコンデンサー7により基板の電圧変動は吸収
され、電圧変動を極めて小さぐすることができる。ここ
で、固着された半導体素子1の外周を囲むように設置さ
れた上記コンデンサー7の製造方法は既知の、金属導電
層の間にチタン酸バリウムのような誘電体を介在させる
積層コンデンサー等でよいがその他の適当な製法でもか
まわない。また上記実施例ではダイナミツクRAMを例
にとつたがこの発明はダイナミツクRAMに限らず、各
種の半導体装置に適用可能である。Therefore, this capacitor 7 absorbs the voltage fluctuation of the substrate, and the voltage fluctuation can be made extremely small. Here, the manufacturing method of the capacitor 7 installed so as to surround the outer periphery of the fixed semiconductor element 1 may be a known method such as a laminated capacitor in which a dielectric material such as barium titanate is interposed between metal conductive layers. However, any other suitable manufacturing method may be used. Further, in the above embodiment, a dynamic RAM was taken as an example, but the present invention is not limited to a dynamic RAM, but is applicable to various semiconductor devices.
以上のように、本発明に係る半導体装置では、半導体容
器の素子固着領域を内、外側領域に分割し、該両内、外
側領域間にコンデンサーを組み込む事により、基板電圧
の変動を小さくでき、安定した基板電圧自動発生方式が
得られる利点がある。As described above, in the semiconductor device according to the present invention, fluctuations in substrate voltage can be reduced by dividing the element fixing region of the semiconductor container into an inner and outer region, and incorporating a capacitor between the inner and outer regions. This has the advantage of providing a stable automatic substrate voltage generation method.
第1図は従来の半誘体装置の断面正面図、第2図は本発
明の一実施例による半導体装置を示し、第2図aはその
断面正面図、第2図bはその平面図である。
図において、1は半導体素子、6は金属化された素子固
着領域、6a,6bは内、外側素子固着領域、7はコン
デンサー、9はリード線である。FIG. 1 is a cross-sectional front view of a conventional semi-dielectric device, FIG. 2 is a semiconductor device according to an embodiment of the present invention, FIG. 2 a is a cross-sectional front view thereof, and FIG. 2 b is a plan view thereof. be. In the figure, 1 is a semiconductor element, 6 is a metalized element fixing region, 6a and 6b are inner and outer element fixing regions, 7 is a capacitor, and 9 is a lead wire.
Claims (1)
素子を半導体容器の金属化層からなる素子固着領域上に
実装してなる半導体装置において、上記素子固着領域は
上記半導体集積回路素子外周部にて該回路素子を囲むよ
うに相互に分割された内側領域と外側領域とからなり、
該内側領域と外側領域との間の間隙に誘導体を介在せし
めてコンデンサー領域が形成され、上記外側素子固着領
域と上記半導体集積回路素子の外部電源端子との間には
リード線が接続され、上記外部電源端子の電圧が上記外
側素子固着領域、上記コンデンサー領域及び上記内側素
子固着領域を介して上記半導体集積回路素子に印加され
るよう構成されていることを特徴とする半導体装置。1. In a semiconductor device in which a semiconductor integrated circuit element having an automatic substrate bias generation circuit is mounted on an element fixing area made of a metallized layer of a semiconductor container, the element fixing area is attached to the outer periphery of the semiconductor integrated circuit element. It consists of an inner region and an outer region that are mutually divided so as to surround the element,
A capacitor region is formed by interposing a dielectric in the gap between the inner region and the outer region, a lead wire is connected between the outer element fixing region and the external power terminal of the semiconductor integrated circuit element, and the A semiconductor device characterized in that a voltage of an external power supply terminal is applied to the semiconductor integrated circuit element via the outer element fixing region, the capacitor region, and the inner element fixing region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9690978A JPS596066B2 (en) | 1978-08-08 | 1978-08-08 | semiconductor equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9690978A JPS596066B2 (en) | 1978-08-08 | 1978-08-08 | semiconductor equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5524443A JPS5524443A (en) | 1980-02-21 |
JPS596066B2 true JPS596066B2 (en) | 1984-02-08 |
Family
ID=14177481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9690978A Expired JPS596066B2 (en) | 1978-08-08 | 1978-08-08 | semiconductor equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS596066B2 (en) |
-
1978
- 1978-08-08 JP JP9690978A patent/JPS596066B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5524443A (en) | 1980-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6790704B2 (en) | Method for capacitively coupling electronic devices | |
JPS596066B2 (en) | semiconductor equipment | |
JPS6173367A (en) | semiconductor equipment | |
JPS5852346B2 (en) | semiconductor equipment | |
JPH03258101A (en) | Printed circuit board | |
JPH02260559A (en) | Semiconductor integrated circuit device | |
KR100189989B1 (en) | Semiconductor device with capacitor using pad | |
JP3283709B2 (en) | Connection method of bypass capacitor | |
JPH034046Y2 (en) | ||
JPH04113639A (en) | Semiconductor device | |
JPS61230333A (en) | Integrated circuit | |
JPH0322470A (en) | Semiconductor integrated circuit | |
JPH06268012A (en) | Semiconductor integrated circuit | |
JPH03142864A (en) | Semiconductor integrated circuit | |
KR970004455B1 (en) | Semiconductor device | |
JPH04127464A (en) | Power supply capacitor cell for master slice integrated circuit device | |
JPH0982885A (en) | Semiconductor device | |
KR200159489Y1 (en) | Power-on reset device | |
JPH02264432A (en) | Semiconductor device | |
JPH0575012A (en) | Semiconductor integrated circuit | |
JPS5821848A (en) | Container for integrated circuit device | |
JPH06112406A (en) | Semiconductor integrated circuit | |
JPH088362A (en) | Semiconductor device | |
JPS63184358A (en) | semiconductor integrated circuit | |
US7157752B2 (en) | Semiconductor device |