JPS5952690B2 - Manufacturing method for large-diameter heat-treated steel pipes - Google Patents
Manufacturing method for large-diameter heat-treated steel pipesInfo
- Publication number
- JPS5952690B2 JPS5952690B2 JP13948079A JP13948079A JPS5952690B2 JP S5952690 B2 JPS5952690 B2 JP S5952690B2 JP 13948079 A JP13948079 A JP 13948079A JP 13948079 A JP13948079 A JP 13948079A JP S5952690 B2 JPS5952690 B2 JP S5952690B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- pipe
- heat
- treated
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 27
- 239000010959 steel Substances 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000010791 quenching Methods 0.000 claims description 11
- 230000000171 quenching effect Effects 0.000 claims description 11
- 238000005496 tempering Methods 0.000 claims description 6
- 230000006698 induction Effects 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】
本発明は熱処理鋼管の製造方法、特に大径の溶接鋼管を
拡管した後、移送させながら誘導加熱により連続的に焼
入れ焼もどしの熱処理を行なう大径熱処理鋼管の製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing heat-treated steel pipes, and particularly a method for manufacturing large-diameter heat-treated steel pipes in which a large-diameter welded steel pipe is expanded and then continuously quenched and tempered by induction heating while being transported. Regarding.
天然ガス、石油パイプラインあるいは油井用の管には、
高し弓1張り強度および靭性に加えて寸法精度のすぐれ
た大径溶接鋼管が用いられる。For natural gas or oil pipelines or oil well pipes,
A large diameter welded steel pipe is used which has excellent tensile strength and toughness as well as dimensional accuracy.
このような管は、例えばいわゆるUOE方式あるいはC
FE方式(コンテイニアスロールフオーミング方式)な
どの製管方式によって製造されるのが普通である。Such tubes are used, for example, in the so-called UOE system or in the C
It is usually manufactured using a pipe manufacturing method such as the FE method (continuous roll forming method).
これらの方式はいずれも型を用いて鋼板を管状に成形し
、板のエツジ部をシーム溶接した後、高い寸法精度およ
び最適な機械的性質を得るために半径方向に拡管すると
いう工程を経る。All of these methods involve forming a steel plate into a tube using a die, seam welding the edges of the plate, and then expanding the tube radially to obtain high dimensional accuracy and optimal mechanical properties.
近年、パイプラインの長距離化に伴ない、天然ガス等の
輸送コストの低減のため、それに供される鋼管はますま
す大径化する傾向にあり、それに伴なって一層張力強度
、低温靭性、耐水素誘起割れのすぐれた鋼管が要求され
、また、近年海洋構造物等においても厚肉大径鋼管が要
求されてきている。In recent years, as pipelines have become longer distances, the steel pipes used there have become increasingly larger in diameter in order to reduce the cost of transporting natural gas, etc. Steel pipes with excellent resistance to hydrogen-induced cracking are required, and in recent years, thick-walled, large-diameter steel pipes have also been required for marine structures and the like.
これらの要求を満たすために、溶接後の大径鋼管に焼入
れ焼もどしの熱処理を行なう必要性が増大している。In order to meet these demands, there is an increasing need to perform heat treatment such as quenching and tempering on large diameter steel pipes after welding.
しかし、通常、このような大径鋼管を移送しながらその
途中で連続的に加熱し、冷却すると、管端部分の外径は
管中央部(管端部分以外の管中間部分)のそれより大き
くなり、管端部および管中央部両者の外径をすべて一定
の規格値内におさめることが困難となる。However, normally, when such large-diameter steel pipes are continuously heated and cooled during transport, the outer diameter of the pipe ends becomes larger than that of the pipe center part (the middle part of the pipe other than the pipe ends). Therefore, it becomes difficult to keep the outer diameters of both the tube end portion and the tube center portion within a certain standard value.
即ち、鋼管の移送中に連続的に加熱、冷却を行なうと、
管の移動に伴ない既冷却部分は熱収縮により急激にその
()が収縮する。In other words, if the steel pipe is heated and cooled continuously during transport,
As the tube moves, the cooled portion rapidly shrinks due to thermal contraction.
したがってこの部分と連続している未冷却部分は周方向
の圧縮熱応力が発生し、しかも高温の状態にあるため容
易に永久圧縮変形が生じる。Therefore, compressive thermal stress occurs in the circumferential direction in the uncooled portion that is continuous with this portion, and since it is in a high temperature state, permanent compression deformation easily occurs.
しかしながら、既冷却部分が存在しない管端部分、特に
移送方向に対して管の前端部分には上述のような圧縮熱
応力は発生せず、永久圧縮変形は生じ難い。However, the above-mentioned compressive thermal stress does not occur in the end portion of the tube where there is no cooled portion, particularly in the front end portion of the tube in the transport direction, and permanent compressive deformation is unlikely to occur.
その結果、最終製品の管端部の外径は管中央部よりも大
きくなる。As a result, the outer diameter of the end of the tube in the final product is larger than that of the center of the tube.
本発明はこのような不具合をなくし、外径を長さ方向の
全域にわたって均一になし得る熱処理鋼管の製造方法を
提供することを目的とするものであって、被処理鋼管を
熱処理に入る前の拡管段階において管端部付近の拡管率
を管中央部(管端部付近以外の部分)の拡管率よりも予
め小さくしておくことを特徴とする。The object of the present invention is to eliminate such problems and provide a method for manufacturing heat-treated steel pipes that can make the outer diameter uniform over the entire length direction. The tube expansion step is characterized in that the tube expansion rate near the tube end is made smaller in advance than the tube expansion rate at the tube center (portion other than the tube end).
次に本発明を、図面を参照して、より具体的に説明する
。Next, the present invention will be explained in more detail with reference to the drawings.
第1図は大径熱処理鋼管の拡管工程から焼入れまでの工
程を模型的に示したものである。FIG. 1 schematically shows the steps from expansion to quenching of a large-diameter heat-treated steel pipe.
管状に成形されシーム溶接された被処理管1は、エキス
パンダ2によって機械的に管径の約1.0〜1.5%程
拡管した後、焼入れ工程3に移送する。The tube to be treated 1 formed into a tubular shape and seam welded is mechanically expanded by about 1.0 to 1.5% of the tube diameter by an expander 2, and then transferred to a quenching step 3.
焼入れ工程3では被処理管1を誘導加熱コイル4に通し
て例えば最高的950℃まで加熱し、続いて管内外面か
ら水冷ノズル7で水冷して管を収縮、硬化させる。In the hardening step 3, the tube 1 to be treated is passed through an induction heating coil 4 and heated to a maximum temperature of 950° C., and then water-cooled from the inside and outside of the tube with a water cooling nozzle 7 to shrink and harden the tube.
焼もどし工程(図示省略)では同様な誘導加熱コイルに
よって変態点以下に加熱し、空気噴射ノズル等によって
冷却し、焼入れ時の組織を安定化させ強靭性をもたせる
。In the tempering step (not shown), the material is heated to below the transformation point using a similar induction heating coil and cooled using an air injection nozzle or the like to stabilize the structure during quenching and provide toughness.
ここで被処理管1の進行につれて管端部分Aを除く管の
中間部分Bが焼入れ工程3の誘導加熱コイル4を通過し
、水冷直前にあるとき、その前の部分(管部端部分)が
冷却されて収縮状態にあるため、このB部分には周方向
の圧縮熱応力が働き、これによって容易に永久圧縮変形
が生ずる。As the pipe to be treated 1 progresses, the middle part B of the pipe excluding the pipe end part A passes through the induction heating coil 4 in the quenching process 3, and when it is just before water cooling, the previous part (the pipe end part) Since it is cooled and in a contracted state, compressive thermal stress acts on this portion B in the circumferential direction, which easily causes permanent compression deformation.
しかし、管端部分Aが水冷直前にあるときは、それより
進行方向前方には既冷却部分がつながっていないので、
管端の前方からはこのような熱応力を受けることがなく
、どうしても最終的に管端部分Aの外径が大きくなる。However, when the tube end portion A is just before water cooling, there is no already cooled portion connected ahead of it in the direction of travel.
Such thermal stress is not applied from the front of the tube end, and the outer diameter of the tube end portion A inevitably increases in the end.
このような現象は、焼入れ工程のみならず、焼もどし工
程においても、水冷した場合のように急激に径が収縮す
るときには、生ずる。Such a phenomenon occurs not only in the quenching process but also in the tempering process when the diameter rapidly contracts as in the case of water cooling.
第2図はこのようにして熱処理された大径鋼管の外径の
ばらつきを、管の長手方向について示したものである。FIG. 2 shows variations in the outer diameter of large-diameter steel pipes heat-treated in this manner in the longitudinal direction of the pipes.
管外径は管端(前端)で最も大きく、管端から約1mぐ
らいまで外径不良の部分が続いている。The outer diameter of the tube is largest at the tube end (front end), and the portion with poor outer diameter continues up to about 1 m from the tube end.
このように外径の大きくなる部分は、被処理管の全長に
関係なく管端から約1mの部分までである。The portion where the outer diameter increases in this way is up to approximately 1 m from the end of the tube, regardless of the overall length of the tube to be treated.
したがって本発明では、熱処理に入る前の拡管工程の段
階で、予め、熱応力により発生する永久圧縮変形量に相
当する量だけ被処理管の両端から外径不良が生ずる部分
まで、具体的には管前端から約1mまでの部分の拡管外
径を管の中央部のそれよりも小さくしておき、この状態
で焼入れ焼もどしの熱処理をする。Therefore, in the present invention, at the stage of the tube expansion process before starting heat treatment, the tube is expanded in advance by an amount corresponding to the amount of permanent compressive deformation caused by thermal stress, from both ends of the tube to be treated to the portion where the outer diameter defect occurs. The expanded outer diameter of the portion up to about 1 m from the front end of the tube is made smaller than that of the center of the tube, and in this state heat treatment for quenching and tempering is performed.
管端部分のみ外径の小さい鋼管は、上述のような熱処理
によって外径の差が相殺され全体として均一な外径の熱
処理鋼管となる。For a steel pipe whose outer diameter is small only at the tube end, the difference in outer diameter is canceled out by the heat treatment described above, resulting in a heat-treated steel pipe having a uniform outer diameter as a whole.
拡管方法には、水圧を利用するかあるいは機械的手段で
行なう方法がある。Pipe expansion methods include methods using water pressure or mechanical means.
機械的手段としては、両管端から管内に長さ1m程度の
円筒状に並べたセグメント9 (第1図)を挿入しロッ
ド10を介して油圧装置(図示省略)によりくさび作用
で押し広げて拡管する。As a mechanical means, segments 9 (Fig. 1) arranged in a cylindrical shape with a length of about 1 m are inserted into the pipe from both ends of the pipe, and are pushed apart by a wedge action using a hydraulic device (not shown) via a rod 10. Expand the tube.
このようなメカニカルエキスパンダを使用する場合に、
本発明では前記ロッドのストローク長を調整することに
より管前端付近の拡管率が管中央部(管前端から1m以
後の部分)のそれよりほぼ0.65%小さくなるように
、管前端から1mまでの拡管率を漸次変化させる。When using such a mechanical expander,
In the present invention, by adjusting the stroke length of the rod, the expansion rate near the front end of the tube is approximately 0.65% smaller than that at the center of the tube (the part after 1 m from the front end of the tube). The tube expansion rate is gradually changed.
第3図は本発明の方法によって熱処理された後の鋼管の
外径分布を、第2図と同様の管長手方向について示した
ものである。FIG. 3 shows the outer diameter distribution of a steel pipe after being heat-treated by the method of the present invention, in the same longitudinal direction as in FIG. 2.
この図からもわかるように、管部端部分の外径寸法が大
きくなっておらず、全長について公称管外径に近くなっ
ている。As can be seen from this figure, the outer diameter of the end portion of the tube is not large, and the entire length is close to the nominal outer diameter of the tube.
上述の実施例では鋼管を移動させながら順次管長手方向
に沿って熱処理していく場合を述べたが、鋼管を固定し
、熱処理装置を管軸に沿って移動させて焼入れ、焼もど
しを行なってもよいことは勿論である。In the above embodiment, the steel pipe is moved and heat treated sequentially along the length of the pipe, but the steel pipe is fixed and the heat treatment equipment is moved along the pipe axis to perform quenching and tempering. Of course, this is a good thing.
拡管手段も実施例のように機械的な手段にのみ限定され
ない。The tube expanding means is also not limited to mechanical means as in the embodiments.
第1図は大径熱処理鋼管の拡管から焼入れ熱処理までの
工程を模型的に示した図、第2図は従来の方法によって
製造された熱処理鋼管の外径分布を管長手方向について
示した図、第3図は本発明の方法によって製造された熱
処理鋼管の外径分布を示した第2図と同様の図である。
1・・・・・・被処理管、2・・・・・・メカニカルエ
キスパンダ、3・・・・・・焼入れ工程、4・・・・・
・誘導加熱コイル。Fig. 1 is a diagram schematically showing the process from expansion to quenching heat treatment of a large-diameter heat-treated steel pipe, and Fig. 2 is a diagram showing the outer diameter distribution of a heat-treated steel pipe manufactured by a conventional method in the pipe longitudinal direction. FIG. 3 is a diagram similar to FIG. 2, showing the outer diameter distribution of a heat-treated steel pipe manufactured by the method of the present invention. 1...Pipe to be treated, 2...Mechanical expander, 3...Quenching process, 4...
・Induction heating coil.
Claims (1)
行なう熱処理鋼管の製造方法において、前記熱処理を行
なう前に、前記鋼管の管前端付近を他の部分より拡管率
を小さくして拡管した後、熱処理を行なうことを特徴と
する熱処理鋼管の製造方法。1. In a method for manufacturing a heat-treated steel pipe in which a steel pipe is heat-treated by quenching and tempering along the axial direction, before the heat treatment, the front end of the steel pipe is expanded at a smaller expansion ratio than other parts, and then, A method for manufacturing a heat-treated steel pipe, which comprises performing heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13948079A JPS5952690B2 (en) | 1979-10-29 | 1979-10-29 | Manufacturing method for large-diameter heat-treated steel pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13948079A JPS5952690B2 (en) | 1979-10-29 | 1979-10-29 | Manufacturing method for large-diameter heat-treated steel pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5662923A JPS5662923A (en) | 1981-05-29 |
JPS5952690B2 true JPS5952690B2 (en) | 1984-12-21 |
Family
ID=15246225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13948079A Expired JPS5952690B2 (en) | 1979-10-29 | 1979-10-29 | Manufacturing method for large-diameter heat-treated steel pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5952690B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5896820A (en) * | 1981-12-02 | 1983-06-09 | Nippon Kokan Kk <Nkk> | Manufacturing method of stainless steel welded steel pipe |
ATE349293T1 (en) * | 2000-10-24 | 2007-01-15 | Saipem Spa | METHOD AND DEVICE FOR WELDING PIPES |
-
1979
- 1979-10-29 JP JP13948079A patent/JPS5952690B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5662923A (en) | 1981-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4018634A (en) | Method of producing high strength steel pipe | |
CN102056687B (en) | Method for producing a large steel tube | |
US4449281A (en) | Method of producing multiple-wall, composite tubular structures | |
US4470188A (en) | Method of mechanically prestressing a tubular apparatus | |
CN101652596A (en) | Seamless bend tube, weld joint with seamless straight tube, and method of producing them | |
US4538337A (en) | Method of mechanically prestressing a tubular apparatus | |
US4841760A (en) | Process and apparatus for manufacturing tube bends | |
US3063142A (en) | Method of making tubing structures | |
JPS5952690B2 (en) | Manufacturing method for large-diameter heat-treated steel pipes | |
JPH0949025A (en) | Manufacturing method of UOE steel pipe with excellent collapse resistance | |
KR890003804B1 (en) | Making seamless steel pipes | |
CN107419168A (en) | The X70 level pipeline seamless steel pipes and its production method of super-large diameter | |
JP4903635B2 (en) | UOE steel pipe with excellent deformability for line pipe | |
JP3161285B2 (en) | Manufacturing method of large diameter welded steel pipe | |
CN105567940B (en) | A kind of method for improving the anti-enlarging crooked deformability of metal pipe material | |
JPH0953121A (en) | Heat treatment of locally thickened metallic bar stock and apparatus therefor | |
RU2137564C1 (en) | Method for making cast iron tubes | |
JPS62224421A (en) | Manufacture of hollow stabilizer | |
JP2842225B2 (en) | Upset processing method | |
JPH06269842A (en) | Method for drawing coiled steel pipe | |
JPS5818404B2 (en) | It's important to know what's going on. | |
JPH037448B2 (en) | ||
JP3856940B2 (en) | Hot-bending metal strip and its manufacturing method | |
JPS5978718A (en) | Production of small diameter pipe | |
JP2577051B2 (en) | Method of manufacturing multilayer curved tube |