[go: up one dir, main page]

JPS5957964A - Manufacturing method of fiber-reinforced silicon nitride sintered body - Google Patents

Manufacturing method of fiber-reinforced silicon nitride sintered body

Info

Publication number
JPS5957964A
JPS5957964A JP57170154A JP17015482A JPS5957964A JP S5957964 A JPS5957964 A JP S5957964A JP 57170154 A JP57170154 A JP 57170154A JP 17015482 A JP17015482 A JP 17015482A JP S5957964 A JPS5957964 A JP S5957964A
Authority
JP
Japan
Prior art keywords
silicon nitride
whisker
sintered body
fiber
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57170154A
Other languages
Japanese (ja)
Inventor
栄治 上條
樋口 松夫
修 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57170154A priority Critical patent/JPS5957964A/en
Priority to US06/534,143 priority patent/US4753764A/en
Priority to EP83305641A priority patent/EP0107349B1/en
Priority to DE8383305641T priority patent/DE3380349D1/en
Publication of JPS5957964A publication Critical patent/JPS5957964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)背景技術 本発明は耐熱性上ラミック焼結体、特に窒化硅素焼結体
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Background Art The present invention relates to a method for producing a heat-resistant ramic sintered body, particularly a silicon nitride sintered body.

耐熱性セラミックのなかでも窒化硅素は耐熱性、剛熱衝
撃性、待食性が特に優れているため、高温ガス中で使用
するタービン、ディーゼルエンジンなどの構造材、部品
材として有力であり非常に関心をもって進められている
Among heat-resistant ceramics, silicon nitride has particularly excellent heat resistance, rigid thermal shock resistance, and corrosion resistance, so it is a promising structural material and component material for turbines, diesel engines, etc. used in high-temperature gases, and is of great interest. It is being advanced with this.

耐熱性セラミック焼結体のこれら構造材への使用に当っ
ては、高温における物理的、化学的安定性が要求される
。特に高温における機械的特性の高いことが望まれてい
る。
When heat-resistant ceramic sintered bodies are used for these structural materials, physical and chemical stability at high temperatures is required. In particular, high mechanical properties at high temperatures are desired.

ところが窒化硅素や炭化硅素はともに共有結合性化合物
であって難焼結材とされている。
However, silicon nitride and silicon carbide are both covalent compounds and are considered to be difficult to sinter.

従って、窒化硅素や炭化硅素はそれ単独に焼結させるの
ではなく、焼結助剤を数%乃至数10%添加することに
より低融点化合物を形成させ焼結させている。
Therefore, silicon nitride and silicon carbide are not sintered alone, but are sintered by adding several percent to several tens of percent of a sintering aid to form a low melting point compound.

例えば窒化硅素の場合には、焼結助剤どしてMgOA4
゜08、Y QOs などを単独又は複数の組み合せで
5〜20%添加し、ホットプレスを行うことによって理
論密度に近い焼結体が得られている。
For example, in the case of silicon nitride, MgOA4 is used as a sintering aid.
A sintered body with a density close to the theoretical density is obtained by adding 5 to 20% of ゜08, YQOs, etc. alone or in combination, and hot pressing.

しかしながら、このようにして得られる焼結体は、高温
における強度が不十分である。
However, the sintered body thus obtained has insufficient strength at high temperatures.

即ち、焼結助剤として添加したMg01A(l QOa
あるいはY2O2などは、前記したように低融点化合物
を形成して焼結を促進せしめるという利点がある反面、
この低融点化合物が原因して高温における強度が下るの
である。
That is, Mg01A (l QOa added as a sintering aid)
Alternatively, Y2O2 and the like have the advantage of forming a low melting point compound and promoting sintering as described above, but on the other hand,
This low melting point compound causes a decrease in strength at high temperatures.

このようなことから、窒化硅素や炭化硅素焼結体製造時
における焼結助剤の種類やその量をできるだけ少なくす
るなどの検討がなされているが、高温時の強度低下の欠
点は未だ解決されていないのが現状である。
For this reason, studies have been conducted to minimize the type and amount of sintering aids used in the production of silicon nitride and silicon carbide sintered bodies, but the drawback of reduced strength at high temperatures has not yet been resolved. The current situation is that this is not the case.

本発明者らは上記の点に鑑み、耐熱性とともに高温強度
にすぐれた窒化硅素焼結体を得るべく鋭意検問の結果、
先に繊維状ウィスカーで強化した窒化硅素焼結体の製造
法を見出し出願している。
In view of the above points, the present inventors conducted extensive research to obtain a silicon nitride sintered body with excellent heat resistance and high-temperature strength.
We have previously discovered and applied for a method for producing a silicon nitride sintered body reinforced with fibrous whiskers.

(特願昭54−171844号及び特願昭55−229
3号)ウィスカーは一般に“′猫のひげ″とも呼ばれる
単結晶繊維であって、この繊維の強さは多結晶体の数1
0倍から数百倍といわれている。
(Patent Application No. 171844/1984 and Patent Application No. 229/1982)
No. 3) Whiskers are single-crystal fibers that are generally called “cat whiskers,” and the strength of these fibers is the same as that of polycrystals.
It is said to be from 0 times to several hundred times.

更に、ウィスカーは単結晶であるため、高温での強度劣
化が無く、単結晶繊維のからみあいにより強化されて、
焼結助剤を含んで′いても高温強度の改良が計られてい
る。
Furthermore, since the whisker is a single crystal, there is no strength deterioration at high temperatures, and it is strengthened by the entanglement of single crystal fibers.
Even if a sintering aid is included, the high-temperature strength is improved.

上記発明者らの出願はこのウィスカーを窒化硅素の焼結
体中に分散させるのに工業的に容易な製造法を提供する
ものであり、高強度特に高温でも強度の低下が少ない焼
結体が得られるものである。
The above application by the inventors provides an industrially easy manufacturing method for dispersing these whiskers in a sintered body of silicon nitride, and provides a sintered body with high strength, particularly with little loss of strength even at high temperatures. That's what you get.

しかし、その製造法は粉末混合時にウィスカーを混合し
、このあとプレス成型するためにウィスカーの混合が不
均一であったり特定方向にのみ揃ってしまい焼結体の強
度が方向によって異るという問題があった。
However, the manufacturing method involves mixing whiskers during powder mixing and then press molding, which causes the problem that the whiskers are mixed unevenly or aligned only in a specific direction, resulting in the strength of the sintered body varying depending on the direction. there were.

(ロ)発明の開示 本発明は従来法による窒化硅素焼結体の有する特徴のほ
かに」1記の種々の欠点や問題点をも悉く解消すること
のできる窒化硅素焼結体の製造法を提供しようとするも
のであり窒化硅素ウィスカー強化窒化硅素焼結体の製造
法の改良に関するものである。従来技術においては、原
料粉末混合時に繊維状ウィスカーと粒状の原料粉末を混
合するため、均−混合及び大量混合が困難である欠点が
あった。
(B) Disclosure of the Invention The present invention provides a method for producing a silicon nitride sintered body that can eliminate all of the various drawbacks and problems mentioned in 1 above, in addition to the characteristics of silicon nitride sintered bodies produced by conventional methods. The present invention relates to an improvement in the manufacturing method of silicon nitride whisker-reinforced silicon nitride sintered bodies. In the prior art, since fibrous whiskers and granular raw material powder are mixed at the time of mixing the raw material powder, there is a drawback that homogeneous mixing and mass mixing are difficult.

本発明は、この均一混合の困難を解消し、工業的に容易
な新規の製造法を提供するものである。
The present invention solves this difficulty in uniform mixing and provides a new manufacturing method that is industrially easy.

以下本発明の詳細な説明する。即ち粒状の原料粉末及び
焼結助剤と、繊維状のウィスカーの混合をやめて、粒状
で熱処理によりウィスカーとなるウィスカー生成相及び
ウィスカー生成促進利を上記原料粉末及び焼結助剤に混
合し、所定形状に成形したのち、その成形体を窒素ガス
分圧を有する非酸化性の雰囲気下でI+ 4.00°C
−1,650°Cの範囲の温度で熱処理することにより
、混合した粒状のウィスカー生成相より繊維状のウィス
カーを成形体中に生成させ、しかる後更に温度を高めて
非酸化性雰囲気下で緻密化焼結を行うことにより、繊維
強化型の窒化硅素焼結体を製造する方法である。
The present invention will be explained in detail below. That is, instead of mixing the granular raw material powder and sintering aid with the fibrous whiskers, a granular whisker-forming phase that becomes whiskers through heat treatment and a whisker generation accelerator are mixed with the raw material powder and sintering aid, and a predetermined amount is added. After molding into a shape, the molded body was heated to I+ 4.00°C in a non-oxidizing atmosphere with nitrogen gas partial pressure.
By heat treatment at a temperature in the range of -1,650°C, fibrous whiskers are generated in the molded product from the mixed granular whisker-forming phase, and then the temperature is further increased to form dense whiskers in a non-oxidizing atmosphere. This is a method of manufacturing a fiber-reinforced silicon nitride sintered body by performing chemical sintering.

本発明において原料粉末及び焼結助剤は特に限定される
ものでなく、一般の結晶構造、化学組成のもので可能で
ある。混合されるウィスカー生成相は、窒素ガス分圧を
有する非酸化性雰囲気中で、気体状の一酸化硅素を発生
するものであれば良く本発明者等は金属Si1SiO1
Sing等のSiを含む無機化合物、シリコンゴム、シ
リコン樹脂等のSi  を含む有機化合物、更には非晶
質の5i3N4粉末、S i 02とカーボン及び金属
Siの混合物等の一種又は複数の組み合せであればいず
れでも同様の効果があることをみつけた。
In the present invention, the raw material powder and sintering aid are not particularly limited, and may have a general crystal structure and chemical composition. The whisker-forming phase to be mixed may be one that generates gaseous silicon monoxide in a non-oxidizing atmosphere having a nitrogen gas partial pressure.
One or more combinations of Si-containing inorganic compounds such as Sing, Si-containing organic compounds such as silicone rubber and silicone resin, amorphous 5i3N4 powder, and mixtures of Si02, carbon, and metal Si. We found that both methods had similar effects.

更に、混合されるウィスカー生成促進材はウィスカー生
成熱処理温度においてSi、N2を固溶し液相となる金
属及び合金であればいずれでも良く、本発明者等はFe
、 Ni、 Co、Cr、V、T i、 Ta、 Wl
M。
Furthermore, the whisker generation accelerator to be mixed may be any metal or alloy as long as it dissolves Si and N2 into a liquid phase at the whisker generation heat treatment temperature.
, Ni, Co, Cr, V, Ti, Ta, Wl
M.

等より選ばれた3種又はそれ以上の金属及び/又は合金
が良好であることをみつけた。これらより選ばれた合金
を添加混合すると、ウィスカー生成熱処理温度において
液相となり、一般に公知のVLS(Vapor−Liq
uid−5olidi−fication )機構によ
りウィスカーの成長が促進され、比較的長いウィスカー
が短時間に生成される効果がある。
It has been found that three or more metals and/or alloys selected from the following are good. When an alloy selected from these is added and mixed, it becomes a liquid phase at the whisker-forming heat treatment temperature, and it becomes the generally known VLS (Vapor-Liq).
The growth of whiskers is promoted by the uid-5 solidification) mechanism, which has the effect of producing relatively long whiskers in a short time.

これらの詳細はすでに本発明者等の一部が出願した特許
特願昭55−17624.41号及び特願昭55−1.
85385号に記述されている。
These details have already been disclosed in Japanese Patent Application No. 17624.41/1983 and Japanese Patent Application No. 1/1983 filed by some of the present inventors.
It is described in No. 85385.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

実施例 結晶質の5iaN4粉末、焼結助剤、ウィスカー生成相
、ウィスカー生成促進拐を第1表に示す組第1表 成で配合し、一般のボールミルで50時間粉砕、混合を
行った。この混合粉末を所定形状の金型を用いて1.5
t/cm”の圧力で成形した。この成形体を1450°
Cで+00Torrの窒素雰囲気下で2時間熱処理を行
い、続いて1気圧の窒素雰囲気中で1,750°Cに昇
温して、1時間保持し緻密化焼結゛を行った。
Example A crystalline 5iaN4 powder, a sintering aid, a whisker-forming phase, and a whisker-forming promoting phase were blended in the first composition shown in Table 1, and pulverized and mixed in a general ball mill for 50 hours. This mixed powder was heated to 1.5 mm using a mold with a predetermined shape.
The molded body was molded at a pressure of 1450°
Heat treatment was carried out at C for 2 hours in a nitrogen atmosphere of +00 Torr, and then the temperature was raised to 1,750°C in a nitrogen atmosphere of 1 atm and maintained for 1 hour to perform densification sintering.

焼結体より4mmX3mmX4、Ommの試験片を切り
出し、30 mmスパンで抗折力を測定、破面の観察を
行った。測定結果をまとめて第1表に示した。
A test piece measuring 4 mm x 3 mm x 4 0 mm was cut out from the sintered body, transverse rupture strength was measured over a 30 mm span, and the fracture surface was observed. The measurement results are summarized in Table 1.

比較のために、ウィスカー生成材及び/又はウィスカー
生成促進材を含まないもので同様の熱処理を行い緻密化
焼結を行ったものの特性を比較例として第1表に示した
For comparison, Table 1 shows the characteristics of samples that did not contain a whisker-generating material and/or a whisker-promoting material and were subjected to the same heat treatment and densification sintering as comparative examples.

本発明によるものは、室温での抗折力が向上するととも
に、1,200°Cでの高温強度も大巾に向」二してお
る。更に、ウィスカー生成促進材を添加したものが、添
加しないものより強度が向上しており、添加の効果が高
い事が解る。ウィスカー生成相の配合量は1%以下及び
75%を越える範囲では効果が少いので1%以上、75
%以下が有効である。
The material according to the present invention has not only improved transverse rupture strength at room temperature, but also greatly improved high temperature strength at 1,200°C. Furthermore, the strength of the specimens to which the whisker generation accelerator was added was higher than that of the specimens to which no whisker generation promoter was added, indicating that the addition is highly effective. The blending amount of the whisker-forming phase should be 1% or more and 75% or more, since the effect is small if it is less than 1% or more than 75%.
% or less is valid.

ウィスカー生成促進材の配合量は0.01%以下では効
果少く、5%を越えるとウィスカーの成長促進には効果
あるが金属成分であるため、高温特性耐蝕性が劣化する
ため望ましくなく、o、o(Il %以」二、5%以下
が有効である。添加金属又は合金は特に鉄及び鉄系合金
がウィスカー生成促進拐として特に有効である。
If the blending amount of the whisker generation promoter is less than 0.01%, it will have little effect, and if it exceeds 5%, it will be effective in promoting whisker growth, but since it is a metal component, the high temperature properties and corrosion resistance will deteriorate, which is not desirable. o (Il%) 2.5% or less is effective.Additional metals or alloys, especially iron and iron-based alloys, are particularly effective as whisker generation promotion.

伺、ウィスカー生成熱処理温度の範囲は1.4・00°
C以下ではウィスカー生成速度が極端に遅くなり、実用
的でない。更に1..650°C以」二では緻密化焼結
が進行する温度域であるため、ウィスカーの成長途中で
緻密化が進行してウィスカーの成長がさまたげられる事
及び、太いウィスカーが生成するため効果がなくなる。
The whisker generation heat treatment temperature range is 1.4.00°.
Below C, the whisker generation speed becomes extremely slow and is not practical. Furthermore 1. .. At temperatures above 650° C., this is the temperature range where densification sintering progresses, so densification progresses during whisker growth, hindering whisker growth, and thick whiskers are produced, resulting in no effect.

従って、1,4・00°C以」二、1,650°C以下
の温度範囲が最良である。
Therefore, a temperature range of 1,400°C to 2,1,650°C is best.

ウィスカー生成熱処理時間は05時間以」二あればよく
、長時間処理することにより長繊維になるが、2時間以
上処理しても特に顕著な効果は認められないので0.5
時間〜2時間の範囲で実用的に充分である。
The whisker generation heat treatment time should be at least 0.5 hours. Long-term treatment will result in long fibers, but no particularly significant effect will be observed even if the treatment is longer than 2 hours.
A range of 1 hour to 2 hours is practically sufficient.

本発明試料の抗折力at!I定後の破面を顕微鏡で観察
すると径がjμmφ以下で長さが30μm−1007z
mのウィスカー繊維が3次元的に成長し、繊維強化型の
構造になっていることが確認された。
Transverse rupture strength at! of the sample of the present invention! When the fracture surface after I was observed under a microscope, the diameter was less than jμmφ and the length was 30μm-1007z
It was confirmed that the whisker fibers of M were grown three-dimensionally and had a fiber-reinforced structure.

実施例2 焼結助剤をAe s 032 wt%、YzO* 5 
wt%の混合物に変え、ウィスカー生成利として非晶質
Si3N4を20 wt%、ウィスカー生成促進拐とし
てFeを0.5wt%、残りをSi3N+粉末として配
合し、実施例1と同様の処理を行った。得られた焼結体
の特性は、常温抗折力90 kg/mm2.1,200
°C高温抗折力60 kg/mm”と実施1の結果と同
様の結果をえた。
Example 2 Sintering aids were Ae s 032 wt%, YzO* 5
The same process as in Example 1 was carried out by adding 20 wt% of amorphous Si3N4 as a whisker generation benefit, 0.5 wt% of Fe as a whisker generation accelerator, and the rest as Si3N+ powder. . The properties of the obtained sintered body are: normal temperature transverse rupture strength 90 kg/mm2.1,200
°C high-temperature transverse rupture strength of 60 kg/mm", which was the same result as in Example 1.

本発明の効果は焼結助剤の種類に関係なぐ発揮できるこ
とがわかった。
It has been found that the effects of the present invention can be exhibited regardless of the type of sintering aid.

322−322-

Claims (1)

【特許請求の範囲】 (1)窒化硅素ウィスカーが分散した窒化硅素焼結体の
製造法において、窒化硅素粉末と熱処理でウィスカーと
なるウィスカー生成材、ウィスカー生成促進4A及び焼
結助4」とを用い、これらを混合し、所定形状に成形し
たのち、その成形体を窒素ガス分圧を有する非酸化性雰
囲気下でウィスカー生成熱処理を行った後、非酸化性雰
囲気下で緻密化焼結することを特徴とする繊維強化型窒
化硅素焼結体の製造法。 (2、特許請求の範囲第1項記載のウィスカー生成材が
、SiまたはSiを含む無機化合物、Siを含む有機化
合物、非晶質の窒化硅素粉末、S]0゜とカーボンまた
はSiの混合物の一種又は複数の組み合せであることを
特徴とする繊維強化型窒化硅素焼結体の製造法。 (3)特許請求の範囲第1項記載のウィスカー生成促進
材がFe、 Ni、 Co1Cr、 V、Ti1Ta、
 W、 Moから選ばれた1種またはそれ以上の金属又
は合金であることを特徴とする繊維強化型窒化硅素焼結
体の製造法。 (4)特許請求の範囲第1項記載のウィスカー生成熱処
理温度が1.4.00°C−1,650°Cであること
を特徴とする繊維強化型窒化硅素焼結体の製造法。 (5)特許請求の範囲第1項記載のウィスカー生成41
が重量%で1%以上75%以下であり、ウィスカー生成
促進材が0.01%以上5%以下であることを特徴とす
る繊維強化型窒化硅素焼結体の製造法。
[Scope of Claims] (1) A method for manufacturing a silicon nitride sintered body in which silicon nitride whiskers are dispersed, which comprises silicon nitride powder, a whisker-forming material that becomes whiskers through heat treatment, whisker-formation accelerator 4A, and sintering aid 4. After mixing these and molding them into a predetermined shape, the molded body is subjected to whisker generation heat treatment in a non-oxidizing atmosphere with nitrogen gas partial pressure, and then densified and sintered in a non-oxidizing atmosphere. A method for producing a fiber-reinforced silicon nitride sintered body characterized by: (2. The whisker generating material according to claim 1 is made of Si or an inorganic compound containing Si, an organic compound containing Si, an amorphous silicon nitride powder, a mixture of S]0° and carbon or Si. A method for manufacturing a fiber-reinforced silicon nitride sintered body, characterized in that it is one kind or a combination of two or more. (3) The whisker generation promoting material according to claim 1 is Fe, Ni, Co1Cr, V, Ti1Ta. ,
A method for producing a fiber-reinforced silicon nitride sintered body, characterized in that the material is one or more metals or alloys selected from W and Mo. (4) A method for manufacturing a fiber-reinforced silicon nitride sintered body, characterized in that the whisker-forming heat treatment temperature as set forth in claim 1 is 1.4.00°C to 1,650°C. (5) Whisker generation 41 according to claim 1
is 1% or more and 75% or less by weight, and the whisker formation promoting material is 0.01% or more and 5% or less.
JP57170154A 1982-09-24 1982-09-28 Manufacturing method of fiber-reinforced silicon nitride sintered body Pending JPS5957964A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57170154A JPS5957964A (en) 1982-09-28 1982-09-28 Manufacturing method of fiber-reinforced silicon nitride sintered body
US06/534,143 US4753764A (en) 1982-09-24 1983-09-21 Manufacturing method for fiber reinforced silicon ceramics sintered body
EP83305641A EP0107349B1 (en) 1982-09-24 1983-09-22 Manufacturing method for fiber reinforced silicon ceramics sintered body
DE8383305641T DE3380349D1 (en) 1982-09-24 1983-09-22 Manufacturing method for fiber reinforced silicon ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170154A JPS5957964A (en) 1982-09-28 1982-09-28 Manufacturing method of fiber-reinforced silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS5957964A true JPS5957964A (en) 1984-04-03

Family

ID=15899681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170154A Pending JPS5957964A (en) 1982-09-24 1982-09-28 Manufacturing method of fiber-reinforced silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5957964A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146754A (en) * 1984-12-19 1986-07-04 株式会社日立製作所 Manufacture of composite ceramics
JPS61205699A (en) * 1985-03-08 1986-09-11 Ube Ind Ltd Manufacturing method of silicon nitride whiskers
JPS61275199A (en) * 1985-05-31 1986-12-05 Ube Ind Ltd Production of silicon nitride whisker
JPS61295300A (en) * 1985-06-25 1986-12-26 Ube Ind Ltd Manufacturing method of silicon nitride whiskers
JPS62158172A (en) * 1985-12-29 1987-07-14 株式会社 香蘭社 Manufacture of fiber reinforced ceramic
JPH08245265A (en) * 1995-03-08 1996-09-24 Hitachi Ltd Self-reinforced silicon nitride sintered body and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146754A (en) * 1984-12-19 1986-07-04 株式会社日立製作所 Manufacture of composite ceramics
JPS61205699A (en) * 1985-03-08 1986-09-11 Ube Ind Ltd Manufacturing method of silicon nitride whiskers
JPS61275199A (en) * 1985-05-31 1986-12-05 Ube Ind Ltd Production of silicon nitride whisker
JPS61295300A (en) * 1985-06-25 1986-12-26 Ube Ind Ltd Manufacturing method of silicon nitride whiskers
JPS62158172A (en) * 1985-12-29 1987-07-14 株式会社 香蘭社 Manufacture of fiber reinforced ceramic
JPH08245265A (en) * 1995-03-08 1996-09-24 Hitachi Ltd Self-reinforced silicon nitride sintered body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4753764A (en) Manufacturing method for fiber reinforced silicon ceramics sintered body
KR920003029B1 (en) High toughness silicon nitride sintered body and process for producing the same
US5134097A (en) Silicon nitride-silicon carbide composite material and process for production thereof
JP2535768B2 (en) High heat resistant composite material
US5464583A (en) Method for manufacturing whisker preforms and composites
JPS5957964A (en) Manufacturing method of fiber-reinforced silicon nitride sintered body
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPS63225579A (en) Ceramic tool material
JPS5957960A (en) Manufacturing method of fiber-reinforced silicon carbide sintered body
JPS5957961A (en) Manufacture of fiber reinforced silicon carbide sintered bo-dy
JP4907777B2 (en) Metal-ceramic composite material
JPS6212663A (en) Method of sintering b4c base fine body
JPS5954675A (en) Manufacturing method of fiber-reinforced silicon carbide sintered body
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPS5954679A (en) Manufacture of fiber reinforced silicon nitride sintered body
JPS63252966A (en) Method for manufacturing silicon nitride ceramic composite
JPS5954678A (en) Manufacturing method of fiber-reinforced silicon nitride sintered body
JPH01203260A (en) Production of silicon carbide whisker reinforced ceramics
JPS60186491A (en) Silicon nitride sintered body
JPH08245264A (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPS61117159A (en) Silicon carbide sintered body and its manufacturing method
JP2684427B2 (en) Composite ceramic structure
JP2514107B2 (en) Tarbot Charlotter
JPS5954676A (en) Manufacturing method of fiber-reinforced silicon carbide sintered body