JPS5954146A - Image pickup device - Google Patents
Image pickup deviceInfo
- Publication number
- JPS5954146A JPS5954146A JP57164637A JP16463782A JPS5954146A JP S5954146 A JPS5954146 A JP S5954146A JP 57164637 A JP57164637 A JP 57164637A JP 16463782 A JP16463782 A JP 16463782A JP S5954146 A JPS5954146 A JP S5954146A
- Authority
- JP
- Japan
- Prior art keywords
- photoconductive film
- imaging device
- film
- layer
- photoconductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/10—Screens on or from which an image or pattern is formed, picked up, converted or stored
- H01J29/36—Photoelectric screens; Charge-storage screens
- H01J29/39—Charge-storage screens
- H01J29/45—Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen
- H01J29/451—Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen with photosensitive junctions
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は撮像管あるいは光導電膜と走査回路基板を組み
あわせた構成の固体撮像装置の改良に関するものであり
、より詳細に旨うならば、主に光導電膜の動作電圧を低
下式せた場合に発生する解像度劣化を防止した撮像装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the improvement of a solid-state imaging device having a combination of an image pickup tube or a photoconductive film and a scanning circuit board. The present invention relates to an imaging device that prevents resolution deterioration that occurs when the operating voltage of a photoconductive film is lowered.
従来例の構成とその問題点
従来、撮像管ターゲットのターゲット電圧は、数十Vも
のターゲット電圧を必要としたが、p −1−n構成の
水素化アモルファスSi (以下a−8t : Hと記
す)を使用することによりターゲット電圧を数V程度に
下げることが可能であるとともに、ブロッキング構造を
有することがら耐圧も良く、撮像管として動作裕度を広
げることが可能である。Conventional configurations and their problems Conventionally, the target voltage of an image pickup tube target required a target voltage of several tens of volts. ), it is possible to lower the target voltage to about several volts, and since it has a blocking structure, it has good withstand voltage, and it is possible to widen the operating margin as an image pickup tube.
一方、信号走査機能を有する基板上に光導電膜を積層し
た構成の固体撮像装置(以下積層型固体撮像装置と呼ぶ
〕においても、電源電圧の制限以外にブルーミング現象
と残像現象の抑制や走査回路の耐圧からの制限のために
、光導電膜の動作電圧の低下は、必要不可欠となってお
り、このため、前述したp−1−n構造のa−8iや、
i層より(○ごX、/;1.QイY41)などの光導電
膜が用いられる。On the other hand, even in solid-state imaging devices that have a structure in which a photoconductive film is laminated on a substrate with a signal scanning function (hereinafter referred to as a stacked solid-state imaging device), in addition to limiting the power supply voltage, there are also restrictions on blooming and afterimage phenomena, and scanning circuits. Due to limitations from the withstand voltage of the photoconductive film, it is essential to lower the operating voltage of the photoconductive film.
From the i-layer, a photoconductive film such as (○goX, /;1.QiY41) is used.
このように、撮像管ターゲットや積層型固体撮像装置に
おいては光導電膜の動作電圧の低下が強く望1れている
。ところが従来、光導電膜の印加電圧を下げて動作させ
た場合、感度低下や焼きっけ現象はないにもかかわらず
、解像度の低下が顕著であった。As described above, there is a strong desire to reduce the operating voltage of photoconductive films in image pickup tube targets and stacked solid-state imaging devices. However, in the past, when the photoconductive film was operated with a lower voltage applied to it, there was a noticeable decrease in resolution, although there was no decrease in sensitivity or burn-out phenomenon.
発明の目的
本発明はこのような光導電膜の動作電圧を低下させても
解像度の劣化が牛じない撮像装置を提供することを目的
とするものである。OBJECTS OF THE INVENTION It is an object of the present invention to provide an imaging device in which the resolution does not deteriorate even when the operating voltage of the photoconductive film is lowered.
発明の構成
すなわち、本発明の撮像装置は基板上に形成された光導
電膜と、上記光導電膜上に形成された電極と、信号走査
回路を有し、上記光導電膜のリセット直後の膜厚方向の
電界が、膜面内方向に応じて異なった値にするものであ
る。In other words, the imaging device of the present invention includes a photoconductive film formed on a substrate, an electrode formed on the photoconductive film, and a signal scanning circuit, and includes a photoconductive film immediately after resetting the photoconductive film. The electric field in the thickness direction has different values depending on the in-plane direction of the film.
実施例の説明
6 ・・
次に本発明にかかる実施例を図面にもとすいて説明する
。Explanation of Embodiment 6 Next, an embodiment according to the present invention will be described with reference to the drawings.
第1図は、信号走査回路にCCDが用いられた積層型固
体撮像装置の1セルを複数個形成した場合の平面図であ
り、第2図は第1図に示された固体撮像装置のA−B方
向の断面構造を示した図である。第3図は、第1図に示
された固体撮像装置(D 駆動パルス波形である。FIG. 1 is a plan view of a stacked solid-state imaging device in which a CCD is used in the signal scanning circuit, in which a plurality of cells are formed, and FIG. 2 is a plan view of the solid-state imaging device shown in FIG. It is a diagram showing a cross-sectional structure in the -B direction. FIG. 3 shows a driving pulse waveform of the solid-state imaging device (D) shown in FIG.
第1図および第2図に示された固体撮像装置の動作をま
ず説明する。時間t1において信号読み込みパルスが印
力目されると、光導電膜およびダイオードに蓄積してい
た信号電荷は、COD転送段12a、12bに移動し、
ダイオード11a〜11cおよび光導電膜は、ある値ま
で充電される。First, the operation of the solid-state imaging device shown in FIGS. 1 and 2 will be explained. When a signal read pulse is applied at time t1, the signal charge accumulated in the photoconductive film and the diode moves to the COD transfer stages 12a and 12b.
The diodes 11a-11c and the photoconductive film are charged to a certain value.
透明電極に印加されるパルスは、転送パルスで信号電荷
が転洋豐に移動すそことを阻止するためのもので、リセ
ット期間以外のダイオード電位を、容量結合により、高
い電位に保つ働きをする。転送段3移0I−1荷0・−
’to、i・°°]″°ゝ1゛″周波数で転送される。The pulse applied to the transparent electrode is to prevent the signal charge from moving outward due to the transfer pulse, and serves to keep the diode potential at a high potential except during the reset period due to capacitive coupling. Transfer stage 3 transfer 0I-1 load 0・-
'to, i・°°]''°ゝ1゛'' frequency is transmitted.
第1図の構成の場合、電荷6ペーーミ゛
転送段には、電位阻止領域30a〜30dと、蓄積領域
31a〜31cが設けてあり、2相駆動で転送可能であ
る。ダイオードおよび光導電膜は1フレーム(33,3
m5)光信号を蓄積した後、再び充電される。以上がフ
ィールド人の信号読み込み動作であり、フィールドBは
、1フイ一ルド期間(16,67m5)の後、フィール
ド人と同様にリセットされる。In the configuration shown in FIG. 1, the 6-page charge transfer stage is provided with potential blocking regions 30a to 30d and storage regions 31a to 31c, and can be transferred by two-phase driving. The diode and photoconductive film are arranged in one frame (33, 3
m5) After accumulating optical signals, it is charged again. The above is the field person's signal reading operation, and field B is reset in the same way as the field person after one field period (16,67 m5).
以上が第1図に示された固体撮像装置の動作の説明であ
る。次に、上述した固体撮像装置の製造方法を説明する
。The above is an explanation of the operation of the solid-state imaging device shown in FIG. Next, a method for manufacturing the above solid-state imaging device will be described.
p型半導体基板1oにn領域を形成してダイオード11
とする。12はCOD転送段を構成するn−ウェルであ
り、上記ダイオード11とゲート酸化膜13とゲート電
極14とで、MOSFETを構成している。16は光導
電膜16の一方の電極であり1.ダイオード11の一部
を除いて信号走査回路とは、りん硅酸ガラス等の低融点
ガラス17で絶縁されている。光導電膜16は、a 7
8i:Hからなジグロー放電あるいはスパッタリング7
蒸着によりn −i −p構造または1層単層構造で形
成されるが、n −i −p構造またはi層単層構造の
いずれの場合も、炭素または窒素またllj:酸素とS
iとの化合物とすることもある。光導電膜16上の一部
領域には、数十Aから数百AのSiO2からなる絶縁体
層18が形成され、光導電膜16と絶縁膜18土にスパ
ッタリング蒸着によりIn203(Sn)が形成され透
明電極19とし、光20は透明電極19側から入射され
る。A diode 11 is formed by forming an n region on a p-type semiconductor substrate 1o.
shall be. Reference numeral 12 denotes an n-well constituting a COD transfer stage, and the diode 11, gate oxide film 13, and gate electrode 14 constitute a MOSFET. 16 is one electrode of the photoconductive film 16; Except for a part of the diode 11, the signal scanning circuit is insulated with a low melting point glass 17 such as phosphosilicate glass. The photoconductive film 16 is a7
8i: Jiglow discharge or sputtering of H 7 Formed by vapor deposition into an n-i-p structure or one-layer single-layer structure, but in either case, carbon or Nitrogen or llj: Oxygen and S
It may also be a compound with i. An insulating layer 18 made of SiO2 with a thickness of several tens of amperes to several hundred amperes is formed in a partial area on the photoconductive film 16, and In203 (Sn) is formed on the photoconductive film 16 and the insulating film 18 by sputtering deposition. A transparent electrode 19 is formed, and light 20 is incident from the transparent electrode 19 side.
上記のように構成した積層型固体撮像装置の光導電膜中
の光入射により生成したキャリアの挙動を第4図を用い
て説明する。なかでも本実施例の場合信号電荷は電子で
あるから主に電子の挙動全説明する。第4図は、簡単の
ために光導電膜16はi層単層の場合について1セルの
縦方向の模式的なバンドモデル図である。第4図(a)
は暗状態で光導電膜にバイアスが印加されたときを表わ
しており、絶縁体層のある部分(以後領域大と呼ぶ)を
実線により絶縁体のない部分(以後領域Bと呼ぶ)を点
線により示している。第4図(b)はA領域とB領域の
関係を示した平面図である。この図から明らかなように
、絶縁層の介在により領域Aのポテンシャルは領域Bよ
りも低く設定される。光入射がある場合には電極16」
二以外でかつ領域Bで生成した電荷は、電界によりi層
−絶縁体層17の界面に到達する。これらの電荷の一部
は光導電膜16と低融点ガラス17の界面準位などにト
ラップされ、この界面のポテンシャルをおし上げる。The behavior of carriers generated by light incidence in the photoconductive film of the stacked solid-state imaging device configured as described above will be explained using FIG. 4. In particular, in this embodiment, since the signal charge is an electron, the behavior of the electron will be mainly explained in its entirety. For simplicity, FIG. 4 is a schematic vertical band model diagram of one cell in the case where the photoconductive film 16 is a single i-layer. Figure 4(a)
represents when a bias is applied to the photoconductive film in a dark state, where the part with the insulator layer (hereinafter referred to as large area) is shown by a solid line, and the part without an insulator (hereinafter referred to as area B) is shown by a dotted line. It shows. FIG. 4(b) is a plan view showing the relationship between area A and area B. As is clear from this figure, the potential of region A is set lower than that of region B due to the presence of the insulating layer. If there is light incidence, the electrode 16"
Charges other than those generated in region B reach the i-layer-insulator layer 17 interface due to the electric field. A part of these charges is trapped in the interface level between the photoconductive film 16 and the low melting point glass 17, and increases the potential of this interface.
その結果第4図(C)に示すように領域Bをはさまれる
関係にある二つの領域Aは光導電膜の膜厚方向全体にわ
たって、領域Bにより形成される電位障壁によって分離
される。As a result, as shown in FIG. 4C, two regions A sandwiching region B are separated by a potential barrier formed by region B over the entire thickness direction of the photoconductive film.
第4図(d)は、絶縁体層1日のない従来の固体撮像装
置の場合について示したもので、i層と絶縁体層17の
界面近くには電位障壁が存在するが、透明電極190光
電変換作用にとり最も重要な領域での電位障壁は非常に
小さい。第4図(C)および(d)の状態をよりわかり
やすく説明するだめに、光導電膜16の横方向の電位分
布を示したものが第6図であり、第5図(a)は本実施
例の場合を、第5図(b)は従来例を示したものである
。第6図(a)より、本発明を用いると効果的に信号電
荷を領域Aに閉じ込めることが可能であり、横方向への
電荷40の流れが少なくなり、解像度を劣化させること
がない効果が得られることがわかる。また電子40は領
域人の中を正孔41は領域Bの中を流れる確率が増える
。このため電子と正孔の再結合確率が減少し、光導電膜
の動作電圧をより低下させることが可能となる。FIG. 4(d) shows the case of a conventional solid-state imaging device without an insulator layer, in which a potential barrier exists near the interface between the i layer and the insulator layer 17, but the transparent electrode 190 The potential barrier in the most important region for photoelectric conversion is very small. In order to explain the states of FIGS. 4(C) and (d) more clearly, FIG. 6 shows the lateral potential distribution of the photoconductive film 16, and FIG. In the case of the embodiment, FIG. 5(b) shows a conventional example. From FIG. 6(a), using the present invention, it is possible to effectively confine the signal charge in the area A, and the flow of the charge 40 in the lateral direction is reduced, which has the effect of not deteriorating the resolution. You can see what you can get. Further, the probability that electrons 40 flow in the region B and holes 41 flow in the region B increases. This reduces the probability of recombination of electrons and holes, making it possible to further reduce the operating voltage of the photoconductive film.
上述した実施例では、光導電膜16としてa−3tのi
層単層としたが、n−1−p構造のa−3t f用いて
も全く同様な効果が得られる。In the embodiment described above, the i of a-3t is used as the photoconductive film 16.
Although a single layer is used, the same effect can be obtained by using a-3tf having an n-1-p structure.
n−1−p構造で、p層を炭素あるいは窒素あるいは酸
素とシリコンとの化合物とし、高抵抗層とした場合には
、上述の実施例と異なる構成にすることが可能であり、
第6図を用いて説明する。In the n-1-p structure, when the p layer is made of a compound of carbon, nitrogen, or oxygen and silicon and is used as a high resistance layer, it is possible to have a structure different from the above embodiment.
This will be explained using FIG.
第6図は第4図と同様なバンドモデル図であり、実線で
示したA領域は信号電荷閉じ込め領域である。ここで、
第4図(b)に示した様にB領域としてp層の膜厚のよ
り薄い部分を形成すると、透明電10ベーミ・
極19側の電位はAおよびB領域で同一であるから、第
6図で点線で示すように、絶縁物を形成した場合と同様
な電位障壁が形成される。上述した構成(は、i層単層
の光導電膜でも可能であるが、この場合にはA領域とB
領域の膜厚差を十分大きくしなければ、効果的な電位障
壁が形成されない。FIG. 6 is a band model diagram similar to FIG. 4, and the region A indicated by the solid line is the signal charge confinement region. here,
As shown in FIG. 4(b), if a thinner part of the p layer is formed as the B region, the potential on the Boehmi electrode 19 side of the transparent electrode 10 is the same in the A and B regions. As shown by the dotted line in the figure, a potential barrier similar to that obtained when an insulator is formed is formed. The above-mentioned structure (is also possible with a single i-layer photoconductive film, but in this case, the A region and B region
An effective potential barrier cannot be formed unless the film thickness difference between the regions is made sufficiently large.
ところで、絶縁物あるいは高抵抗層を光導電膜上に形成
する方法は、他の動作電圧の低い光導電膜、例えばZn
xCdl−xSe −ZnyCdyTe (In) (
OIX l ’1 、 OI Y l 1 ’)に適用
しても同様な効果が得られる。また、第2図に示された
実施例では、1絵素に一つのA領域とその周辺に存在す
るB領域の場合を示しているが1絵素領域内に複数の独
立したA領域が存在しても良く、位置あわせ等の必要性
は特にない。By the way, the method of forming an insulator or a high resistance layer on a photoconductive film is similar to that of other photoconductive films with low operating voltages, such as Zn.
xCdl-xSe-ZnyCdyTe (In) (
A similar effect can be obtained even when applied to OIX l'1, OI Y l1'). In addition, in the example shown in FIG. 2, one pixel has one A area and a B area existing around it, but there are multiple independent A areas within one pixel area. However, there is no particular need for alignment.
以上述べた実施例においては、光導電膜と走査回路を組
みあわせた固体撮像装置の中でも、特に走査回路として
canを用いた構成の固体撮像装置について記したが、
本発明は光導電膜部分についてのものであるから、走査
回路としてBBDや11 ・
MOSアドレス機能を有するものを用いても同様な効果
が得られることは言う丑でもない。丑だ、撮像管に応用
する場合には、光が入射する側に高抵抗層や絶縁物層を
一部領域に形成したり、n−1−p構造の光導電膜の場
合には、n層の厚みを変化させることにより同様な効果
が得られる。In the embodiments described above, among solid-state imaging devices that combine a photoconductive film and a scanning circuit, a solid-state imaging device that uses a CAN as a scanning circuit is particularly described.
Since the present invention concerns the photoconductive film portion, it goes without saying that similar effects can be obtained even if a scanning circuit having a BBD or 11.times.MOS address function is used. When applied to an image pickup tube, a high resistance layer or an insulating layer is formed in some areas on the side where light enters, and in the case of a photoconductive film with an n-1-p structure, an n A similar effect can be obtained by varying the layer thickness.
発明の効果
本発明の撮像装置は光導電膜の動作電圧を低下させた場
合に生ずる解像度の劣化が防止可能であり、その産業上
の意義は極めて大きい。Effects of the Invention The imaging device of the present invention can prevent deterioration in resolution that occurs when the operating voltage of the photoconductive film is lowered, and has extremely great industrial significance.
第1図は走査回路がCODで形成された光導電膜を積層
した構成の固体撮像装置の複数単位を平す平面図、第2
図は、第1図に示された固体撮像装置の1絵素の断面図
、第3図(−)〜(C)は第1図に示された固体撮像装
置を駆動するだめのパルス波形図、第4図(a) 〜(
d) 、 第ts図(a)、(b) 、および第6図は
、本発明の詳細な説明するだめの図である。
10・・・・・・p型半導体基板、11・・・・・・ダ
イオード、12・・・・・・nウェノペ13・・・・・
・ゲート酸化膜、14・・・・・・ゲート電極、15・
・・・・・電極、16・・・・・・光導電膜、17・・
・・・・りん硅酸ガラス、18・・・・・・高抵抗層、
19・・・・・・透明電極、2o・・・・・・入射光。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第3図
℃1 将聞
第5図
−253−
第6図FIG. 1 is a plan view of a plurality of units of a solid-state imaging device in which a scanning circuit has a stack of photoconductive films formed by COD, and FIG.
The figure is a cross-sectional view of one pixel of the solid-state imaging device shown in FIG. 1, and FIGS. 3 (-) to (C) are pulse waveform diagrams for driving the solid-state imaging device shown in FIG. 1. , Fig. 4(a) ~(
d), ts (a), (b), and FIG. 6 are detailed illustrations of the present invention. 10...p-type semiconductor substrate, 11...diode, 12...n wenope 13...
・Gate oxide film, 14... Gate electrode, 15.
...Electrode, 16...Photoconductive film, 17...
...phosphosilicate glass, 18... high resistance layer,
19...Transparent electrode, 2o...Incoming light. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 ℃1 Shoten Figure 5-253- Figure 6
Claims (7)
に形成された電極と、信号走査回路とを有し、上記光導
電膜のリセット直後の膜厚方向の電界が、膜面内方向に
応じて異なった値にすることを特徴とする撮像装置。(1) It has a photoconductive film formed on a substrate, an electrode formed on the photoconductive film, and a signal scanning circuit, and the electric field in the film thickness direction immediately after resetting the photoconductive film is An imaging device characterized by setting different values depending on in-plane directions.
導体薄膜のp−1−n構造で形成され、高比抵抗を有す
るp層あるいはn層の厚みあるいは比抵抗を場所的に変
化させることを特徴とする特許請求の範囲第(1)項に
記載の撮像装置。(2) The photoconductive film is formed with a p-1-n structure of an amorphous semiconductor thin film mainly composed of silicon, and the thickness or resistivity of the p-layer or n-layer, which has a high resistivity, is varied locally. An imaging device according to claim (1), characterized in that:
炭素、窒素又は酸素の内の少なくとも1つ以上の元素と
シリコンからなる化合物半導体薄膜を用いたことを特徴
とする特許請求の範囲第(2)項に記載の撮像装置。(3) At least either the p layer or the n layer,
The imaging device according to claim (2), characterized in that a compound semiconductor thin film made of silicon and at least one element among carbon, nitrogen, or oxygen is used.
ti−、、:・ 導体薄膜と上記非晶質半導体薄膜の片面の一部領域に形
成された絶縁物あるいは高抵抗層とからなることを特徴
とする特許請求の範囲第(1)項に記載の撮像装置。(4) Amorphous semi-2 whose photoconductive film is mainly composed of silicon
ti-, , :・ The invention is characterized in that it consists of a conductor thin film and an insulator or high-resistance layer formed on a part of one side of the amorphous semiconductor thin film. imaging device.
d 、−、Te(In)(0,ffX、<1 、 Of
Y、<1 )と、上記Zn、Cd 、 −,5e−Zn
yCdyTe(In) (0,?Xf1 、 OfY、
ff1)の片面の一部領域に形成された絶縁物あるいは
高抵抗層とからなることを特徴とする特許請求の範囲第
(1)項に記載の撮像装置。(5) The photoconductive film is ZnxCd, -xSe-ZnyC
d,−,Te(In)(0,ffX,<1,Of
Y,<1) and the above Zn, Cd, -,5e-Zn
yCdyTe(In) (0,?Xf1, OfY,
ff1) The imaging device according to claim 1, further comprising an insulating material or a high-resistance layer formed on a partial region of one side of the ff1).
る特許請求の範囲第(1)項、第(2)項、第(4)項
。 または第(四項に記載の撮像装置。(6) Claims (1), (2), and (4), wherein the signal scanning circuit includes an electron beam. or (the imaging device described in Section 4).
子あるいはMOSアドレス素子であることを特徴とする
特許請求の範囲第0)項、第(2)項。 第(4〕項、または第(5)項に記載の撮像装置。(7) Claims 0) and 2), wherein the signal scanning circuit is a charge transfer element or a MOS address element formed in a substrate. The imaging device according to item (4) or item (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57164637A JPH0666920B2 (en) | 1982-09-20 | 1982-09-20 | Imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57164637A JPH0666920B2 (en) | 1982-09-20 | 1982-09-20 | Imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5954146A true JPS5954146A (en) | 1984-03-28 |
JPH0666920B2 JPH0666920B2 (en) | 1994-08-24 |
Family
ID=15796972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57164637A Expired - Lifetime JPH0666920B2 (en) | 1982-09-20 | 1982-09-20 | Imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0666920B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994405A (en) * | 1989-11-21 | 1991-02-19 | Eastman Kodak Company | Area image sensor with transparent electrodes |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7764231B1 (en) | 1996-09-09 | 2010-07-27 | Tracbeam Llc | Wireless location using multiple mobile station location techniques |
US9134398B2 (en) | 1996-09-09 | 2015-09-15 | Tracbeam Llc | Wireless location using network centric location estimators |
US6236365B1 (en) | 1996-09-09 | 2001-05-22 | Tracbeam, Llc | Location of a mobile station using a plurality of commercial wireless infrastructures |
US9538493B2 (en) | 2010-08-23 | 2017-01-03 | Finetrak, Llc | Locating a mobile station and applications therefor |
-
1982
- 1982-09-20 JP JP57164637A patent/JPH0666920B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994405A (en) * | 1989-11-21 | 1991-02-19 | Eastman Kodak Company | Area image sensor with transparent electrodes |
Also Published As
Publication number | Publication date |
---|---|
JPH0666920B2 (en) | 1994-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0096725B1 (en) | Semiconductor image pick-up device | |
US4862237A (en) | Solid state image sensor | |
US4740824A (en) | Solid-state image sensor | |
CN101427387B (en) | Integrated mis photosensitive device using continuous films | |
US4354104A (en) | Solid-state image pickup device | |
US5591963A (en) | Photoelectric conversion device with dual insulating layer | |
JPS5831669A (en) | Solid-state image pickup device | |
US5225706A (en) | Matrix of photosensitive elements associating a photodiode or a phototransistor and a storage capacitor | |
US4616249A (en) | Solid state image pick-up element of static induction transistor type | |
JPH0458698B2 (en) | ||
JPS5954146A (en) | Image pickup device | |
US5414275A (en) | Photoelectric converting device and image processing apparatus utilizing the same | |
US4789888A (en) | Solid-state image sensor | |
JP3238160B2 (en) | Stacked solid-state imaging device | |
JPH08250694A (en) | Solid-state image sensor and manufacture thereof | |
JP2509592B2 (en) | Stacked solid-state imaging device | |
JPH0347624B2 (en) | ||
Chikamura et al. | A high-sensitivity solid-state image sensor using a thin-film ZnSe-Zn 1-x Cd x Te heterojunction photosensor | |
JP2831752B2 (en) | Solid-state imaging device | |
JPH07335936A (en) | Optoelectric transducer | |
JPH0430577A (en) | Solid state image pickup element | |
JPS6333353B2 (en) | ||
JPH07115183A (en) | Layer-built solid-state image pickup device | |
JP3087415B2 (en) | Image sensor | |
JPS5846066B2 (en) | Photoelectric conversion device |