[go: up one dir, main page]

JPS5952235A - X-ray film picture reader - Google Patents

X-ray film picture reader

Info

Publication number
JPS5952235A
JPS5952235A JP57163660A JP16366082A JPS5952235A JP S5952235 A JPS5952235 A JP S5952235A JP 57163660 A JP57163660 A JP 57163660A JP 16366082 A JP16366082 A JP 16366082A JP S5952235 A JPS5952235 A JP S5952235A
Authority
JP
Japan
Prior art keywords
light
signal
ray film
converted
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57163660A
Other languages
Japanese (ja)
Inventor
Ken Ishikawa
謙 石川
Mitsuru Ikeda
満 池田
Shigeru Watanabe
滋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP57163660A priority Critical patent/JPS5952235A/en
Publication of JPS5952235A publication Critical patent/JPS5952235A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To varying >=1 of the distribution amount of light, optical filter transmittivity, etc., and to expands the dynamic range of a parallel light density measurement system by distributing transmitted light into plural pieces of luminous flux and measuring and converting them into electric signals. CONSTITUTION:Light from a light source 1 is passed through a lens 2 and limited by an input-side pinhole 3 to such a spread that necessary resolution is obtained to incident an X-ray film 4. The light transmitted through the film 4 enters a photometric system through a photometry-side pinhole 5. The luminous flux is split into two by a half-mirror 6, and luminous flux Q1 is transmitted through an optical filter 7 and then converted by an optical converter 8 into an electric signal, which is further converted into a voltage signal v1 by a current- voltage converter 10. Luminous flux Q2 is converted by a photoelectric converter 9 into a current signal, which is converted into a voltage signal v2 by a current- voltage converter 11. Pieces of density information on diffusion density values 0-4 on an X-ray film are read by the output signal of a composing circuit without any omission and spoiling spatial resolution.

Description

【発明の詳細な説明】 本発明は、X線フィルムの濃度を測定することによって
、X線フィルム画像情報を読み取るX線フィルム画像読
取装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray film image reading device that reads X-ray film image information by measuring the density of the X-ray film.

従来のX線フィルム画像読取装置は、その解像度を保持
するために、第1図に示すように、入射光と出力光のビ
ーム幅が同一な平行光によって濃度を測定している。こ
の平行光による濃度を平行光濃度り、といっている。こ
の平行光濃度り、は式(1)で表わされる。
In order to maintain its resolution, a conventional X-ray film image reading device measures density using parallel light whose beam width is the same as that of incident light and output light, as shown in FIG. The density due to this parallel light is called the parallel light density. This parallel light density is expressed by equation (1).

DI =kyg Io / I+  ・・(1)式(1
)において、IOは入射光、■1は散乱光を含まない透
過光である。
DI = kyg Io / I+ ... (1) Formula (1
), IO is incident light, and (1) is transmitted light that does not include scattered light.

一方、一般の濃度計で測定される濃度は、平行光の入射
光■oに対して、第2図に示すように、散乱光まで含め
た全出力光I2を測定して得られる拡散濃度D2である
。この拡散濃度D2は式(2)%式% ) 一般に、平行光濃度D1 と拡散濃度D2との間には、 D t ”:: Q D 2−−(3)の関係があシ、
係数Qは1〜2程度になる。この係数QはX線フィルム
による散乱の程度によって変わる。
On the other hand, the concentration measured with a general densitometer is the diffused density D2 obtained by measuring the total output light I2 including scattered light with respect to parallel incident light It is. This diffused density D2 is expressed by the formula (2) (%) Generally, there is a relationship between the parallel light density D1 and the diffused density D2 as follows: D t ":: Q D 2--(3)
The coefficient Q is about 1 to 2. This coefficient Q varies depending on the degree of scattering by the X-ray film.

例えば、係数Q=2のとき、拡散濃度D2−4に対して
平行光濃度DI−8となる。これは、同一黒化度のX線
フィルムに対して、拡散濃度測定系では4桁の測定が必
要であるのに対して、平行光濃度測定系では8桁の測定
が必要となることを意味している。
For example, when the coefficient Q=2, the parallel light density becomes DI-8 compared to the diffuse density D2-4. This means that for an X-ray film with the same degree of blackening, a diffuse density measurement system requires 4-digit measurements, whereas a parallel light density measurement system requires 8-digit measurements. are doing.

このように、Xaフィルムの解像度を保持した平行光濃
度測定を用いたX線フィルム画像読取装置で、拡散濃度
1〜4の濃度情報を有するX線フィルムを読み取るため
には、8桁以上のダイナミックレンジを有した測定系が
必要となり、現状では非常に困難であった。例えば、平
行光濃度り。
In this way, in order to read an X-ray film that has density information of diffuse density 1 to 4 with an X-ray film image reading device that uses parallel light density measurement that maintains the resolution of Xa film, it is necessary to use a dynamic This requires a measurement system with a range, which is currently extremely difficult. For example, parallel light density.

で4捷で、拡散濃度D2で2程度までの測定しかできな
かった。
With 4 probes, it was possible to measure only up to about 2 in diffusion concentration D2.

本発明の目的は、前記従来技術の欠点を除去し、X線フ
ィルム画像を解像度が良く、かつ高濃度部分壕で読み取
ることができるX線フィルム画像読取装置を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an X-ray film image reading device that eliminates the drawbacks of the prior art and is capable of reading X-ray film images with good resolution and in high-density subfields.

本発明は、前記目的を達成するためになされたものであ
り、その原理は、平行光”濃度測定系の測光部において
、透過光を複数の光束に分配して、それぞれを測光し電
気信号に変換するものである。
The present invention has been made to achieve the above object, and its principle is that in the photometry section of a parallel light concentration measurement system, transmitted light is distributed into a plurality of light beams, each of which is photometered and converted into an electrical signal. It is something that converts.

そして、各測光系において、光分配量、光学フィルタ透
過率、光電変換器感度、負荷抵抗値のうち少なくとも1
つを変化させることKよって、各測光系に付属したアン
プが異なった光量の領域で線形に動作させるようにする
。このようにして測光系ごとに異なった濃度領域の測定
が可能となる。
In each photometric system, at least one of the light distribution amount, optical filter transmittance, photoelectric converter sensitivity, and load resistance value is selected.
This allows the amplifier attached to each photometric system to operate linearly in regions of different amounts of light. In this way, it becomes possible to measure different density regions for each photometric system.

次に、各測光系からの電気信号を、第3図に示すように
、各測光系の全体の感度比に従って接続させるように合
成することによって実質的にダイナミックレンジを拡張
した測光系を構成したものである。
Next, as shown in Figure 3, the electrical signals from each photometric system were combined in such a way that they were connected according to the overall sensitivity ratio of each photometric system, thereby constructing a photometric system that substantially expanded the dynamic range. It is something.

第3図は、横軸にX線フィルム透過光量を縦軸に測光系
の出力電圧をとったX線フィルム透過光量測光系出力電
圧特性を示す図であり、aは高濃度和光測光系の出力曲
線、bは低濃度和光測光系の出力曲線、Cは合成測光系
の出力曲線である。
Figure 3 is a diagram showing the output voltage characteristics of the X-ray film transmitted light measurement system, with the horizontal axis representing the amount of X-ray film transmitted light and the vertical axis representing the output voltage of the photometry system, where a is the output of the high density Wako photometry system. Curve b is the output curve of the low-density Wako photometry system, and C is the output curve of the synthetic photometry system.

次に、実施例とともに本発明の詳細な説明する。Next, the present invention will be described in detail along with examples.

第4図は、本発明のX線フィルム画像読取装置の一実施
例の全体構成を示す図である。
FIG. 4 is a diagram showing the overall configuration of an embodiment of the X-ray film image reading device of the present invention.

図中、1は光源、2は平行光を作るためのレンズ、3は
入力側ピンホール、4はX線フィルム、5は測光側ピン
ホール、6はノ・−フミラー、7は光学フィルタ、8,
9は光を電気信号に変換する光電変換器、10.11は
それぞれオペレーショナルアンブリファイア(以下、単
にオペアンプという)A+及びA2と帰還抵抗R1及び
R2からなる電流−電圧変換器、12は電流−電圧変換
器10及び11の出力信号v1及びv2 を合成信号に
変換するための信号合成回路である。
In the figure, 1 is a light source, 2 is a lens for creating parallel light, 3 is a pinhole on the input side, 4 is an X-ray film, 5 is a pinhole on the photometry side, 6 is a nof mirror, 7 is an optical filter, 8 ,
9 is a photoelectric converter that converts light into an electrical signal; 10 and 11 are current-to-voltage converters each consisting of operational amplifiers (hereinafter simply referred to as operational amplifiers) A+ and A2 and feedback resistors R1 and R2; 12 is a current-to-voltage converter. This is a signal combining circuit for converting output signals v1 and v2 of converters 10 and 11 into a combined signal.

次に、本実施例の動作を第4図において説明する。Next, the operation of this embodiment will be explained with reference to FIG.

光源1からの光は、レンズ2によって平行光線に変えら
れ、入力側ピンホール6で必要な解像度が得られる拡が
りの光束に制限してからX線フィルム4に入射する。X
線フィルム4を透過した光は測光側ピンホール5を通っ
て測光系に入る。
Light from a light source 1 is converted into a parallel beam by a lens 2, and after being restricted by an input side pinhole 6 to a beam spread enough to obtain the necessary resolution, it enters an X-ray film 4. X
The light transmitted through the line film 4 passes through the photometric side pinhole 5 and enters the photometric system.

測光系では、まずハーフミラ−6によって光束が2つに
分けられる。一方の光束Q1は、光学フィルタ7を透過
した後、光電変換器8によって電流信号に変換され、さ
らにオペアンプA、と帰還抵抗1(、とからなる電流−
電圧変換器10によって電圧信号IIl  に変換され
る。他方の光束Q2は、光学フィルタ7を通らずに直接
光電変換器9によって電流信号に変換され、さらにオペ
アンプA2と帰還抵抗R2とからなる電流−電圧変換器
11によって電圧信号υ2に変換される。ここで、ハー
フミラ−乙の光分配率を、光束Q1 :光束Q2=1:
n、光学フィルタ7の透過率η、光電変換器8及び9の
感度比を、(光電変換器8の感度):(光電変換器9の
感度)=1:m、とすれば、前記電圧信号υl、υ2 
の比rは式(4)のようになる。
In the photometry system, the light beam is first divided into two by a half mirror 6. One light flux Q1 passes through an optical filter 7, and then is converted into a current signal by a photoelectric converter 8, and is further converted into a current signal by an operational amplifier A and a feedback resistor 1 (,
It is converted into a voltage signal IIl by a voltage converter 10. The other light flux Q2 is directly converted into a current signal by the photoelectric converter 9 without passing through the optical filter 7, and further converted into a voltage signal υ2 by the current-voltage converter 11 consisting of an operational amplifier A2 and a feedback resistor R2. Here, the light distribution ratio of the half mirror B is as follows: Luminous flux Q1: Luminous flux Q2=1:
n, the transmittance η of the optical filter 7, and the sensitivity ratio of the photoelectric converters 8 and 9 as (sensitivity of photoelectric converter 8):(sensitivity of photoelectric converter 9)=1:m, then the voltage signal υl, υ2
The ratio r is as shown in equation (4).

r−v2/υ1 =rLmR2/ηRt −−(4) 一方、前記の2つの測光系は、光電変換器8゜9及び電
流−電圧変換器10.11の特性によシ、一定収上の入
力光に対しては出力電圧が線型でなくなる。また、逆に
入力光が少な過ぎるときは、S/N比が悪くなシ実際の
測定はできなくなる。
r-v2/υ1 = rLmR2/ηRt --(4) On the other hand, the two photometric systems described above have a constant yield input depending on the characteristics of the photoelectric converter 8゜9 and the current-voltage converter 10.11. For light, the output voltage is no longer linear. On the other hand, if the input light is too small, the S/N ratio will be poor and actual measurement will not be possible.

したがって、2つの測光系単独での入出力特性は、第3
図に示す曲線a+bのようになる。
Therefore, the input/output characteristics of the two photometric systems alone are
The result is a curve a+b shown in the figure.

そこで、両側光系の線型に動作する範囲が重なるように
(第3図参照)、ハーフミラ−6、光学フィルタ7、光
電変換器8,9及び電流−電圧変換器TO,1+の帰還
抵抗R,,R2の特性又は定数を選び、かつ、この重な
る領域中に選ばれた接続点Pにおいて、曲線aに、測定
系全体での感度比rに治って平行移動させた曲線すを接
続させて最終的に入出力特性を曲線C(第3図参照)の
ようにするために、前記電流−電圧変換器10及び11
の出力電圧信号υ1及びv2 を信号合成回路12に入
力する。信号合成回路12の出力電圧信号は第3図に示
す曲線Cのようになる。
Therefore, the feedback resistors R, , R2, and at the connection point P selected in this overlapping region, connect the curve a to the curve a that is translated in parallel to the sensitivity ratio r of the entire measurement system to obtain the final result. In order to make the input/output characteristics as shown in curve C (see FIG. 3), the current-voltage converters 10 and 11 are
The output voltage signals υ1 and v2 are input to the signal synthesis circuit 12. The output voltage signal of the signal synthesis circuit 12 becomes a curve C shown in FIG.

なお、本実施例では、ハーフミラ−6と光電変換器80
間に光学フィルタ7を配置したが、これは測定系全体の
感度比rの値のとり方如何によっては省略することもで
きる。また逆に、必要に応じてハーフミラ−6と光電変
換器9の間に光学フィルタを置くことも考えられる。
Note that in this embodiment, the half mirror 6 and the photoelectric converter 80
Although the optical filter 7 is placed between them, it may be omitted depending on how the value of the sensitivity ratio r of the entire measurement system is determined. Conversely, it is also conceivable to place an optical filter between the half mirror 6 and the photoelectric converter 9, if necessary.

第5図〜第10図は、第4図に示す信号合成回路12、
即ち、両側光系の出力電圧信号u1.712(r=v2
/υ1〉1)を合成して第3図に示す曲線Cに対応する
出力電圧信号v3 を作る信号合成回路の実施例の構成
を示す図である。図中、14.14A、14Bは対数変
換器、15は加算器、16簾は比較器、16Bはデジタ
ル比較器、17゜17A、、17Bはマルチプレクサ、
18.18A、。
5 to 10 show the signal synthesis circuit 12 shown in FIG. 4,
That is, the output voltage signal u1.712 (r=v2
FIG. 4 is a diagram showing the configuration of an embodiment of a signal synthesis circuit that synthesizes the output voltage signal v3 corresponding to the curve C shown in FIG. In the figure, 14. 14A and 14B are logarithmic converters, 15 is an adder, 16 is a comparator, 16B is a digital comparator, 17° 17A, 17B is a multiplexer,
18.18A,.

18Bはアナログ・デジタル(以下、単にA/Dという
)変換器、19.19A、19Bはデジタル対数変換器
、20は乗算器である。
18B is an analog-to-digital (hereinafter simply referred to as A/D) converter, 19.19A and 19B are digital-logarithmic converters, and 20 is a multiplier.

第1実施例は、第5図に示すように電圧信号υ1及びv
2 がまずアナログの対数変換器14A、14Bに入力
される。lOgL’l に相当する信号には−rに相当
する信号が加算器15で加算された後、Iogv2に相
当する信号と共にマルチプレクサ17に入力される。ま
た、電圧信号v2 は比較器16に入力され、第3図の
接続点Pに相当する電圧ZISと比較される。そして、
比較器16の出力がv2) v 3の時は、マルチプレ
クサ17の出力はkygr−l−1ogv、  に相当
する信号を出力し、そうでない時はIogv、、に相当
する信号を出力するようになっている。これらの出力信
号は次段のA/D変換器18でA/D変換され、デジタ
ル信号として出力される。
In the first embodiment, as shown in FIG. 5, voltage signals υ1 and v
2 is first input to analog logarithmic converters 14A and 14B. After a signal corresponding to -r is added to the signal corresponding to lOgL'l by an adder 15, the signal is input to a multiplexer 17 together with a signal corresponding to Iogv2. Further, the voltage signal v2 is input to the comparator 16 and compared with the voltage ZIS corresponding to the connection point P in FIG. and,
When the output of the comparator 16 is v2)v3, the output of the multiplexer 17 outputs a signal corresponding to kygr-l-1ogv, and otherwise outputs a signal corresponding to Iogv, . ing. These output signals are A/D converted by the next stage A/D converter 18 and output as digital signals.

第2実施例は、第6図に示すように、電圧信号vHr 
v2 をまずA/D変換器18A、18BでそれぞれA
/D変換した後、前記第1実施例でアナログ的に行われ
た操作がデジタル的に実行されるようにしたものである
In the second embodiment, as shown in FIG.
v2 is first converted to A by A/D converters 18A and 18B.
After /D conversion, the operations performed analogously in the first embodiment are digitally performed.

第3実施例は、第7図に示すように、第2実施例に類似
した構成だが、デジタル的に対数変換を実行するデジタ
ル対数変換器19がマルチプレクサ17の後段に配置さ
れている。これにともなりて、第2実施例の加算器15
(Iogr相当の信号を加算)を乗算器20(γ相当の
信号を乗算)に置換えたものである。
As shown in FIG. 7, the third embodiment has a configuration similar to that of the second embodiment, but a digital logarithmic converter 19 that digitally performs logarithmic conversion is placed after the multiplexer 17. Along with this, the adder 15 of the second embodiment
(adds a signal equivalent to Iogr) is replaced with a multiplier 20 (multiplies a signal equivalent to γ).

第4実施例は、第8図に示すように、電圧信号マルチプ
レクサ174は、電圧信号v2  と接続点Pに相当す
る電圧vsを比較する比較器16の出力に応じて、v2
 ) v s 0時はul を出力し、そうでない時は
υ2 を出力する。マルチプレクサ17Aの出力は、ア
ナログ対数変換器14に入力され、その出力は2つに分
けられる。その一方の出力はlOgrに相当する信号を
加算器15で加算した後、他方の出力と共に第2のマル
チプレクサ17Bに入力される。第2のマルチプレクサ
17Bは、v2〉υSの時kygrに加えられた信号を
出力し、そうでない時はアナログ対数変換器14の出力
を出力する。第2のマルチプレクサ17Bの出力はA/
D変換器18でA、 / D変換されデジタル信号とし
て出力されるようになっている。
In the fourth embodiment, as shown in FIG.
) When v s is 0, outputs ul, otherwise outputs υ2. The output of multiplexer 17A is input to analog logarithmic converter 14, and its output is divided into two. After one output is added with a signal corresponding to lOgr by an adder 15, it is input to the second multiplexer 17B together with the other output. The second multiplexer 17B outputs the signal applied to kygr when v2>υS, and otherwise outputs the output of the analog logarithmic converter 14. The output of the second multiplexer 17B is A/
The signal is A/D converted by a D converter 18 and output as a digital signal.

第5実施例は、第9図に示すように、第4実施例での第
1のマルチプレクサ17Aの後の操作がデジタル的に実
行されるようになっている。
In the fifth embodiment, as shown in FIG. 9, the operations after the first multiplexer 17A in the fourth embodiment are performed digitally.

第6実施例は、第5実施例に類似した構成であるが、デ
ジタル的に対数変換を実行するデジタル対数変換器が第
2のマルチプレクサ17Bの後段に配置され、これにと
もなって、第5実施例の加算器15を乗算器20に置換
えたものである。
The sixth embodiment has a configuration similar to the fifth embodiment, but a digital logarithmic converter that digitally performs logarithmic conversion is arranged after the second multiplexer 17B. The adder 15 in the example is replaced with a multiplier 20.

なお、本発明は、前記実施例に限定されることなく、そ
の要旨を変更しない範囲において種々変更し得ることは
勿論である。例えば、信号合成回路は、前記実施例の他
にも、対数変換器、加算器。
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without changing the gist thereof. For example, in addition to the above embodiments, the signal synthesis circuit may include a logarithmic converter and an adder.

乗算器、A/D変換器、マルチプレクサ及び比較器の配
置を置き換えることによって種々の回路構成が考えられ
る。
Various circuit configurations are possible by replacing the arrangement of multipliers, A/D converters, multiplexers, and comparators.

以上説明した如く、従来のX線フィルム画像読取装置は
、拡散濃度でθ〜2程度までの測定しかできなかったが
、本発明によれば、拡散濃度θ〜4に渡るX線フィルム
上の濃度情報を、もれなく、かつ空間分解能を損うこと
なく読み取ることができる。
As explained above, the conventional X-ray film image reading device could only measure the diffusion density up to θ~2, but according to the present invention, the density on the X-ray film over the diffusion density θ~4 can be measured. Information can be read completely and without loss of spatial resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、平行光濃度測定例を示す図、第2図は、散乱
光濃度測定例を示す図、第3図は、本発明の詳細な説明
するための図、第4図は、本発明のX線フィルム画像読
取装置の一実施例の全体構成を示す図、第5〜第10図
は、゛信号合成回路の実施例の構成を示す図である。 1・光源、2 レンズ、3 入力端ピンホール、4・X
線フィルム、5 測光側ピンホール、6ハーフミラー、
7・ 光学フィルタ、8,9・・・光電変換器、10.
tl・電流−電圧変換器、12・信号合成回路。 代理人  弁理士 秋 1)収 喜
FIG. 1 is a diagram showing an example of parallel light concentration measurement, FIG. 2 is a diagram showing an example of scattered light concentration measurement, FIG. 3 is a diagram for explaining the present invention in detail, and FIG. 4 is a diagram showing the present invention. Figures 5 to 10 are diagrams showing the overall configuration of an embodiment of the X-ray film image reading device of the invention, and are diagrams showing the configuration of an embodiment of the signal synthesis circuit. 1. Light source, 2. Lens, 3. Input end pinhole, 4.
line film, 5 photometric side pinhole, 6 half mirror,
7. Optical filter, 8, 9... photoelectric converter, 10.
tl・Current-voltage converter, 12・Signal synthesis circuit. Agent Patent Attorney Aki 1) Shu Ki

Claims (1)

【特許請求の範囲】[Claims] 平行光線発生機構、スリ、ト及び光電変換器を有するX
線フィルム画像読取装置において、前記スリ、トを通過
した透過光を複数の光束に分配する光束分配手段と、該
各分配光束を電気信号に変換する光電変換器と、各光電
変換器の出力信号を合成する信号合成回路を具備したこ
とを特徴とするX線フィルム画像読取装置。
X with a parallel light generating mechanism, a slot, a photoelectric converter, and a photoelectric converter
In the linear film image reading device, there is provided a light flux distributing means for distributing the transmitted light passing through the slits into a plurality of light fluxes, a photoelectric converter for converting each of the distributed light fluxes into electrical signals, and an output signal of each photoelectric converter. An X-ray film image reading device characterized by comprising a signal synthesis circuit for synthesizing.
JP57163660A 1982-09-20 1982-09-20 X-ray film picture reader Pending JPS5952235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57163660A JPS5952235A (en) 1982-09-20 1982-09-20 X-ray film picture reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57163660A JPS5952235A (en) 1982-09-20 1982-09-20 X-ray film picture reader

Publications (1)

Publication Number Publication Date
JPS5952235A true JPS5952235A (en) 1984-03-26

Family

ID=15778157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57163660A Pending JPS5952235A (en) 1982-09-20 1982-09-20 X-ray film picture reader

Country Status (1)

Country Link
JP (1) JPS5952235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127708A (en) * 1985-11-15 1987-06-10 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− Laser scanner
US4781464A (en) * 1986-04-14 1988-11-01 Isco, Inc. Gel scanner
US5221848A (en) * 1992-04-30 1993-06-22 Eastman Kodak Company High dynamic range film digitizer and method of operating the same
JPH063294A (en) * 1992-06-22 1994-01-11 Nippon Telegr & Teleph Corp <Ntt> Fluorescent x-ray spectral device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454632A (en) * 1977-10-08 1979-05-01 Olympus Optical Co Ltd Photometric circuit of photographing apparatus
JPS5587953A (en) * 1978-12-26 1980-07-03 Fuji Photo Film Co Ltd Processing method of x-ray image
JPS5639680A (en) * 1979-09-07 1981-04-15 Fujitsu General Ltd Method and device for image pickup of television
JPS5739673A (en) * 1980-08-21 1982-03-04 Minolta Camera Co Ltd Image sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454632A (en) * 1977-10-08 1979-05-01 Olympus Optical Co Ltd Photometric circuit of photographing apparatus
JPS5587953A (en) * 1978-12-26 1980-07-03 Fuji Photo Film Co Ltd Processing method of x-ray image
JPS5639680A (en) * 1979-09-07 1981-04-15 Fujitsu General Ltd Method and device for image pickup of television
JPS5739673A (en) * 1980-08-21 1982-03-04 Minolta Camera Co Ltd Image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127708A (en) * 1985-11-15 1987-06-10 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− Laser scanner
US4781464A (en) * 1986-04-14 1988-11-01 Isco, Inc. Gel scanner
US5221848A (en) * 1992-04-30 1993-06-22 Eastman Kodak Company High dynamic range film digitizer and method of operating the same
JPH063294A (en) * 1992-06-22 1994-01-11 Nippon Telegr & Teleph Corp <Ntt> Fluorescent x-ray spectral device

Similar Documents

Publication Publication Date Title
JPS6132607B2 (en)
US6643011B2 (en) SNR calculation method and optical spectrum measurement apparatus
JPS5952235A (en) X-ray film picture reader
JPS60247381A (en) Picture reader
US4652735A (en) Image reader for X-ray film or the like having a detection system with an expanded dynamic range
Herfindal et al. Calibration improvements expand filterscope diagnostic use
Tanabe et al. Absolute optical responsivity down to the photon counting level with a photomultiplier tube
JP3230565B2 (en) Optical spectrum analyzer
JPH0224533A (en) Apparatus for measuring distribution of grain size
US4587428A (en) Method and apparatus for the diagnosis of tissue samples
JP2745319B2 (en) Optical output measuring device for multi-core optical fiber
JP3275282B2 (en) Optical spectrum analyzer
JP3681102B2 (en) Method and apparatus for reading X-ray image information
JPS5984235A (en) X-ray film picture reader
JPH0943056A (en) Instrument for measuring intensity of light
JPH0228537A (en) Device for measuring particle size distribution
JPH04223229A (en) Light power meter and light coupler manufacturing device using it
JP2560293B2 (en) Spectrophotometer
JPS6132649A (en) Image reader
JPS6315535B2 (en)
JPS623609A (en) Range finder
SU380952A1 (en) DEVICE FOR AUTOMATIC IDENTIFICATION OF IDENTICAL POINTS ON COLOR STEREO PARTS IMAGES
JP2901747B2 (en) Distance measuring device
JPH0232202A (en) Method and device for measuring extremely small light spot
JPS58129378A (en) Adjustment of photo detector for scintillation camera