JPS59578A - Swash plate type heat driven engine - Google Patents
Swash plate type heat driven engineInfo
- Publication number
- JPS59578A JPS59578A JP57110233A JP11023382A JPS59578A JP S59578 A JPS59578 A JP S59578A JP 57110233 A JP57110233 A JP 57110233A JP 11023382 A JP11023382 A JP 11023382A JP S59578 A JPS59578 A JP S59578A
- Authority
- JP
- Japan
- Prior art keywords
- swash plate
- output shaft
- rotation
- driven engine
- rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/061—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
- F03G7/0614—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
- F03G7/06145—Springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/063—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the mechanic interaction
- F03G7/0633—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the mechanic interaction performing a rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/063—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the mechanic interaction
- F03G7/0636—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the mechanic interaction with several elements connected in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/064—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by its use
- F03G7/0641—Motors; Energy harvesting or waste energy recovery
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、形状記憶合金の特性を活用して熱エネルギー
を機械エネルギーに変換する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that converts thermal energy into mechanical energy by utilizing the properties of shape memory alloys.
形状記憶合金の一つの性質である形状記憶効果とは文字
どおり材料が元の形を記憶している性質のことであり、
ある温度で変形したものかその形状のま捷で温度を上げ
ると何等の外力を加えなくとも元の形状に戻る現象を言
う。この現象が熱弾性型マルテンサイト変態に起因する
点について−良く知られている。そしてこの様な形状記
憶合金の元の形状に戻る際の回復力を機械的エネルギー
として取り出す装置として体表的なものが熱駆動エンジ
ンである。The shape memory effect, which is one of the properties of shape memory alloys, is literally the property of the material remembering its original shape.
This is a phenomenon in which something that has been deformed at a certain temperature or whose shape is changed returns to its original shape when the temperature is raised without any external force being applied. It is well known that this phenomenon is caused by thermoelastic martensitic transformation. A heat-driven engine is a typical device that extracts the restoring force of a shape memory alloy when it returns to its original shape as mechanical energy.
上記マルテンサイト変態を生ずる温度は形状記憶合金の
組成、加工条件、熱処理条件を適当に選ぶことによって
任意に設定できる。又その変態・逆変態を数10℃の温
度範囲で発生せしめることも可能である。この様な形状
記憶合金を用いた熱駆動エンジンは、地熱、工場排熱、
太陽熱等の熱エネルギー、あるいはそれらによる温排水
の低質熱エネルギーを有効に回収できるものであるので
現在の様にエネルギー枯渇が叫ばれている時に非常に有
効な手段と言える。The temperature at which the martensitic transformation occurs can be arbitrarily set by appropriately selecting the composition, processing conditions, and heat treatment conditions of the shape memory alloy. It is also possible to cause the transformation and reverse transformation to occur in a temperature range of several tens of degrees Celsius. Thermal-driven engines using such shape memory alloys are powered by geothermal heat, factory exhaust heat,
Since it can effectively recover thermal energy such as solar heat or low-quality thermal energy from heated wastewater, it can be said to be an extremely effective means at a time when energy depletion is being called for.
第1図は従来提案された熱1駆動エンジンの構造を示し
たものである。同一径のブーIJ−1,2間に形状記憶
合金で出来た形状記憶ベルト3か掛けられ、プーリー1
,2と各々同軸上に固定された互いに異なる径の駆動プ
ーリー4,5間に熱によって伸縮しない材質からなる駆
動ベルト6か掛けられている。この熱駆動エンジンは、
プーリー1゜2.4.5の半径R1、R2、R4、R5
の間にRI R5>R2R4の関係かある時に反時計方
向に回転する。FIG. 1 shows the structure of a conventionally proposed thermal single drive engine. A shape memory belt 3 made of shape memory alloy is hung between the boots IJ-1 and 2 of the same diameter, and the pulley 1
, 2 and drive pulleys 4 and 5 of mutually different diameters which are fixed coaxially with each other, a drive belt 6 made of a material that does not expand or contract due to heat is stretched. This heat-driven engine is
Pulley 1°2.4.5 radius R1, R2, R4, R5
It rotates counterclockwise when the relationship RI R5>R2R4 exists.
この熱駆動エンジンのトルク特性は第2図の様になシ、
この図の特性曲線は、加熱・冷却の温度及び各プーリー
の比か決まれば一義的に決定される。The torque characteristics of this heat-driven engine are as shown in Figure 2.
The characteristic curve in this figure is uniquely determined once the heating/cooling temperature and the ratio of each pulley are determined.
従って加熱・冷却の温度及び各プーリーの比が決まれば
所定の負荷トルクに対する回転数はただ1つである。こ
の事は言い換えれば同じ負荷トルクのもとて回転数を変
化させる事は不可能であることを示し、又一定回転数を
保ちなから負荷トルクを変化させる事も不可能であるこ
とを示している。Therefore, once the heating/cooling temperature and the ratio of each pulley are determined, there is only one number of rotations for a predetermined load torque. In other words, this shows that it is impossible to change the rotation speed with the same load torque, and also that it is impossible to change the load torque without maintaining a constant rotation speed. There is.
以上の様に従来の熱駆動エンジンでは実用化の点で不都
合な事か多く低質熱エネルギーを回収できるものの、そ
の回収エネルギー全有効に利用する事は困難であった。As mentioned above, although conventional heat-driven engines can recover low-quality thermal energy, there are many disadvantages in terms of practical use, but it has been difficult to utilize all of the recovered energy effectively.
本発明は以上の点に鑑みなされたもので出力の制りk可
能とするもの、例えば同一負荷トルクに対して回転数か
可変な熱、駆動エンジン或いは同一回転数を保ちつつ負
荷トルクを変化し得る熱駆動エンジンを提供することを
目的とするものである。The present invention has been made in view of the above points, and is capable of controlling the output, such as a heat-driven engine whose rotational speed is variable for the same load torque, or a drive engine that changes the load torque while maintaining the same rotational speed. The object of the present invention is to provide a thermally driven engine that obtains a thermally driven engine.
以下、本発明に係る斜板式熱駆動エンジンの実施例を図
面を用いて詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a swash plate type heat-driven engine according to the present invention will be described in detail with reference to the drawings.
第3図は本発明に係る斜板式熱駆動エンジンの一部側面
図、第4図は第3図の斜板式熱駆動エンジンを上方より
見た一部平面図、第5図は第3図のA、−A’線におけ
る切断断面図、第6図は第3図の矢印Bより見た一部斜
視図である。以上の図面において7は回転シャフト、8
は該回転シャフトに固着される回転円板である。9は中
心部か空洞状態である斜板で、その中を上記回転シャフ
ト7かユニバーサルジヨイント10′に:介して貫通す
る。3 is a partial side view of the swash plate type thermally driven engine according to the present invention, FIG. 4 is a partial plan view of the swash plate type thermally driven engine of FIG. 3 seen from above, and FIG. 5 is the same as that of FIG. 6 is a partial perspective view taken along arrow B in FIG. 3. FIG. In the above drawings, 7 is a rotating shaft, 8
is a rotating disk fixed to the rotating shaft. Reference numeral 9 denotes a swash plate having a hollow center, through which the rotating shaft 7 or the universal joint 10' passes through.
上記斜板9は後述する様に支持棒11の動作によって水
平方向に回動することかできる。上記斜板9は上記回転
シャフト7に対して斜方向に傾いた回転面を有しその斜
めの回転状態にて上記回転シャフト7を駆動するもので
ある。この斜板9と上記回転円板80間にはT1Ni合
金、CuAlNi合金等の形状記憶合金からなるコイル
バネ12か複数本掛けられる。このコイルバネ12は予
め縮んだ形状に形状記憶処理しである。図では上下左右
に1本ずつ計4本のコイルバネ12が掛けられている。The swash plate 9 can be rotated in the horizontal direction by the operation of the support rod 11, as will be described later. The swash plate 9 has a rotating surface inclined diagonally with respect to the rotating shaft 7, and drives the rotating shaft 7 in an obliquely rotating state. A plurality of coil springs 12 made of a shape memory alloy such as T1Ni alloy or CuAlNi alloy are hung between the swash plate 9 and the rotating disk 80. This coil spring 12 has been subjected to shape memory processing to have a contracted shape in advance. In the figure, a total of four coil springs 12 are hung, one on the top, bottom, left and right.
上記斜板9は上記支持棒11に固着されるホルダー13
の内側に配置された軸受14によって支持されスムーズ
に回転するように構成される。The swash plate 9 has a holder 13 fixed to the support rod 11.
It is supported by a bearing 14 disposed inside the body and is configured to rotate smoothly.
I5は上側に2本、下側に2本配置される枠材であり、
上側の2本の枠材15a、15a’の間にビーム16a
か掛は渡され、下側の2本の枠材15b、+5b’の間
にビーム+6bか掛は渡される。上側のビーム16aの
中心位置にネジ17aにより調整ユニット18aか回動
自在に取り付けられ、同様に下側のビーム+6bの中心
位置にネジ+7bにより調整ユニット18bか回動自在
に取り付けられる。上記調整ユニット18a 、18b
はネジ17a、17bを中心として回動し該回動に従っ
て上記支持棒11を移動する。I5 is a frame material with two pieces arranged on the upper side and two pieces placed on the lower side,
A beam 16a is placed between the upper two frame members 15a and 15a'.
The hook is passed, and the beam +6b is passed between the two lower frame members 15b and +5b'. An adjustment unit 18a is rotatably attached to the center of the upper beam 16a with a screw 17a, and similarly an adjustment unit 18b is rotatably attached to the center of the lower beam +6b with a screw +7b. The adjustment units 18a and 18b
rotates around the screws 17a and 17b, and moves the support rod 11 in accordance with the rotation.
そしてこの移動に伴なって上記斜板9の傾き角度か変化
する。尚」二記ネジ17a、17bij:上記斜板9の
斜面と」二記回転ンヤフト7の交点を通る方向に向けて
取り伺けられているので、上記調整ユニット+8a、1
8bを回動させても上記斜板9の重心は安定状態を保つ
。上記4本の枠材15は端板19に固定される。この端
板19は第5図に示す様に軸受20により上記回転シャ
フト7を回転自在に支持し、又端板19自体はベース2
1の軸受22により回転自在に取り付けられる。次にユ
ニバーサルジヨイント10の構造を説明する。ユニバー
サルジヨイント10の構造は第6図に示されるように上
記回転シャント7Vc固定的に結合される枠体23と該
枠体23に対してボールベアリング24によって回転自
在に結合される丸棒25と該丸棒25と固定的に結合さ
れる丸棒26とからなる。Along with this movement, the inclination angle of the swash plate 9 changes. Note that the screws 17a and 17bij are installed in the direction passing through the intersection of the slope of the swash plate 9 and the rotary shaft 7, so the adjustment units +8a and 1
Even if 8b is rotated, the center of gravity of the swash plate 9 remains stable. The four frame members 15 are fixed to the end plate 19. As shown in FIG.
It is rotatably attached by one bearing 22. Next, the structure of the universal joint 10 will be explained. As shown in FIG. 6, the structure of the universal joint 10 includes a frame 23 fixedly connected to the rotary shunt 7Vc, and a round bar 25 rotatably connected to the frame 23 by a ball bearing 24. It consists of the round rod 25 and a round rod 26 that is fixedly connected.
該丸棒26は上記斜板9に対してボールベアリング27
によって結合される。The round bar 26 is connected to the swash plate 9 by a ball bearing 27.
combined by
以上の構造の斜板式熱駆動エンジンは次のようにして回
転動力を発生する。第3図のA−A’線の下側に熱湯か
満たされ、A−A’線の上側は空気に晒されるものとす
る。この時A−A’線の下側に位置する形状記憶合金か
らなるコイルバネI2は加熱され形状復帰によって強い
カを伴って縮む。又A−A’線の上側に位置する形状記
憶合金からなるコイ/l/ハ412は冷却され容易に伸
びる。この結果加熱されたコイルバネ12は上記回転円
板8と上記斜板9とが最も近接する位置に至るまで上記
回、耘円板8と上記斜板9とを回転駆動する。一方冷却
されたコイルバネ12は非常に弱い力によって伸びるの
で上記回転円板8と上記斜板9の回転を阻止することは
無い。又加熱されるコイルバネ12及び冷却されるコイ
ルバネ12は順次移り変わるので上記回転円板8及び上
記斜板9は回転動作を続行する。このシステムにおいて
回転シャフト7の出力は斜板9の傾き角度を調節するこ
とによって変化する。又斜板9の傾き角を上記回転シャ
フト7の直角方向に対して逆の向きにすれば上記回転円
板8及び上記斜板9の回転方向を逆転させることもでき
る。又、上記回転シャフト7に発生する出力は上記端板
19をベース21に対して回転することによっても変化
する。即ち上記端板19を回転すれば上記斜板9の上記
回転円板8に対する距離間隔の関係か変化するので上記
回転円板8及び上記斜板9に加わる力は当然変化する。The swash plate type heat-driven engine having the above structure generates rotational power as follows. It is assumed that the area below the line A-A' in FIG. 3 is filled with hot water, and the area above the line A-A' is exposed to air. At this time, the coil spring I2 made of a shape memory alloy located below the line AA' is heated and contracts with a strong force due to its return to shape. Moreover, the coil/l/ha 412 made of a shape memory alloy located above the line A-A' is cooled and easily stretches. As a result, the heated coil spring 12 rotates the rotary disk 8 and the swash plate 9 until they reach the position where they are closest to each other. On the other hand, since the cooled coil spring 12 is expanded by a very weak force, it does not prevent the rotation of the rotating disk 8 and the swash plate 9. Further, since the heated coil spring 12 and the cooled coil spring 12 are sequentially changed, the rotating disk 8 and the swash plate 9 continue to rotate. In this system, the output of the rotating shaft 7 is changed by adjusting the tilt angle of the swash plate 9. Furthermore, by setting the inclination angle of the swash plate 9 in the opposite direction to the perpendicular direction of the rotating shaft 7, the rotation directions of the rotating disk 8 and the swash plate 9 can be reversed. Further, the output generated on the rotary shaft 7 also changes by rotating the end plate 19 with respect to the base 21. That is, when the end plate 19 is rotated, the distance between the swash plate 9 and the rotating disk 8 changes, so the forces applied to the rotating disk 8 and the swash plate 9 naturally change.
次にユニバーサルジヨイントの他の例について説明する
。第7図及び第8図はユニバーサルジヨイントの他の例
を示す。このユニバーサルジヨイントは上記回転シャフ
ト7に固定的に結合される第7図の内球28と、上記斜
板9に固定的に結合される第8図の外輪29とから構成
される。第8図(a)は平面図、同図(b)は正面断面
図、同図(c)は側面断面図である。上記内球28には
2個の突起30か互いに180°方向に突出する(この
突起30は一方のみであっても構わない。)。父上記外
輪29は外形か7円板状であり、その内部に上記内球2
8表面か摺接する接触面と上記内球28の突起30の摺
動か可能な保合溝31か形成される。Next, another example of the universal joint will be explained. 7 and 8 show other examples of universal joints. This universal joint is composed of an inner ball 28 shown in FIG. 7 which is fixedly connected to the rotating shaft 7, and an outer ring 29 shown in FIG. 8 which is fixedly connected to the swash plate 9. FIG. 8(a) is a plan view, FIG. 8(b) is a front sectional view, and FIG. 8(c) is a side sectional view. Two protrusions 30 protrude from the inner sphere 28 in a direction of 180 degrees from each other (there may be only one protrusion 30). The outer ring 29 has a seven-disk shape, and the inner ball 2 is placed inside it.
A contact surface that slides on the surface 8 and a retaining groove 31 in which the protrusion 30 of the inner ball 28 can slide are formed.
尚、上述の実施例は回転シャフト7に対して直交する回
転面を備える回転円板8と回転シャフト7に対して斜方
向の回転面を備える斜板9との間に形状記憶合金からな
るコイルバネ12を掛は渡したものであったか、回転シ
ャフト7に対して互いに異なる角度の斜方向の回転面を
備える2個の斜板の間に形状記憶合金からなるコイルバ
ネ12を掛は渡して斜板式熱、駆動エンジンを構成して
もよい。In the above embodiment, a coil spring made of a shape memory alloy is provided between the rotating disk 8 having a rotating surface perpendicular to the rotating shaft 7 and the swash plate 9 having a rotating surface oblique to the rotating shaft 7. The coil spring 12 made of a shape memory alloy was passed between two swash plates having oblique rotating surfaces at different angles with respect to the rotating shaft 7 to create a swash plate type heat and drive system. The engine may also be configured.
以上詳細に説明した本発明の斜板式熱駆動エンジンによ
れば斜板の傾き状態を調節することによってエンジンの
出力状態を変化することができる。According to the swash plate type thermally driven engine of the present invention described in detail above, the output state of the engine can be changed by adjusting the inclination state of the swash plate.
例えば従来の熱駆動エンジンでは不可能であった同一負
荷に対して回転数を変化させたり、同一回転数の状態の
ままで負荷トルクを変化させることか可能な熱1駆動エ
ンジンを得るものである。従って動力発生装置として極
めて汎用性の高いものである。For example, this provides a thermally driven engine that is capable of changing the rotational speed for the same load, which was not possible with conventional thermally driven engines, or changing the load torque while maintaining the same rotational speed. . Therefore, it is extremely versatile as a power generating device.
第1図は従来の熱駆動エンジンの説明図、第2図はその
特性曲線図、第3図は本発明に係る斜板式熱駆動エンジ
ンの一部側面図、第4図は第3図の斜板式熱駆動エンジ
ンの一部平面図、第5図は第3図のA−A’線における
切断断面図、第6図は第3図の矢印Bより見た一部斜視
図、第7図はユニバーサルジヨイントの他の実施例の内
球の斜視図、第8図はその外輪を示すもので同図(a)
は平面図、同図(b)は正面断面図、同図(C)は側面
断面図を示す。
図中、7:回転シャフト 8:回転円板Il:支持棒
12:コイルバネ13:ホルダー 1
4:軸受
15:枠材 16:ビーム
17:ネジ 18:調整ユニット19:端板
21:ベース
代理人 弁理士 福 士 愛 彦(他2名)21
笛5図FIG. 1 is an explanatory diagram of a conventional heat-driven engine, FIG. 2 is a characteristic curve diagram thereof, FIG. 3 is a partial side view of a swash plate type heat-driven engine according to the present invention, and FIG. 4 is an oblique view of FIG. FIG. 5 is a cross-sectional view taken along line AA' in FIG. 3, FIG. 6 is a partial perspective view taken from arrow B in FIG. 3, and FIG. A perspective view of the inner sphere of another embodiment of the universal joint, FIG. 8 shows the outer ring thereof, and FIG.
1 is a plan view, FIG. 2B is a front sectional view, and FIG. 1C is a side sectional view. In the figure, 7: Rotating shaft 8: Rotating disk Il: Support rod 12: Coil spring 13: Holder 1
4: Bearing 15: Frame material 16: Beam 17: Screw 18: Adjustment unit 19: End plate 21: Base agent Patent attorney Aihiko Fukushi (and 2 others) 21 Flute 5 diagram
Claims (1)
傾いた回転面を有しその回転により前記回転出力軸を駆
動する斜板と、前記回転出力軸と固定的に結合され前記
回転出力軸を回転中心軸とする回転板と、前記斜板と前
記回転板の間に張り渡された、形状記憶合金からなる複
数本の弾性体と、該弾性体の互いに異なるものに互いに
異なる熱的影響を付与する手段とを具備することを特徴
とする斜板式熱駆動エンジン。 2 回転出力軸と、該回転出力軸に対して斜方向に傾い
た回転面を有し′その回転により前記回転出力軸を駆動
する第1の斜板と、該第1の斜板と異なる角度の回転面
を有しその回転により前記回転出力軸を駆動する第2の
斜板と、前記第1の斜板と前記第2の斜板の間に張り渡
された、形状記憶合金からなる複数本の弾性体と、該弾
性体の互いに異なるものに互いに異なる熱的影響を付与
する手段とを具備することを特徴とする斜板式熱駆動エ
ンジン。 3 斜板の回転面の角度を調節する手段を具備すること
を特許請求の範囲第1項又は第2項記載の斜板式熱駆動
エンジン。[Scope of Claims] 18 A rotational output shaft, a swash plate having a rotational surface tilted diagonally with respect to the rotational output shaft and driving the rotational output shaft by rotation thereof, and a swash plate that is fixed to the rotational output shaft. a rotating plate coupled to the swash plate and having the rotational output shaft as the central axis of rotation; a plurality of elastic bodies made of a shape memory alloy stretched between the swash plate and the rotating plate; and mutually different elastic bodies. What is claimed is: 1. A swash plate type thermally driven engine, comprising: means for imparting mutually different thermal effects. 2. a rotation output shaft, a first swash plate having a rotation surface tilted diagonally with respect to the rotation output shaft, and driving the rotation output shaft by rotation thereof; a second swash plate having a rotating surface and driving the rotation output shaft by rotation thereof; and a plurality of pieces made of a shape memory alloy stretched between the first swash plate and the second swash plate. A swash plate type thermally driven engine comprising an elastic body and means for applying different thermal effects to different parts of the elastic body. 3. The swash plate type heat-driven engine according to claim 1 or 2, further comprising means for adjusting the angle of the rotating surface of the swash plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57110233A JPS59578A (en) | 1982-06-25 | 1982-06-25 | Swash plate type heat driven engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57110233A JPS59578A (en) | 1982-06-25 | 1982-06-25 | Swash plate type heat driven engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59578A true JPS59578A (en) | 1984-01-05 |
JPS6359029B2 JPS6359029B2 (en) | 1988-11-17 |
Family
ID=14530465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57110233A Granted JPS59578A (en) | 1982-06-25 | 1982-06-25 | Swash plate type heat driven engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59578A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6219679U (en) * | 1985-07-18 | 1987-02-05 | ||
US5538171A (en) * | 1990-07-31 | 1996-07-23 | Roll Systems, Inc. | Method of tracking web segments for post-production operations |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51136053A (en) * | 1975-03-24 | 1976-11-25 | Delta Materials Research Ltd | Method and apparatus for convert of heat energy into mechanical energy |
-
1982
- 1982-06-25 JP JP57110233A patent/JPS59578A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51136053A (en) * | 1975-03-24 | 1976-11-25 | Delta Materials Research Ltd | Method and apparatus for convert of heat energy into mechanical energy |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6219679U (en) * | 1985-07-18 | 1987-02-05 | ||
US5538171A (en) * | 1990-07-31 | 1996-07-23 | Roll Systems, Inc. | Method of tracking web segments for post-production operations |
US5794830A (en) * | 1990-07-31 | 1998-08-18 | Roll Systems, Inc. | System for incorporation of post-production operations to a web output from an image transfer device |
US6243617B1 (en) * | 1990-07-31 | 2001-06-05 | Roll Systems, Inc. | System and method for incorporation of post-production operations to a web output from an image transfer device |
Also Published As
Publication number | Publication date |
---|---|
JPS6359029B2 (en) | 1988-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8307818B2 (en) | Shape memory alloy motor | |
US7677241B2 (en) | Apparatus for redirecting parallel rays using rigid translation | |
CA2047282A1 (en) | Attitude control device and drilling-direction control device | |
US4010612A (en) | Thermal motor | |
US4281513A (en) | Field effect memory alloy heat engine | |
JPS59578A (en) | Swash plate type heat driven engine | |
US4785627A (en) | Drive device | |
US4075847A (en) | Direct conversion of solar energy to mechanical energy | |
US4598550A (en) | Radiant heat engine | |
US4307571A (en) | Device driven by heat energy | |
JPS5819655A (en) | solar tracking concentrator | |
US4691517A (en) | Laterally oscillating nitinol engine | |
Yun et al. | Support mechanism for the ball rotor in the three-degree-of-freedom ultrasonic motor | |
US4302939A (en) | Solid state engine using nitinol memory alloy | |
US4285567A (en) | Automatic biaxial sun tracking mechanism for sun ray utilization devices | |
KR970010086A (en) | Method and apparatus for handling hardened tire | |
JP2018140463A (en) | Active manipulator device | |
JPS61252873A (en) | Swash-plate type thermally driven engine | |
EP2029968A2 (en) | Planetary gyroscopic drive system | |
JPS61205396A (en) | Variable pitch propeller | |
US20240376869A1 (en) | Torque Driven Dynamic Generator with Inertia Sustaining Drive | |
JP2007239717A (en) | Thermal power generating apparatus | |
JP4152098B2 (en) | Spherical actuator | |
JPS61190178A (en) | Tilt type actuator | |
JPH0529791B2 (en) |