JPS5958759A - Air electrode and its manufacture - Google Patents
Air electrode and its manufactureInfo
- Publication number
- JPS5958759A JPS5958759A JP57167667A JP16766782A JPS5958759A JP S5958759 A JPS5958759 A JP S5958759A JP 57167667 A JP57167667 A JP 57167667A JP 16766782 A JP16766782 A JP 16766782A JP S5958759 A JPS5958759 A JP S5958759A
- Authority
- JP
- Japan
- Prior art keywords
- dioxide
- oxide
- air electrode
- thin film
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 37
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 37
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 17
- -1 alkyl benzene compounds Chemical class 0.000 claims abstract description 14
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 14
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims description 50
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 229920000642 polymer Polymers 0.000 claims description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000012528 membrane Substances 0.000 claims description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 229920006254 polymer film Polymers 0.000 claims description 12
- XSXHWVKGUXMUQE-UHFFFAOYSA-N dioxoosmium Chemical compound O=[Os]=O XSXHWVKGUXMUQE-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 8
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 claims description 8
- HFLAMWCKUFHSAZ-UHFFFAOYSA-N niobium dioxide Chemical compound O=[Nb]=O HFLAMWCKUFHSAZ-UHFFFAOYSA-N 0.000 claims description 8
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000004408 titanium dioxide Substances 0.000 claims description 8
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 claims description 8
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 239000011787 zinc oxide Substances 0.000 claims description 7
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 claims description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 229940090961 chromium dioxide Drugs 0.000 claims description 4
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 claims description 4
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 claims description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- WXBOMIKEWRRKBB-UHFFFAOYSA-N rhenium(iv) oxide Chemical compound O=[Re]=O WXBOMIKEWRRKBB-UHFFFAOYSA-N 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- ZMNCGAAXQANUDM-UHFFFAOYSA-N [Rb+].[Rb+].[O-][O-] Chemical compound [Rb+].[Rb+].[O-][O-] ZMNCGAAXQANUDM-UHFFFAOYSA-N 0.000 claims description 3
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims 6
- 235000012239 silicon dioxide Nutrition 0.000 claims 3
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 claims 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims 2
- 229940112669 cuprous oxide Drugs 0.000 claims 2
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 claims 2
- 238000002788 crimping Methods 0.000 claims 1
- KZYDBKYFEURFNC-UHFFFAOYSA-N dioxorhodium Chemical compound O=[Rh]=O KZYDBKYFEURFNC-UHFFFAOYSA-N 0.000 claims 1
- 239000012255 powdered metal Substances 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 12
- 239000001569 carbon dioxide Substances 0.000 abstract description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 6
- LVJZCPNIJXVIAT-UHFFFAOYSA-N 1-ethenyl-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(C=C)C(F)=C1F LVJZCPNIJXVIAT-UHFFFAOYSA-N 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000003411 electrode reaction Methods 0.000 abstract description 3
- 150000004812 organic fluorine compounds Chemical class 0.000 abstract description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 abstract description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 abstract description 2
- 230000001627 detrimental effect Effects 0.000 abstract 1
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 229930195734 saturated hydrocarbon Natural products 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000007868 Raney catalyst Substances 0.000 description 7
- 229910000564 Raney nickel Inorganic materials 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000005871 repellent Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- WACNXHCZHTVBJM-UHFFFAOYSA-N 1,2,3,4,5-pentafluorobenzene Chemical compound FC1=CC(F)=C(F)C(F)=C1F WACNXHCZHTVBJM-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910006853 SnOz Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- 229920006289 polycarbonate film Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- 239000004859 Copal Substances 0.000 description 1
- 241000782205 Guibourtia conjugata Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 244000005687 Poranopsis paniculata Species 0.000 description 1
- 102100033979 Protein strawberry notch homolog 1 Human genes 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、水素/酸素燃料電池、金属/空気電池、酸素
センサ用の空気電極とその製造方法に関し、更に詳しく
は、薄くても長時間に亘1m負荷放電が可能で、保存性
能にも優れた空気電極とその製造方法に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air electrode for hydrogen/oxygen fuel cells, metal/air batteries, and oxygen sensors, and a method for manufacturing the same. This invention relates to an air electrode that is capable of load discharge over 1 m and has excellent storage performance, and a method for manufacturing the same.
従来から、各種の燃料電池ぐ空気金属電池をはじめとす
る空気金属電池やガルバニ型の酸素センサなど刀空気電
極には、ガス拡散電極が用いられてきている。このガス
拡散電極としては、初期には均一な孔径分布を有する原
型の多孔質電極が用いられてきたが、最近では、酸素ガ
スに対する電気化学的還元能(I!2素をイオン化する
)を有し、かつ集電体機能も併有する多孔質の電極本体
と、該電極本体のガス側表面に一体的に添着される薄膜
状の撥水性層とから成る2層構造の電極が多用されてい
る。Conventionally, gas diffusion electrodes have been used in air metal batteries such as various fuel cells, air metal batteries, and air electrodes such as galvanic oxygen sensors. Initially, a prototype porous electrode with a uniform pore size distribution was used as this gas diffusion electrode, but recently it has been developed to have an electrochemical reduction ability for oxygen gas (ionizes the I!2 element). Two-layer electrodes are often used, consisting of a porous electrode body that also functions as a current collector, and a thin film-like water-repellent layer that is integrally attached to the gas side surface of the electrode body. .
この場合、電極本体は主として、酸素ガス還元過電圧の
低いニッケルタングステン酸;パラノウム嗜コバルトで
披憶された炭化タングステン;ニッケル;欽;白金;パ
ラジウムなどを活性炭粉末のような導電性粉末に担持せ
しめて成る粉末にポリテトラフロロエチレンのような結
着剤全添加した後、これを金属多孔質体、カーボン多孔
質体。In this case, the electrode body is mainly made of conductive powder such as activated carbon powder supported with nickel-tungstic acid, paranoum and cobalt-coated tungsten carbide, which has low oxygen gas reduction overpotential, nickel, nickel, platinum, palladium, etc. After adding a binder such as polytetrafluoroethylene to the powder, it is made into a porous metal body and a porous carbon body.
カーボン繊維の不織布などと一体化したものが用いられ
ている。Those integrated with carbon fiber non-woven fabric are used.
また、電極本体のガス側表面に、添着される撥水性層と
しては主にポリテトラフロロエチレン。The water-repellent layer attached to the gas side surface of the electrode body is mainly polytetrafluoroethylene.
ボIJ テトラフロロエチレン−ヘキサフロロプロピレ
ン共重合体、ポリエチレン−テトラフロロエチレン共重
合体などのフッ素樹脂、又はポリプロピレンなどの樹脂
から構成される薄膜であって、例えば、粒径0.2〜4
0μmのこれら樹脂粉末の焼結体;これら樹脂の繊維を
加熱処理して不絨布化した紙状のもの;同じく繊維布状
のもの:これら樹脂の粉末の一部をフッ化黒鉛で置きか
えたもの;これらの微粉末を増孔剤・潤滑油などと共に
ロール加圧してから加熱処理したフィルム状のもの、も
しくけロール加圧後加熱処理をしないフィルム状のもの
;などの微細孔を分布する多孔性の薄膜である。BoIJ A thin film composed of a fluororesin such as a tetrafluoroethylene-hexafluoropropylene copolymer, a polyethylene-tetrafluoroethylene copolymer, or a resin such as polypropylene, with a particle size of, for example, 0.2 to 4
A sintered body of these resin powders with a diameter of 0 μm; A paper-like thing made by heat-treating the fibers of these resins to make them into a non-woven fabric; Also a fiber cloth-like thing: A part of these resin powders replaced with fluorinated graphite. Film-like products made by rolling these fine powders together with pore-forming agents, lubricating oil, etc. and then heat-treating them, and film-like products that are not heat-treated after roll-pressing; It is a thin film of sex.
しかしながら、上記した従来構造の空気電極において、
電極本体のガス側表面に添着されている撥水性層は、電
解液に対しては不透過性であるが、空気又は空気中の水
蒸気に対しては不透過性ではない。However, in the air electrode of the conventional structure described above,
The water-repellent layer attached to the gas-side surface of the electrode body is impermeable to the electrolyte, but not to air or water vapor in the air.
そのため、例えば空気中の水蒸気が撥水性層を通過して
電極本体に侵入しその結果電解液を稀釈したシ、または
逆に電解液中の水が水蒸気として撥水性層から放散して
しまい電解液を濃縮することがある。この結果、電解液
の濃度が変動してしまい安定した放電を長時間に亘シ維
持することができなくなるという事態を生ずる。Therefore, for example, water vapor in the air may pass through the water-repellent layer and enter the electrode body, diluting the electrolyte, or conversely, water in the electrolyte may evaporate from the water-repellent layer as water vapor, causing the electrolyte to dissolve. may be concentrated. As a result, the concentration of the electrolyte fluctuates, resulting in a situation where stable discharge cannot be maintained for a long time.
空気中の炭酸ガスが撥水性層を通過して電極本体内に侵
入して活性層に吸着した場合、その部位の酸素ガスに対
する電気化学的還元能が低下して重負荷放電が阻害され
る。また、電解液がアルカリ電解液の場合には、電解液
の変質、濃度の低下又は陰極が亜鉛のときには該亜鉛陰
極の不働態化などの現象を引き起こす。更には、活性層
(電極本体の多孔質部分)で、炭酸塩を生成して孔を閉
塞し、電気化学的還元が行なわれる領域を減少させるの
で重負荷放電が阻害される。When carbon dioxide gas in the air passes through the water-repellent layer, enters the electrode body, and is adsorbed on the active layer, the electrochemical reduction ability for oxygen gas at that location decreases, and heavy load discharge is inhibited. In addition, when the electrolyte is an alkaline electrolyte, phenomena such as deterioration of the electrolyte, decrease in concentration, or passivation of the zinc cathode when the cathode is zinc are caused. Furthermore, in the active layer (the porous part of the electrode body), carbonate is generated to block the pores and reduce the area where electrochemical reduction takes place, thereby inhibiting heavy load discharge.
このようなことは、製造した電池を長期間保存しておく
場合、又は、長期間使用する場合、電池の性能が設計規
準から低下するという事態を招く。This causes a situation in which the performance of the battery deteriorates from the design standard when the manufactured battery is stored or used for a long period of time.
このため、空気電極の抜水性層のガス側(空気側)に更
に塩化カルシウムのような水分吸収剤又はアルカリ土類
金属の水酸化物のような炭酸ガス吸収剤の層を設けた構
造の電池が提案されている。For this reason, batteries have a structure in which a layer of a moisture absorbent such as calcium chloride or a carbon dioxide gas absorbent such as alkaline earth metal hydroxide is further provided on the gas side (air side) of the water-draining layer of the air electrode. is proposed.
これは、上り己したような不都合な事態をある程度防止
することはできるが、ある時間経過後、これら吸収剤が
飽和状態に達しその吸収能力を喪失すれば、その効果も
消滅するのでなんら本質的な解決策ではあQ得ない。Although this can prevent inconvenient situations such as those that occurred to some extent, after a certain period of time, these absorbents reach a saturated state and lose their absorption capacity, and the effect disappears, so there is no essential effect. A solution like that won't work.
本発明は、従来H構造の以上のような欠点を解消し、空
気中の水蒸気又は炭酸ガスが電極本体内に侵入せず、し
たがって長ルIK亘る重負荷放電が可能で保存性能にも
侵れた薄い空気電極とその製造方法の提供全目的とする
。The present invention eliminates the above-mentioned drawbacks of the conventional H structure, and prevents water vapor or carbon dioxide gas from entering the electrode body. Therefore, heavy load discharge over a long IK is possible, and storage performance is not affected. The overall purpose is to provide a thin air electrode and its manufacturing method.
本発明の空気電極は、酸素ガスに対する電気化学的還元
能を有し、かつ、集電体機能も併有する多孔質の電極本
体と;該電極本体のガス9]11表面に、直接又は孔径
0.1 μm以下の微細孔を有する多孔性膜を介して、
プラズマ重合法により一体的に積層して形成し7た高分
子薄膜と;更に、該高分子薄膜の上に一体的に積層して
形成した金柄酸化物の薄B4とから成ることを特徴とし
、その製造方法の第1は、flli素ガスに対する電気
化学的還元能を有し、かつ、集電体機能も併有する多孔
質の電極本体のガス側表面に、プラズマ重合法で高分子
薄膜を形成し、ついで、該高分子薄膜の上に金属酸化物
の薄j換を積層して形成することを特徴とし、第2は、
孔径0 、1 μm以下の微細孔を有する多孔性膜の一
方のrkIr(、プラズマ重合法で高分子薄膜を形成し
、更に、該高分子薄膜の上に金属酸化物のN欣を形成し
、ついで、該−多孔性かふの他方の面を、酸素ガスに対
するiF電気化学的還元能有し、がっ、集TU;体機1
12も併有する多孔質の電極本体のガス側表面に圧着し
て一体化することを特徴とするものである。The air electrode of the present invention has a porous electrode body that has an electrochemical reducing ability for oxygen gas and also has a current collector function; Through a porous membrane with micropores of .1 μm or less,
It is characterized by consisting of a polymer thin film 7 formed by integrally laminating by a plasma polymerization method; and a gold handle oxide thin B4 formed by integrally laminating on the polymer thin film. The first manufacturing method is to use a plasma polymerization method to form a thin polymer film on the gas-side surface of a porous electrode body that has an electrochemical reduction ability for flI gas and also has a current collector function. The second method is to form a thin layer of metal oxide on the thin polymer film.
One of the porous membranes having micropores with a pore diameter of 0 to 1 μm or less is formed by forming a polymer thin film using a plasma polymerization method, and further forming a metal oxide N layer on the polymer thin film, Then, the other side of the porous cuff has an iF electrochemical reduction ability for oxygen gas, and the other side of the porous cuff is
12 is characterized in that it is pressure-bonded and integrated with the gas-side surface of the porous electrode main body.
本発明の空気筒;極に用いる電極本体は、酸素ガスを電
気化学的に還元する(酸素ガス全イオン化する)活件能
を有し、がっ、導電性の多孔質体である。具体的には、
前述したようなものの外に、銀フィルター、ラネーニッ
ケル、銀又i、j’ニッケルの焼結体1、各種の発泡メ
タル、ニッケルメッキしたステンレススチール細線の圧
縮体、及びこれに金+ /fラソウム、銀などをメッキ
して成る金属多孔負体などをあげることができる。なお
、このとき、電極本体の細孔内で進行する電極反応によ
って生成した酸素ガスの還元生成物イオンを該細孔(反
応領域)から迅速に除去して、例えば5゜m A/ad
以上の重負荷放電を円滑に継続させるために、該電
極本体の細孔の孔径は帆1〜10μm程度の範囲で分布
していることが好ましい。The electrode body used in the air cylinder electrode of the present invention is an electrically conductive porous body that has an active ability to electrochemically reduce oxygen gas (to ionize all oxygen gas). in particular,
In addition to the above-mentioned items, there are silver filters, Raney nickel, sintered bodies of silver or i, j' nickel, various foam metals, compressed bodies of nickel-plated fine stainless steel wire, and gold +/f lasoum, Examples include a metal porous negative body plated with silver or the like. At this time, the reduction product ions of oxygen gas generated by the electrode reaction proceeding within the pores of the electrode body are quickly removed from the pores (reaction region), for example, at a rate of 5°m A/ad.
In order to smoothly continue the heavy load discharge described above, it is preferable that the pore diameters of the pores in the electrode body are distributed in a range of about 1 to 10 μm.
本発明の空気電極は、上記したような!極本体のガス側
表面に、直接又は孔径0.1μm以下の微細孔を有する
多孔性族を介して、プラズマ重合法を適用して形成した
高分子薄膜と該高分子薄膜の上に形成された金属酸化物
の薄膜とをこの順序で一体的に添着した構造である。The air electrode of the present invention is as described above! A thin polymer film formed on the gas side surface of the pole body by applying a plasma polymerization method, either directly or via a porous group having micropores with a pore diameter of 0.1 μm or less, and a thin polymer film formed on the thin polymer film. It has a structure in which a thin film of metal oxide is integrally attached in this order.
ここで、本発明にかかる高分子薄膜とは、各種の有機化
合vlをプラズマ重合して形成した薄膜であって、いず
れもピンホールが存在せず、しかも酸素ガスに対する選
択透過性に優れるものである。Here, the polymer thin film according to the present invention is a thin film formed by plasma polymerizing various organic compounds Vl, and all of them are free of pinholes and have excellent permselectivity for oxygen gas. be.
#薄膜の形成に用いる有機化合物としては、ペンツトリ
フルオライド、m−クロロペンシトリフルオライド、ヘ
キサフロロベンゼン、ペンタフロロベンゼン、インタフ
ロロスチレンなどのフッ素化有機化合物及びこれらの混
合物;c1〜C12の飽和炭化水素化合物、CI−C1
2の不飽和炭化水素化合物、01−C14のアルキルベ
ンゼン化合物、スチレン、α−メチルスチレンなどの炭
化木葉系の化合物及びこれらの混合物など′f!:=h
げることができるが、これらのうち、上記したフッ素化
有機化合物は、その単分子をプラズマ重合して形成した
薄膜の炭酸がス、水蒸気に対する侵入防止〃l朱VC優
れているので好適である。# Examples of organic compounds used for forming the thin film include fluorinated organic compounds such as penztrifluoride, m-chloropencitrifluoride, hexafluorobenzene, pentafluorobenzene, and interfluorostyrene, and mixtures thereof; saturated carbonization of C1 to C12; Hydrogen compound, CI-C1
2 unsaturated hydrocarbon compounds, 01-C14 alkylbenzene compounds, carbonized leaf-based compounds such as styrene and α-methylstyrene, and mixtures thereof, etc.'f! :=h
Among these, the above-mentioned fluorinated organic compounds are preferable because the thin film formed by plasma polymerizing their single molecules is excellent in preventing intrusion of carbon dioxide and water vapor. .
本発明にかかる高分子薄膜の厚みは、実用上0.01〜
1.0μmの範囲にあることが好ましく、該厚みが0.
0111m未満の場合には、形成された高分子薄膜が島
状となって電極本体の表面を一様に破細することができ
ず、炭酸ガス又は水蒸気の侵入に対する防止効果が減退
する。更にl−1#膜全体の機械的強度も低下する。逆
に厚みが1.0μmを超えると、電極本体に供給される
酸素ガス針が不足し、電極の放電特性が低下する(重負
荷放電が困難になる)。The thickness of the polymer thin film according to the present invention is practically 0.01~
It is preferable that the thickness is in the range of 1.0 μm, and the thickness is in the range of 0.0 μm.
If it is less than 0.0111 m, the formed thin polymer film becomes island-like and cannot uniformly fracture the surface of the electrode body, reducing the effect of preventing the intrusion of carbon dioxide gas or water vapor. Furthermore, the mechanical strength of the entire l-1# film also decreases. On the other hand, if the thickness exceeds 1.0 μm, there will be a shortage of oxygen gas needles supplied to the electrode body, and the discharge characteristics of the electrode will deteriorate (heavy load discharge becomes difficult).
−また、上記した薄膜は、単一層として形成されてもよ
いが、この層の上に更に別種の有様化合物から成る高分
子薄膜を形成することもできる。-Although the above-mentioned thin film may be formed as a single layer, it is also possible to form a polymer thin film made of another type of specific compound on this layer.
つぎに、該高分子薄膜の上に@接一体的に形成される金
属酸化物の薄膜は、含水性若しくは水利性の金R酸化物
のH膜、酸素吸着能を有する金属酸化物の薄膜、又は、
ルチル型結晶構造の金属酸化物の薄膜のいずれかである
。Next, the metal oxide thin film integrally formed on the polymer thin film is a water-containing or water-friendly gold R oxide H film, a metal oxide thin film having oxygen adsorption ability, Or
It is any thin film of metal oxide with a rutile crystal structure.
ここで、含水性又は水利性の金属酸化物とは、水分に対
し優れた吸着能を有し、吸着した水が表面水酸基、化学
吸着水および物理吸着水として存在し得る性質を有する
ものを指称し、具体的[は、二酸化スズ(Sn02)、
酸化亜鉛(ZnO)、酸化アルミニウム(A40s )
*酸化マグネシウム(MgO)。Here, water-containing or water-friendly metal oxides refer to those that have excellent adsorption ability for water and have the property that the adsorbed water can exist as surface hydroxyl groups, chemically adsorbed water, and physically adsorbed water. and specific [is tin dioxide (Sn02),
Zinc oxide (ZnO), aluminum oxide (A40s)
*Magnesium oxide (MgO).
酸化カルシウム(Cab)、酸化ストロンチウム(Sr
O) 、酸化バリウム(Bad)、二酸化チタン(T
iOt)−二酸化ケイ素(Si02)のそれぞれ単独又
は任意に2#以上を組合せた複合体をあげることができ
る。Calcium oxide (Cab), strontium oxide (Sr)
O), barium oxide (Bad), titanium dioxide (T
iOt)-silicon dioxide (Si02), each singly or optionally in combination of 2# or more.
また、本発明に用いられる酸素吸着能を有する金属酸化
物とは 金属酸化物の表面及び内部に酸素が分子(02
)、又はイオン(02+ 0”’ s O2)として吸
着する性質を有するものを指称し、具体的には、二酸化
スズ(Sn02)、酸化亜鉛(ZnO)、l’ff化第
−銅(Cu20)、−酸化マンガン(MnO)、酸化ニ
ッケル(Nip) 、四三酸化コパル) (CO304
)のそれぞれ単独又は2wi以上を任意に組合せた複合
体をあげることができる。これらのうち、SnOz l
ZnOはとくに有用である。In addition, the metal oxide with oxygen adsorption ability used in the present invention is: Oxygen molecules (02
), or has the property of adsorbing as ions (02+ 0'''s O2), specifically, tin dioxide (Sn02), zinc oxide (ZnO), cupric oxide (Cu20) , -manganese oxide (MnO), nickel oxide (Nip), copal tetroxide) (CO304
) may be used alone or in any combination of 2wi or more. Among these, SnOz l
ZnO is particularly useful.
更に、本発明でいうルチル型結晶構造の金属酸化物とは
、化学式A(hで示され、配位多面体は二8面体でこの
8血体の&:全共有して1次元的に並んだ集合体が組み
合わさった構造を有するものを指称し、具体的には、二
酸化スズ(SnOz)、二酸化チタン(T102) l
二酸化バナソウム(Vow)、二酸化モリブデン(Mo
02) 、二酸化タングステン(W(h)、二酸化ルビ
ジウム(RuOz) 、二酸化ニオブ(NbO倉)、二
酸化クロム(Cr(h)、二酸化レニウム(α−3e0
2)y二酸化オスミウム(Os O2) に酸化ロジウ
ム(Rh02)、二酸化イリジウム(IrOz)。Furthermore, the metal oxide with the rutile type crystal structure in the present invention is represented by the chemical formula A (h), and the coordination polyhedron is a dioctahedron, and the &: all of these octahedrons are arranged one-dimensionally. Refers to a substance having a structure in which aggregates are combined, specifically, tin dioxide (SnOz), titanium dioxide (T102) l
Vanassium dioxide (Vow), molybdenum dioxide (Mo
02), tungsten dioxide (W(h), rubidium dioxide (RuOz), niobium dioxide (NbOz), chromium dioxide (Cr(h), rhenium dioxide (α-3e0)
2) Osmium dioxide (OsO2), rhodium oxide (Rh02), and iridium dioxide (IrOz).
二酸化白金(Pt02)のそれぞれ単独又は2f、+1
1以上を任意に組合せた複合体をあげることができる。Platinum dioxide (Pt02) alone or 2f, +1
Examples include complexes in which one or more of them are combined arbitrarily.
これらのうち、Snow + Ti0iはとくに有用
である。Among these, Snow + TiOi is particularly useful.
これらの金属酸化物の薄膜の厚みは、高分子薄膜の場合
と同様の理由によシ、0.01〜1.0μmの範囲にあ
ることが好ましい。The thickness of these metal oxide thin films is preferably in the range of 0.01 to 1.0 μm for the same reason as in the case of polymer thin films.
以上のような構成の本発明の空気%極は次のような方法
で製造することができる。The air % electrode of the present invention having the above structure can be manufactured by the following method.
第1の方法は、電極本体のガス側表面に、直接、常用の
プラズマ重合法で、/9r定の厚みの高分子にy膜を形
成し、ついで、この上に蒸着法又はスパッタリング法な
どの常用の博触形成法により金属酸化物全破着せしめて
所定の厚みの薄Jluを形成する方法である。The first method is to directly form a Y film on a polymer with a constant thickness of /9r using a commonly used plasma polymerization method on the gas side surface of the electrode body, and then apply a vapor deposition method, sputtering method, etc. on this film. In this method, the metal oxide is completely destroyed by a commonly used tactile forming method to form a thin Jlu of a predetermined thickness.
第2の方法は、孔径0.1μm以下の微5細孔を有する
可撓性の多孔性膜の片面に、まず、プラズマ重合法で高
分子薄膜を形成し、更にその上に蒸焉法又はスパッタリ
ング法で金属酸化物の′tij税を形成して3層構造の
複合薄膜とし、ついで、この複合薄”膜の他方の面、す
なわち、多孔性膜の他方の面を電極本体のガス側表面に
所定の圧力で圧着して一体化する方法である1、
第1の方法、第2の方法いずれの場合も、金属酸化物の
薄)Jk影形成あっては、その蒸翁源又はスフ4ツタ源
としてこれら金蔵酸化物それ自体を適用することができ
るが、蒸着源又はスパッタ源として、酸素と反応してこ
れらの金hU化ql!/Jを生成する舎利fの金蔵単体
を用い、がっ、雰囲気を酸素雰囲気VCすると、該金属
酸化物の超脱形成速度が高まシ、また、薄膜形成の操作
も容易になるので好ましい。The second method is to first form a thin polymer film on one side of a flexible porous membrane having 5 micropores with a pore diameter of 0.1 μm or less using a plasma polymerization method, and then apply an evaporation method or A layer of metal oxide is formed by a sputtering method to form a composite thin film with a three-layer structure, and then the other surface of this composite thin film, that is, the other surface of the porous film, is applied to the gas side surface of the electrode body. 1. In both the first method and the second method, if a thin shadow of metal oxide is formed, the evaporation source or sulfur 4 is used. Although these Kinzo oxides themselves can be used as a source of ivy, it is also possible to use Kinzo alone as a vapor deposition source or sputtering source, which reacts with oxygen to produce these gold hU oxides ql!/J. It is preferable to set the atmosphere to be an oxygen atmosphere (VC) because the super-deformation rate of the metal oxide increases and the operation for forming a thin film becomes easier.
更ニ、第2の方法で用いる多孔性膜は、その孔径が0.
1μm以下の微細孔を有するものであればその材質は問
わない。例えば、多孔性フッ素樹脂膜(商品名、フロロ
ボア;住友電工(株)製)、多孔性ポリカーボネート膜
(商品名、ニュクリポア:ニュクリポアコーポレーショ
ンW)、多孔性セルローズエステル膜(商品名、ミリボ
アメンブランフィルタ−;ミリボアコーポレーションt
t)、多孔性ポリプロピレン膜(商品名、セルガード;
セラニーズ・プラスチック製)などの可撓性の多孔性膜
をあげることができる。多孔性膜において、その孔径が
帆1μrrLを超えると、韻多孔性脱にプラズマ重合法
で高分子薄膜又は金属酸化物の薄膜を形成したとき、そ
の薄膜にピンホールが発生し易すくなって該薄膜の機能
が喪失するとともにその機械的強朋も低下して破損し易
すくなる。Furthermore, the porous membrane used in the second method has a pore diameter of 0.
Any material may be used as long as it has micropores of 1 μm or less. For example, porous fluororesin membranes (trade name, Fluoropore; manufactured by Sumitomo Electric Industries, Ltd.), porous polycarbonate membranes (trade name, Nuclepore Corporation W), porous cellulose ester membranes (trade name, Millipore membrane), Filter: Millibore Corporation
t), porous polypropylene membrane (trade name, Celgard;
Examples include flexible porous membranes such as those made by Celanese Plastics. In a porous film, if the pore diameter exceeds 1 μrrL, pinholes are likely to occur in the thin film when a polymer thin film or metal oxide thin film is formed by plasma polymerization to remove the porosity. As the thin film loses its function, its mechanical strength also decreases, making it more susceptible to breakage.
このようにして段進された本発明の空気霜、極tま常法
にしたがって電池に組込まれる。この場合、断続的放電
を行うときに、酸素ガスの電気化学的還元以外に電極構
成要素自体の電気化学的還元によって瞬間的な大電流供
給を可能とするため、酸素の酸化還元平衡電位よシも帆
4V以内の範囲で卑な電位によって酸化状態を変化する
金桟、酸化物又は水酸化物を少くとも含有する多孔質層
を、電極本体の電解液側に一体的に付設することが好ま
しい。この多孔質層は、軽負荷で放電中又は開路時にあ
ってはローカルセルアクションで酸素ガスによって献化
され、もとの酸化状態に後締する。The thus staged air frost of the present invention is incorporated into a battery according to a very conventional method. In this case, when performing intermittent discharge, an instantaneous large current can be supplied not only by electrochemical reduction of oxygen gas but also by electrochemical reduction of the electrode components themselves. It is preferable to integrally attach a porous layer containing at least an oxide or a hydroxide to the electrolyte side of the electrode body, whose oxidation state changes depending on a base potential within a range of 4 V. . This porous layer is decomposed by oxygen gas by local cell action during discharge under a light load or when the circuit is opened, and is then returned to its original oxidized state.
このような多孔質層の構成材料としては、Ag2O+M
n 02 + C020s 、P b 02 +各種ペ
ロプスカイト型酸化物、スピネル型酸化物などをあげる
ことができる。As a constituent material of such a porous layer, Ag2O+M
Examples include n 02 + C020s, P b 02 + various perovskite type oxides, and spinel type oxides.
一方、空気電極は板状で電池に組込まれるだけではなく
、円筒型電池に組込筐れる場合もあるが、その場合には
、板状の空気電極を巻回して円筒とすることがある。こ
のようなときには、巻回作業で空気電hk破損させず伽
槻的安定性を付与するために、含水性又は水利性金属酸
化物の薄膜のガス側表面には、更に、多孔性フッ累樹脂
膜、多孔廿ポリカーデネート膜、多孔48.1!ルロー
スエステル膜、多孔性ポリプロピレン1b!などの多孔
性薄膜全一体的に添着しておくことか好ましい。On the other hand, the air electrode is not only incorporated into a battery in the form of a plate, but may also be incorporated into a cylindrical battery, in which case the plate-shaped air electrode may be wound to form a cylinder. In such a case, in order to prevent damage to the pneumatic metal during winding work and to provide stability, a porous fluorocarbon resin is further added to the gas side surface of the water-containing or water-friendly metal oxide thin film. Membrane, porous polycarbonate membrane, porosity 48.1! Lulose ester membrane, porous polypropylene 1b! It is preferable to attach a porous thin film such as the like in the entire structure.
実施例1〜9
平均孔径5μmX多孔度80%のラネーニッケル板(厚
み200μm)をrIJi極本体とした。これをプラズ
マ反応槽に装填し、外部から13.561VIHzの高
周波電力を印加して、槽内にアルゴン600 m/mi
n SA!ンタフロロスチレンのモノマーガス600
m/min f導入して、RF出力0.4W/ctA
の条件でプラズマ重合反応を行ないラネーニッケ# M
(D 片Tfn K 厚ミ0.2μmのペンタフロロ
スチレン重合体の薄膜全形成した。Examples 1 to 9 A Raney nickel plate (thickness: 200 μm) with an average pore diameter of 5 μm and a porosity of 80% was used as the rIJi pole body. This was loaded into a plasma reaction tank, and a high frequency power of 13.561 VIHz was applied from the outside, and argon was heated at 600 m/mi inside the tank.
nSA! Ntafluorostyrene monomer gas 600
Introducing m/min f, RF output 0.4W/ctA
The plasma polymerization reaction was carried out under the conditions of
(D Piece Tfn K A thin film of pentafluorostyrene polymer having a thickness of 0.2 μm was entirely formed.
ついで、Sn y Zn t AL y Mg + C
a + S r p Ba *Ti 、 Siをスパッ
タ源とし、圧力2 X 10−3Torrのアルゴンと
酸素との混合ガス(Ar90 vo7%。Then, Sn y Zn t AL y Mg + C
a + S r p Ba *Ti, Si was used as a sputtering source, and a mixed gas of argon and oxygen (Ar90 vo7%) was used at a pressure of 2 X 10-3 Torr.
0210VOL% ) 、高周波電力100Wのスパッ
タ条件−cスzpツタ・処理を施し、ペンタフロロスチ
レン重合体の簿膜の上に含水性又は水和性の各全極酸化
物の薄膜を形成した。該#膜の厚み0.1μm。0210VOL%) and a high frequency power of 100 W under sputtering conditions-c sputter treatment to form a thin film of each hydrous or hydratable total polar oxide on the film of the pentafluorostyrene polymer. The thickness of the #film is 0.1 μm.
ついで、これらを2%塙化パラソウム溶液中に浸漬して
陰分砂し、ラネーニッケルの空孔内も含めて約0.5μ
mの厚みで/f2ソウムを析出させ本発明の空気14J
、極とした。Next, these were immersed in a 2% parasol solution and sanded to give a particle size of approximately 0.5 μm, including the inside of the Raney nickel pores.
The air 14J of the present invention is precipitated with /f2 soum at a thickness of m.
, pole.
実施例10〜18
平均孔径・0.03μmの機紐j孔を均一に分布する厚
み5μmの多孔性ポリカーボネート膜(商品名二二ュク
リボア、ニュクリボアコーポレーション社!! )をプ
ラズマ反応槽に装填し、外部から13.56MHzの高
周波電力全印加し、アルボ7 ’600m1!/min
。Examples 10 to 18 A 5 μm thick porous polycarbonate membrane (trade name: 2NucryBore, NucryBore Corporation!!) in which pores with an average pore diameter of 0.03 μm are uniformly distributed was loaded into a plasma reaction tank. , fully applied 13.56MHz high frequency power from the outside, Arbo 7 '600m1! /min
.
ペンタフロロベンゼンのモノマーガス600+d/mi
nを導入してRF出力0.4W/dの条件でプラズマ重
合反応を行ない、ポリカーゴネート膜の片面にペンタフ
ロロベンゼンのプラズマx合体oNjl形成した。厚み
0.2μnL。Pentafluorobenzene monomer gas 600+d/mi
After introducing n, a plasma polymerization reaction was carried out under the condition of RF output of 0.4 W/d, and a plasma x combination oNjl of pentafluorobenzene was formed on one side of the polycarbonate film. Thickness: 0.2 μnL.
ついで、プラズマ富合体のrlJ JUO上に、実施例
1〜9と同様のスパッタ条件で含水性又は水利性の金属
酸化物の薄膜を形成した。厚み()、1μm。Next, a thin film of a water-containing or water-friendly metal oxide was formed on the plasma-enriched rlJ JUO under the same sputtering conditions as in Examples 1 to 9. Thickness (), 1 μm.
得られた複合薄膜のポリカーボネート膜flIi+を、
実施例1〜9で用いた同一仕様のラネーニッケル板の片
面に当接し、全体k 50 kt/−の圧力で圧着(−
で一体構造とした。The obtained composite thin film polycarbonate film flIi+,
It was brought into contact with one side of the Raney nickel plate having the same specifications used in Examples 1 to 9, and was crimped (-
It has an integrated structure.
ついで、これらを2チ塩化パラジウム溶液中でN分極し
、シネ−ニッケル板の孔内も含めて約0.5μmのパラ
ジウムを析出させて空気電極とした。Next, these were N-polarized in a palladium dichloride solution to deposit palladium of about 0.5 μm including the inside of the pores of the cine-nickel plate, thereby forming an air electrode.
実施例19〜22 実施例1〜9において、ス/ぞツタ源としてCu。Examples 19-22 In Examples 1 to 9, Cu was used as the suction ivy source.
Mn 、 Ni 、 Coを用いたこと、したがって形
成された金属酸化物の薄膜が酸素吸着能ft有するもの
であること、を除いては実施例1〜9と同様にして突気
電極fj、iJl造した。The thrust electrodes fj and iJl were constructed in the same manner as in Examples 1 to 9, except that Mn, Ni, and Co were used, and therefore the formed metal oxide thin film had an oxygen adsorption capacity ft. did.
実施例23〜26
スパッタ源としてCu、Mn、Ni、Co を用いたこ
とを除いては、実施例1O〜18と同様にして空気電極
を製造した1、
実施例27〜37
スパッタ源として、V 、 Mo 、 W+ Ru 、
Nb 、Cr。Examples 23 to 26 Air electrodes were manufactured in the same manner as in Examples 1O to 18 except that Cu, Mn, Ni, and Co were used as the sputter source. Examples 27 to 37 As the sputter source, V , Mo, W+Ru,
Nb, Cr.
Re、Os、Rh、Ir、Pte用いたこと、した力ぶ
って形成された金属敵化物の薄膜がルチル造のものであ
ること、を除いては、実施例1〜9と同様にして空気%
.極を製造した。Air% was prepared in the same manner as in Examples 1 to 9, except that Re, Os, Rh, Ir, and Pte were used, and the thin film of the metal enemy formed by force was made of rutile.
.. Manufactured poles.
実施例38〜48
スパッタ源として、V 、 Mo 、 W, Ru 、
Nb + Cr+1”−e+ Os + Rh +
I r + P t ’fc用いたことを除いては、実
施例1()〜18と同様にして空気′rLL極全製造し
た。Examples 38 to 48 As a sputtering source, V, Mo, W, Ru,
Nb + Cr+1”-e+ Os + Rh +
Air'rLL was completely produced in the same manner as in Examples 1() to 18 except that Ir+Pt'fc was used.
比較例1
塩化パラジウムの水溶液に活性炭粉末を懸濁した後、ホ
ルマリンで還元して・臂うジウム伺活性炭粉末とした。Comparative Example 1 Activated carbon powder was suspended in an aqueous solution of palladium chloride, and then reduced with formalin to obtain activated carbon powder.
ついで、この粉末を10〜15%のポリエトラフロロエ
チレンデイスノ9−ンヨンテ防水処理を施し、更に結着
剤としてPTFE粉末を混合した後ロール圧延してシー
トとした。このシートをニッケルネットに圧動して厚み
0.6mの電極本体とした。次に、人造黒鉛粉末にl)
T F Eディスパージョン全混合した後加熱処理し
て防水黒鉛粉末とし、これに結着剤としてPTFE粉末
全混合してロール圧延した。得られたシートを上記した
電極本体と圧着して厚み1.6則の空気電極とした。Next, this powder was subjected to a 10-15% polyetrafluoroethylene waterproofing treatment, mixed with PTFE powder as a binder, and then rolled into a sheet. This sheet was pressed onto a nickel net to form an electrode body with a thickness of 0.6 m. Next, add artificial graphite powder l)
After the TFE dispersion was completely mixed, it was heat-treated to obtain waterproof graphite powder, which was then completely mixed with PTFE powder as a binder and rolled. The obtained sheet was crimped to the above-mentioned electrode body to form an air electrode having a thickness of 1.6.
比較例2
酸累ガス選択透過j良であるポリシロキサン膜(厚み5
0μm)を平均孔径5μmで多孔度80飴のラネーニッ
ケル板(厚み200μm)の片面に圧着した後、全体を
2%塩化パラジウム溶液中で陰分極してラネーニッケル
板の空孔内も含めて0、5μmのパラジウムを析出させ
空気電極とした。Comparative Example 2 Polysiloxane film (thickness 5
0 μm) was crimped onto one side of a Raney nickel plate (thickness 200 μm) with an average pore diameter of 5 μm and a porosity of 80.The whole was then cathodically polarized in a 2% palladium chloride solution to form a 0.5 μm layer including the inside of the pores of the Raney nickel plate. palladium was deposited to form an air electrode.
比較例3
比較例1で製造した空気1((極の空気側に塩化カルシ
ウムの水蒸気吸収層を付設した。Comparative Example 3 Air 1 produced in Comparative Example 1 (A water vapor absorbing layer of calcium chloride was attached to the air side of the pole.
比較例4
平均孔径0.15μmの微細孔を分布する厚み5μmの
多孔性ポリカーがネート欣(商品名、ニュクリポア;ニ
ュクリボアコーポレーション$2 )の片面に、実施例
1〜90条件で厚み0.2μmのインタフロロスチレン
のプラズマ重合fkL全形成し、更に同様の条件で、そ
の上に厚み0.1μmのSnOzスパッタ膜を形成した
。Comparative Example 4 A porous polycarbonate having a thickness of 5 μm in which fine pores with an average pore diameter of 0.15 μm are distributed was coated on one side of Nate-Kin (trade name, Nuclepore, $2) under the conditions of Examples 1 to 90 to a thickness of 0.15 μm. A 2 μm thick interfluorostyrene fkL was completely formed by plasma polymerization, and a 0.1 μm thick SnOz sputtered film was further formed thereon under the same conditions.
得られた複合膜の他の面分、実施例1〜9の場合と同じ
仕様のラネーニッケル板に圧着して空気電極とした。The other surface of the obtained composite membrane was pressed onto a Raney nickel plate having the same specifications as in Examples 1 to 9 to form an air electrode.
比較例5
平均孔径0.03μmの多孔性ポリカーがネート膜ヲ用
いたこと、ペンタフロロスチレンのプラズマ重合膜及び
SnOmスノ4ツタ膜の厚みがそれぞれ0、0 0 5
μmであったことを除いては比較例4と同様の方法で空
気電極全製造した。Comparative Example 5 A porous polycarbonate film with an average pore diameter of 0.03 μm was used, and the thicknesses of the pentafluorostyrene plasma polymerized film and the SnOm snow vine film were 0 and 0 0 5, respectively.
The air electrode was entirely manufactured in the same manner as in Comparative Example 4, except that the thickness was μm.
比較例6
ペンタフロロスチレンのプラズマ重合膜の厚ミが2.0
11m % SnOs スパッタ膜の厚みが1.0 μ
fiであったことを除いては、比較例5と同様の方法で
空気電極を製造した。Comparative Example 6 Thickness of plasma polymerized film of pentafluorostyrene is 2.0
11m% SnOs sputtered film thickness is 1.0μ
An air electrode was manufactured in the same manner as in Comparative Example 5, except that fi was used.
以上54個の空気電極金剛いて、対極を重量比で3係の
水銀アマルガム化したrル状亜鉛、電解液を水酸化カリ
ウム、セパレータをポリアミド不織布として空気−亜鉛
電池を組立てた。An air-zinc battery was assembled using 54 air electrodes as described above, a counter electrode in the form of mercury amalgamated zinc having a weight ratio of 3, an electrolyte as potassium hydroxide, and a separator as a polyamide nonwoven fabric.
これら54個の電池を25℃の空気中で16時間放置し
た後、各種の@流で5分間放電し、5分後の端子電圧が
1.0V以下となるときの電流密度を測定した。また、
45℃,90%の相対湿度の雰囲気中にこれら電池を保
存して電解液の漏洩状仲を観察した。After leaving these 54 batteries in air at 25° C. for 16 hours, they were discharged for 5 minutes at various @ currents, and the current density when the terminal voltage became 1.0 V or less after 5 minutes was measured. Also,
These batteries were stored in an atmosphere of 45° C. and 90% relative humidity, and leakage of the electrolyte was observed.
更に、保存後の霜;池につき、上記と同様の放電試験を
行ない、そのときの電流値の初期電流値に対する比(%
)を算出した。この算出f直は、各電池の空気電極の劣
化状態の程度全衣わし放電特性維持率といい得るもので
ある。この値の大きい電極はど劣化が小さいことケ表わ
す。Furthermore, the same discharge test as above was performed on the frost pond after storage, and the ratio of the current value to the initial current value (%
) was calculated. This calculated value can be said to be the discharge characteristic maintenance rate for the entire degree of deterioration of the air electrode of each battery. An electrode with a large value indicates that the deterioration is small.
また、各tI!V!ivこ添着されている薄膜に関し、
ガスクロマトグラフをガス検出手段とする等用法でrR
素ガス透過速度を測足し、水蒸気透過速度をJISZO
208 (カップ法)K準じた方法で測定し、両者の比
全算出した。Also, each tI! V! Regarding the thin film attached to iv,
rR by using a gas chromatograph as a gas detection means, etc.
Measure the elementary gas permeation rate and measure the water vapor permeation rate using JISZO
208 (cup method) K was measured, and the total ratio between the two was calculated.
以上の結果を一括して表に示した。The above results are summarized in the table.
本発明の空気電極は、電極本体のガス側表面には、極め
て薄くピンホールがなくかつ酸素ガス選択透過能を有す
る複合薄膜が一体的に設けられているので、空気中の炭
酸ガス、水蒸気など電極反応に幾影響を及ぼす要素が電
池内に侵入しなくなる。その給米、電池の保存性能が向
上するとともに、放電時にあってもその放電特性が長期
間に亘ジ維持される。唸だ、耐漏液性も向上する。The air electrode of the present invention has an extremely thin composite thin film that has no pinholes and has oxygen gas selective permeability, which is integrally provided on the gas side surface of the electrode body. Elements that have some influence on electrode reactions will no longer enter the battery. The rice supply and battery storage performance are improved, and even during discharge, the discharge characteristics are maintained for a long period of time. Amazingly, it also improves leakage resistance.
Claims (1)
、集電体機能も併有する多孔質の電極本体と; 該電極本体のガス佃表面に、直接父は孔径0.1μrr
L以下の微細孔を有する多孔性膜を介して、プラズマ重
合法によシ一体重に積層して形成した高分子薄1漠と;
更に、 該高分子薄膜の上に一体的に私心して形成した金属酸化
物の薄膜とから成ることを特徴とする空気’i’i’i
: 11Ii!、。 2 該高分子薄膜が、フッ素化有機化合物の単分子のプ
ラズマ重合体から成る特許請求の範囲第1項記載の空気
電極。 3、 該全孔酸化物が、二酸化スズ、酸化亜鉛、酸化ア
ルミニウム、酸化マグネシウム、酸化カルシウム、酸化
ストロンチウム、酸化バリウム、二酸化チタン、二酸化
ケイ素の群から選ばれる少′/4:くとも1稙の含水性
又は水和性金鶏削化物である特許請求の範囲第1項記載
の空気′電極。 4、 該金民風化物が、二酸化スズ、酸化亜鉛、酸化^
’−−鍋、−酸化マンガン、酸化ニッケル、四三酸化コ
バルトの群から選ばれる少なくとも1独の酸素吸着能を
有する金属酸化物である特許請求の範囲第1項記載の空
気電極。 5 該全孔酸化物が、二酸化スズ、二酸化チタン、二酵
1[4パナソウム、二酸化モリブデン、二酸化タングス
テン、二酸化ルビジウム、二酸化ニオブ、二酸化クロム
、二酸化レニウム、二酸化オスミウム、二酸化ロソウム
、二酸化イリジウム、二酸化白金の群から選ばれる少な
くともl沖のルチル型結晶構造の全組酸化物である特許
]G’+求の範囲第1項記載の空気電極。 6、 該高分子薄膜の厚みが、帆01〜1.0μmであ
る特許請求の範囲第1項又Ii第2項記載の空気電極。 7. 該金属酸化物の薄膜の厚みが、0.01〜1.0
μmである特許請求の範囲第1項、第3項、第4項、第
5項のいずれかに記載の空気電極。 8、 酸素ガスに対する電気化学的還元能を有し、かつ
、集電体機能も併有する多孔質の電極本体のガス側表面
に、プラズマ重合法で高分子薄膜全形成し、ついで、該
高分子薄膜の上に金属酸化物の薄膜を積層して形成する
ことを特徴とする空気電極の製造方法。 9、 該高分子#膜が、フッ素化有機化合物の単分子の
プラズマ重合体から成る特許請求の範囲第8項記載の空
気電極の製造方法。 10、該金属酸化物が、二酸化スズ、酸化亜鉛、酸化ア
ルミニウム、酸化マグネシウム、酸化カルシウム、酸化
ストロンチウム、酸化ノぐリウム、二酸化チタン、二酸
化ケイ素の群から選ばれる少なくとも1釉の含水性又は
水オl性金属酸化物である特許請求の範囲第8項記載の
空気電極の製造方法。 11、該金Pシ酸化物が、二酸化スズ、酸化亜鉛、酸化
第一銅、−酸化マンガ゛ン、酸化ニッケル、四三酸化コ
バルトの群から選ばれる少なくとも1種の酸素吸着能を
有する金属酸化物である特許請求の範囲第8項記賊の空
気電極の製イロ 遣方法。 12 該金属酸化物が、二酸化スズ、二酸化チタン、
二酸化バナジウム、二酸化モリブデン、二酸化タングス
テン、二酸化ルビジウム、二酸化ニオブ、二酸化クロム
、二酸化レニウム、二酸化オスミウム、二酸化ロソウム
、二酸化イリジウム、二を変化白金の群から選ばれる少
なくとも1種のルチル型結晶構造の金桓酸化物である特
許請求の範囲第8項記載の空気電極の製造方法。 13 該高分子薄膜の厚みが、0.01〜1.0μm
である特許請求の範囲第8項又Vi第9項記載の空気電
極の製造方法。 14、該金属酸化物の薄膜の厚みが、0.01〜1.0
μmである特許請求の範囲9A8項、第10項、第11
項、第12項のいずれかに記載の空気電極の製造方法。 15、孔径0.1μm以下の微細孔を有する多孔性膜の
一方の面に、プラズマ重合法で高分子薄膜を形成し、更
に、該高分子薄膜の上に金属酸化物を被着せしめて該金
属酸化物の薄膜を形成し、ついで、該多孔性膜の他方の
面を、酸素ガスに対する電気化学的還元能を宿し、かつ
、集電体機能も併有する多孔質の電極本体のガス側表面
に圧着して一体化することを特徴とする空気電極の製造
方法。 16、該高分子薄膜が、フッ素化有機化合物の単分子の
プラズマ重合体から成る特許請求の範囲第15項記載の
空気%I極の製造方法。 17、該金属酸化物が、二酸化スズ、酸化亜鉛、酸化ア
ルミニウム、酸化マグネシウム、酸化カルシウム、酸化
ストロンチウム、酸化バリウム、二酸化チタン、二酸化
ケイ素の群から選ばれる少なくとも1種の含水性又は水
和性全編酸化物である特許請求の範囲第15項記載の空
気電極の製造方法。 18、該金属酸化物が、二酸化スズ、酸化亜鉛、酸化第
一銅、−酸化マンガン、酸化ニッケル、四三酸化コバル
トの群から選ばれる少なくとも1種の酸素吸着能を翁す
る金属酸化物である特許請求の範囲第15項記載の空気
電極の製造方法。 19、該金属酸化物が、二酸化スズ、二酸化チタン、二
酸化バナジウム、二酸化モリブデン、二酸化タングステ
ン、二酸化ルビソウム、二酸化ニオブ、二酸化クロム、
二酸化レニウム、二酸化オスミウム、二酸化ロジウム、
二酸化イリジウム、二酸化白金の群から選ばれる少なく
とも1種のルチル型結晶構造の金属酸化物である特許請
求の範囲第15項’i3己載の空気箱、極の製造方法。 20、該高分子薄膜の厚みが、0.O1〜1.0μmで
ある特許請求の範囲第15項又は第16項記載の空気!
、iの製造方法。 21、該金属酸化物の薄膜の厚みが、0.01〜1.0
μmである特許請求の範囲第15項、第17項、第18
項、第19項のいずれかに記載の空気電極の製造方法。[Claims] 1. A porous electrode body that has an electrochemical reducing ability for oxygen gas and also has a current collector function; .1μrr
A polymer thin film formed by laminating one body by plasma polymerization via a porous membrane having micropores of L or less;
Furthermore, the air 'i'i'i' is characterized by comprising a thin film of a metal oxide which is integrally formed on the thin polymer film.
: 11Ii! ,. 2. The air electrode according to claim 1, wherein the polymer thin film is made of a monomolecular plasma polymer of a fluorinated organic compound. 3. The total pore oxide is selected from the group of tin dioxide, zinc oxide, aluminum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, titanium dioxide, and silicon dioxide. The air electrode according to claim 1, which is a water-containing or hydratable powdered metal. 4. The metal weathered material is tin dioxide, zinc oxide, oxide^
The air electrode according to claim 1, which is a metal oxide having an oxygen adsorption ability of at least one selected from the group consisting of manganese oxide, nickel oxide, and tricobalt tetroxide. 5 The total pore oxides include tin dioxide, titanium dioxide, diferent 1 [4 panasium, molybdenum dioxide, tungsten dioxide, rubidium dioxide, niobium dioxide, chromium dioxide, rhenium dioxide, osmium dioxide, rosium dioxide, iridium dioxide, platinum dioxide. The air electrode according to item 1, which is a complete oxide having a rutile-type crystal structure selected from the group consisting of: 6. The air electrode according to claim 1 or claim 2, wherein the polymer thin film has a thickness of 01 to 1.0 μm. 7. The thickness of the metal oxide thin film is 0.01 to 1.0
The air electrode according to any one of claims 1, 3, 4, and 5, which is μm. 8. A thin polymer film is entirely formed by plasma polymerization on the gas side surface of a porous electrode body that has an electrochemical reducing ability for oxygen gas and also has a current collector function, and then the polymer is A method for producing an air electrode, characterized by forming a thin film of metal oxide on top of a thin film. 9. The method for producing an air electrode according to claim 8, wherein the polymer film is made of a monomolecular plasma polymer of a fluorinated organic compound. 10. The metal oxide has at least one hydrous or water-containing glaze selected from the group of tin dioxide, zinc oxide, aluminum oxide, magnesium oxide, calcium oxide, strontium oxide, tin oxide, titanium dioxide, and silicon dioxide. 9. The method for producing an air electrode according to claim 8, wherein the air electrode is a l-type metal oxide. 11. A metal oxide in which the gold P oxide has an oxygen adsorption ability of at least one selected from the group of tin dioxide, zinc oxide, cuprous oxide, manganese oxide, nickel oxide, and tricobalt tetroxide. Claim 8: A method for manufacturing an air electrode, which is a product. 12 The metal oxide is tin dioxide, titanium dioxide,
At least one metal with a rutile-type crystal structure selected from the group of vanadium dioxide, molybdenum dioxide, tungsten dioxide, rubidium dioxide, niobium dioxide, chromium dioxide, rhenium dioxide, osmium dioxide, roseum dioxide, iridium dioxide, and di-variant platinum. The method for producing an air electrode according to claim 8, wherein the air electrode is an oxide. 13 The thickness of the polymer thin film is 0.01 to 1.0 μm
A method for manufacturing an air electrode according to claim 8 or claim Vi 9. 14. The thickness of the metal oxide thin film is 0.01 to 1.0
Claim 9A Items 8, 10, and 11 are μm.
The method for manufacturing an air electrode according to any one of Items 1 and 12. 15. A thin polymer film is formed by plasma polymerization on one side of a porous membrane having micropores with a pore size of 0.1 μm or less, and a metal oxide is further deposited on the thin polymer film. A thin film of metal oxide is formed, and then the other side of the porous film is attached to the gas side of a porous electrode body that has an electrochemical reducing ability for oxygen gas and also has a current collector function. A method for producing an air electrode characterized by crimping and integrating it onto a surface. 16. The method for producing an air % I pole according to claim 15, wherein the polymer thin film is made of a monomolecular plasma polymer of a fluorinated organic compound. 17. The metal oxide is at least one hydrous or hydratable metal oxide selected from the group of tin dioxide, zinc oxide, aluminum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, titanium dioxide, and silicon dioxide. The method for producing an air electrode according to claim 15, wherein the air electrode is an oxide. 18. The metal oxide is a metal oxide having an oxygen adsorption ability of at least one selected from the group of tin dioxide, zinc oxide, cuprous oxide, manganese oxide, nickel oxide, and tricobalt tetroxide. A method for manufacturing an air electrode according to claim 15. 19, the metal oxide is tin dioxide, titanium dioxide, vanadium dioxide, molybdenum dioxide, tungsten dioxide, rubisium dioxide, niobium dioxide, chromium dioxide,
rhenium dioxide, osmium dioxide, rhodium dioxide,
Claim 15'i3 A method for producing an air box and a pole, which are at least one metal oxide having a rutile crystal structure selected from the group of iridium dioxide and platinum dioxide. 20. The thickness of the polymer thin film is 0. The air according to claim 15 or 16, which has an O1 to 1.0 μm!
, i manufacturing method. 21. The thickness of the metal oxide thin film is 0.01 to 1.0
Claims 15, 17, and 18 that are μm.
The method for manufacturing an air electrode according to any one of Items 1 and 20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57167667A JPS5958759A (en) | 1982-09-28 | 1982-09-28 | Air electrode and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57167667A JPS5958759A (en) | 1982-09-28 | 1982-09-28 | Air electrode and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5958759A true JPS5958759A (en) | 1984-04-04 |
Family
ID=15853985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57167667A Pending JPS5958759A (en) | 1982-09-28 | 1982-09-28 | Air electrode and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5958759A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010240622A (en) * | 2009-04-09 | 2010-10-28 | Noritake Co Ltd | Gas separating material, and method for manufacturing the same |
JP2021002519A (en) * | 2019-06-19 | 2021-01-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for forming a hydrophobic electroconductive microporous layer useful as gasdiffusion layer |
-
1982
- 1982-09-28 JP JP57167667A patent/JPS5958759A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010240622A (en) * | 2009-04-09 | 2010-10-28 | Noritake Co Ltd | Gas separating material, and method for manufacturing the same |
JP2021002519A (en) * | 2019-06-19 | 2021-01-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for forming a hydrophobic electroconductive microporous layer useful as gasdiffusion layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4599157A (en) | Oxygen permeable membrane | |
US4483694A (en) | Oxygen gas permselective membrane | |
JPS5955314A (en) | Manufacture of composite permselective membrane for gaseous oxygen | |
JPS5958759A (en) | Air electrode and its manufacture | |
JPS59150508A (en) | Preparation of oxygen gas permselective composite membrane | |
JPS5854564A (en) | Porous catalyst layer for gas diffusion electrode | |
JPS5955315A (en) | Manufacture of composite film having selective oxygen permeability | |
JPS6051505A (en) | Gas selective composite membrane | |
Yasutake et al. | Metal-Oxide-Supported Ir-decorated electrocatalysts for polymer electrolyte membrane water electrolysis | |
JPS6044003A (en) | Oxygen gas permselective composite membrane and air electrode comprising the same | |
JPS60180063A (en) | Air electrode | |
JPS58225571A (en) | Air electrode and its production method | |
JPS58225573A (en) | Air electrode and its production method | |
JPS5933762A (en) | Air electrode and its manufacture | |
JPS58225575A (en) | Air electrode and its production method | |
JPS5998706A (en) | Oxygen gas permselective composite membrane | |
JPS5946104A (en) | Composite membrane selectively permeable for gaseous oxygen | |
JPS60179112A (en) | Compound film having permselectivity for oxygen | |
JPS60133675A (en) | Air electrode | |
JPS5830070A (en) | Manufacture of air electrode | |
JPS5999677A (en) | Air electrode | |
JPS5955316A (en) | Manufacture of permselective composite membrane for gaseous oxygen | |
JPS58225574A (en) | Air electrode and its production method | |
US20250112247A1 (en) | Nanoporous powders for fuel cell and electrolyzer applications | |
JPS5994376A (en) | Manufacture of air electrode |