JPS5950936B2 - Ultrasonic microscope sample holding plate - Google Patents
Ultrasonic microscope sample holding plateInfo
- Publication number
- JPS5950936B2 JPS5950936B2 JP54003737A JP373779A JPS5950936B2 JP S5950936 B2 JPS5950936 B2 JP S5950936B2 JP 54003737 A JP54003737 A JP 54003737A JP 373779 A JP373779 A JP 373779A JP S5950936 B2 JPS5950936 B2 JP S5950936B2
- Authority
- JP
- Japan
- Prior art keywords
- holding plate
- sample holding
- ultrasonic
- sample
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 238000002604 ultrasonography Methods 0.000 description 8
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010980 sapphire Substances 0.000 description 7
- 229920002799 BoPET Polymers 0.000 description 6
- 239000005041 Mylar™ Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
本発明は、超音波顕微鏡に使用される試料保持板に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample holding plate used in an ultrasonic microscope.
光のかわりに、音波を用いて、物体の微小世界を探ると
いう新しい方式として最近超音波顕微鏡の開発が進めら
れている。Ultrasonic microscopes have recently been developed as a new method of exploring the microscopic world of objects using sound waves instead of light.
これは光学顕微鏡による光の屈折率を利用するものと異
なり物理的特性により像を結ぶものであり、物体の表面
下にかくされた部分を見る事が可能である。この超音波
顕微鏡は、原理的には細く絞つた超音波により、試料面
を機械的に走査し、散乱された超音波を集音して電気信
号に変換し、陰極線管の表面に二次元的に表示し、顕微
鏡像を得るものである。Unlike an optical microscope that uses the refractive index of light, this system forms images based on physical characteristics, and it is possible to see parts hidden beneath the surface of an object. In principle, this ultrasonic microscope mechanically scans the sample surface using narrowly focused ultrasonic waves, collects the scattered ultrasonic waves, converts them into electrical signals, and generates a two-dimensional image on the surface of a cathode ray tube. The image is displayed on the screen and a microscopic image is obtained.
このとき試料に照射される超音波がいかに損失なく伝搬
され、その反射等を集音するかがこの顕微鏡の分解能、
鮮明度を高めるポイントとなる。一般的な超音波顕微鏡
の構成としては超音波の検出の方式により、すなわち試
料内で散乱あるいは減衰しながら透過してきた超音波を
検出する場合と、試料内の音響的性質の差によつて反射
してきた超音波を検出する場合とによつて透過型と反射
型とに分けられる。The resolution of this microscope is determined by how the ultrasonic waves irradiated onto the sample are propagated without loss and how the reflected sounds are collected.
This is the key to increasing clarity. A typical ultrasonic microscope is configured by two methods: one detects ultrasound that has passed through the sample while being scattered or attenuated, and the other detects ultrasound that is reflected due to differences in acoustic properties within the sample. They are divided into transmission type and reflection type, depending on the case in which the ultrasonic waves transmitted are detected.
第1図は透過型の超音波顕微鏡の基本構成を示すブロッ
ク図である。FIG. 1 is a block diagram showing the basic configuration of a transmission type ultrasound microscope.
1は高周波発振器、2は送波側超音波集束レンズで、サ
ファイア等の超音波伝搬媒体材、3は受波側超音波集束
レンズでサファイア等の超音波伝搬媒体材、4は水など
の音場媒体、5は試料保持板、6は試料、7は試料保持
板5をx及びY方向に移動させる走査装置、8は走査装
置7を制御する走査回路、9は受波側超音波集束レンズ
3からの出力を受信する受信回路、10は表示装置であ
る。1 is a high frequency oscillator, 2 is a transmitting side ultrasonic focusing lens made of an ultrasonic propagation medium such as sapphire, 3 is a receiving side ultrasonic focusing lens and is made of an ultrasonic propagating medium such as sapphire, and 4 is a sound source such as water. field medium, 5 is a sample holding plate, 6 is a sample, 7 is a scanning device that moves the sample holding plate 5 in the x and Y directions, 8 is a scanning circuit that controls the scanning device 7, 9 is a receiving side ultrasonic focusing lens A receiving circuit receives the output from 3, and 10 is a display device.
前述の如き超音波顕微鏡において、まず、送波用トラン
スジューサ2aにおいて放射された平面超音波は球面レ
ンズ部2bによつて集束され、音場媒体中に焦点を結ぶ
、この集点は受波側超音波集束レンズ3との共焦点の位
置にあり、受波側超音波集束レンズ3の球面部3bによ
つて集音された超音波は平面超音波となり受波用トラン
スジユーサ3aによつて電気信号に変換される。In the ultrasonic microscope as described above, first, the plane ultrasonic wave emitted by the transmitting transducer 2a is focused by the spherical lens part 2b and focused in the sound field medium. It is located at a confocal position with the ultrasound focusing lens 3, and the ultrasound collected by the spherical part 3b of the ultrasound focusing lens 3 on the receiving side becomes a plane ultrasound and is converted into an electric wave by the receiving transducer 3a. converted into a signal.
そこで試料の検査面が超音波集束レンズの焦点に位置す
るようにしながら試料保持板5をX方向に振動させなが
らY方向に少しずつ移動させれば、超音波ビームは相対
的に試料面を走査することになる。Therefore, by vibrating the sample holding plate 5 in the X direction and moving it little by little in the Y direction while keeping the inspection surface of the sample at the focal point of the ultrasonic focusing lens, the ultrasonic beam will scan the sample surface relatively. I will do it.
超音波ビームが試料6を透過する際、振幅や位相の変化
を受けるので超音波ビームが横切るところの試料面の各
点に対応させて表示装置10内の陰極線管(CRT)の
電子ビームを掃引し、受波用トランスジユーサ3aの出
力信号に応じて輝度変調をかければCRT面上には、二
次元的に顕微鏡像が得られる。ところで、前述の如き、
超音波顕微鏡において、従来は、超音波ビームの伝搬媒
体となる音場媒体や試料保持板等で減衰又は音場媒体と
試料保持板との境界面での反射等のために、分解能、鮮
明度を充分高めることが出来なかつた。When the ultrasonic beam passes through the sample 6, the amplitude and phase change, so the electron beam of the cathode ray tube (CRT) in the display device 10 is swept in correspondence with each point on the sample surface where the ultrasonic beam crosses. However, by applying brightness modulation according to the output signal of the receiving transducer 3a, a two-dimensional microscopic image can be obtained on the CRT surface. By the way, as mentioned above,
In ultrasonic microscopes, conventionally, resolution and clarity have been affected due to attenuation by the acoustic field medium that is the propagation medium of the ultrasonic beam, the sample holding plate, etc., or reflection at the interface between the acoustic field medium and the sample holding plate. I was not able to raise it sufficiently.
即ち、従来超音波顕微鏡に用いる試料保持板5としては
、平面度が比較的出し易いことと、取扱いが楽である等
の理由により、板厚が30〜50μmのマイラ板を使用
し、音場媒体としては水等を使用していた。That is, conventionally, as the sample holding plate 5 used in an ultrasonic microscope, a Mylar plate with a thickness of 30 to 50 μm is used because it is relatively easy to obtain flatness and is easy to handle. Water or the like was used as the medium.
しかし、板厚が30〜50μmのマイラ板ではマイラ板
中での損失が大きく、第5図の特性曲線Dに示すように
その伝搬損失は、音波の周波数が高く.なるほど増加し
、300M比付近では約10dBに達する。However, in a Mylar plate with a thickness of 30 to 50 μm, the loss in the Mylar plate is large, and as shown in the characteristic curve D in FIG. Indeed, it increases and reaches about 10 dB near the 300M ratio.
従つて、試料保持板5の材質にマイラ板を使用した場合
実用的には、100M比が限度であり、分解能も15μ
mが限界であつた。又、マイラ板は強度も充分とは言え
ず板厚を薄くすることができ.ないという欠点があつた
。本発明は、上述の如き従来の欠点を改善するもので、
その目的は、超音波顕微鏡における試料保持板中での超
音波ビームの減衰を少なくし、又試料保持板と音場媒体
との境界面での反射を少なく・して分解能、鮮明度の高
い画像を得られるような試料保持板を提供することを目
的とする。Therefore, when Mylar plate is used as the material for the sample holding plate 5, the practical limit is 100M ratio and the resolution is 15μ.
m was the limit. Also, Mylar board is not strong enough, so the thickness of the board cannot be made thinner. The drawback was that there was no. The present invention improves the conventional drawbacks as described above.
The purpose of this is to reduce the attenuation of the ultrasonic beam in the sample holding plate in the ultrasonic microscope, and to reduce reflections at the interface between the sample holding plate and the sound field medium, thereby producing images with high resolution and clarity. The purpose is to provide a sample holding plate that can obtain the following.
次に本発明の実施例について詳細に説明する。Next, embodiments of the present invention will be described in detail.
第2図は本発明の試料保持板の一実施例で、同図の試料
保持板11は、その材質をサフアイアにて形成し、板厚
を超音波ビームの波長の2分の1の整数倍に形成したも
のである。前記試料保持板11の板厚を波長の2分の1
の整数倍に定めたため、音場媒体から見たときの音響イ
ンピーダンスは音場媒体の固有音響インピーダンスと等
価になり、試料保持板11の音響インピーダンスに無関
係になり、試料保持板11での反射損失は略ゼロとなる
。FIG. 2 shows an embodiment of the sample holding plate of the present invention, and the sample holding plate 11 shown in the same figure is made of sapphire and has a thickness that is an integral multiple of half the wavelength of the ultrasonic beam. It was formed in The thickness of the sample holding plate 11 is set to 1/2 of the wavelength.
Since the acoustic impedance as seen from the sound field medium is equivalent to the specific acoustic impedance of the sound field medium and is independent of the acoustic impedance of the sample holding plate 11, the reflection loss at the sample holding plate 11 is is approximately zero.
又、試料保持板11の材質をサフアイアとしたのは第5
図の特性曲線Cに示すようにマイラ板と比較して高い周
波数で材質中での伝搬損失が少く、300M比以上の周
波数に対しても殆んど伝搬損失がなく、数百M比以上の
超音波ビームを利用し、分解能を高め、かつ、鮮明度を
上げられる理由による。In addition, the material of the sample holding plate 11 was made of sapphire in the fifth model.
As shown in characteristic curve C in the figure, the propagation loss in the material at high frequencies is small compared to Mylar board, and there is almost no propagation loss even for frequencies over 300 M ratio, and at frequencies over several hundred M ratio. This is because ultrasonic beams can be used to improve resolution and clarity.
第3図は本発明の試料保持板の他の実施例で、同図にお
いて、板厚を超音波ビームの波長の2分の1の整数倍と
するサフアイアからなる前記試料保持板11の上下面に
、厚さを超音波ビームの波長の4分の1とする二酸化ケ
イ素層12を形成したものである。FIG. 3 shows another embodiment of the sample holding plate of the present invention, in which the upper and lower surfaces of the sample holding plate 11 made of sapphire whose thickness is an integral multiple of 1/2 the wavelength of the ultrasonic beam are shown. A silicon dioxide layer 12 having a thickness one-fourth of the wavelength of the ultrasonic beam is formed thereon.
上述の如き、構成とした試料保持板11の上下面に形成
した二酸化ケイ素層12の固有音響インピーダンスは音
場媒体(水)の固有音響インピーダンスとサフアイアの
固有音響インピーダンスとの幾何平均値にほぼ等価であ
る。The characteristic acoustic impedance of the silicon dioxide layer 12 formed on the upper and lower surfaces of the sample holding plate 11 configured as described above is approximately equivalent to the geometric mean value of the characteristic acoustic impedance of the sound field medium (water) and the characteristic acoustic impedance of Saphire. It is.
そして、二酸化ケイ素層12の厚さを超音波ビームの波
長の4分の1としたため、音場媒体(水)から試料保持
板11を見た場合該試料保持板11の音響インピーダン
スは、略音場媒体4の固有音響インピーダンスと等価に
なり、又、試料保持板11から音場媒体4を見た場合の
音響インピーダンスは、試料保持板11の固有音響イン
ピーダンスと等価になる。その結果、超音波ビームは音
場媒体4−[ヮ_化ケイ素層12−試料保持板11−[ヮ
_化ケイ素層12−音場媒体4の各境界面で反射するこ
となく透過する。Since the thickness of the silicon dioxide layer 12 is set to one quarter of the wavelength of the ultrasonic beam, the acoustic impedance of the sample holding plate 11 when viewed from the sound field medium (water) is approximately The acoustic impedance becomes equivalent to the specific acoustic impedance of the field medium 4, and the acoustic impedance when the sound field medium 4 is viewed from the sample holding plate 11 becomes equivalent to the specific acoustic impedance of the sample holding plate 11. As a result, the ultrasonic beam is
- Transmits without being reflected at each interface between the silicon oxide layer 12 and the sound field medium 4.
従つて前記第2図の実施例と同様に、数百M以上の超音
波ビームを利用して分解能、鮮明度を高め、良好な画像
を得ることが出来る。Therefore, similarly to the embodiment shown in FIG. 2, it is possible to improve the resolution and sharpness and obtain a good image by using an ultrasonic beam of several hundred M or more.
又、第4図に示すようにサフアイアだけの試料保持板1
1の場合、板厚が波長の2分の1を整数倍からずれたと
き、音場媒体4と試料保持板11の境界面での音波の反
射により透過率は特性曲線Aに示すように急激に悪化す
るが試料保持板11の上下面に二酸化ケイ素層12を4
分の1波長の厚さに形成したサンドイツチ型としたとき
は、特性曲線Bに示すように試料保持板11の板厚が波
長の2分の1の整数倍から若干ずれても二酸化ケイ素層
12が音響インピーダンスの整合層として働き、反射に
よる損失が減少するため分解能、鮮明度の高い像が得ら
れるという利点がある。以上詳細に説明したように本発
明の試料保持板は数百MH7s以上の超音波ビームに対
しても試料保持板中において減衰が少なく、又、試料保
持板境界面での反射が少ないので超音波顕微鏡の分解能
、鮮明度の高い良質な顕微鏡像を得ることが出来るもの
である。In addition, as shown in Fig. 4, there is a sample holding plate 1 made only of sapphire.
1, when the plate thickness deviates from an integer multiple of half the wavelength, the transmittance sharply changes due to the reflection of the sound wave at the interface between the sound field medium 4 and the sample holding plate 11, as shown in characteristic curve A. However, four silicon dioxide layers 12 are placed on the top and bottom surfaces of the sample holding plate 11.
In the case of a sandwich type formed to a thickness of one-half wavelength, as shown in characteristic curve B, even if the thickness of the sample holding plate 11 slightly deviates from an integer multiple of one-half the wavelength, the silicon dioxide layer 12 acts as an acoustic impedance matching layer, reducing loss due to reflection, which has the advantage of providing images with high resolution and clarity. As explained in detail above, the sample holding plate of the present invention has little attenuation in the sample holding plate even for ultrasonic beams of several hundred MH7 seconds or more, and there is little reflection at the interface of the sample holding plate, so ultrasonic waves It is possible to obtain high-quality microscopic images with high resolution and clarity.
また、試料保持板にサフアイアを一実施例であげたが、
その他に水晶、ルビー等の材料を用いることもできる。In addition, although sapphire was used as the sample holding plate in one example,
Other materials such as crystal and ruby can also be used.
第1図は透過型超音波顕微鏡のプロツタ図、第2図は本
発明の一実施例の試料保持板の斜視図、第3図は本発明
の試料保持板の他の実施例の斜視図、第4図、第5図は
本発明の一実施例の特性曲線図である。
1・・・・・・高周波発振器、2・・・・・・送波側超
音彼集束レンズ、3・・・・・・受波側超音波集束レン
ズ、4・・・・・・音場媒体、5,11・・・・・・試
料保持板、6・・・・・・試料、7・・・・・・走査装
置、8・・・・・・走査回路、9・・・・・・受信回路
、10・・・・・・表示装置、12・・・・・・二酸化
ケイ素層。FIG. 1 is a plotter diagram of a transmission ultrasound microscope, FIG. 2 is a perspective view of a sample holding plate of one embodiment of the present invention, and FIG. 3 is a perspective view of another embodiment of the sample holding plate of the present invention. 4 and 5 are characteristic curve diagrams of an embodiment of the present invention. 1... High frequency oscillator, 2... Ultrasonic focusing lens on the transmitting side, 3... Ultrasonic focusing lens on the receiving side, 4... Sound field Medium, 5, 11...Sample holding plate, 6...Sample, 7...Scanning device, 8...Scanning circuit, 9... - Receiving circuit, 10...Display device, 12...Silicon dioxide layer.
Claims (1)
超音波ビームを検出する超音波顕微鏡において、上記試
料保持板を超音波ビームの伝搬損失の少ない材質で構成
すると共に、その板厚を超音波ビームの波長の2分の1
の整数倍としたことを特徴とする超音波顕微鏡の試料保
持板。 2 試料及びこの試料を保持する試料保持板を透過した
超音波ビームを検出する超音波顕微鏡において、上記試
料保持板を超音波ビームの伝搬損失の少ない材質で構成
すると共に、その板厚を超音波ビームの波長の2分の1
の整数倍とし、上記試料保持板の上下面に固有音響イン
ピーダンスが音場媒体と前記試料保持板の固有音響イン
ピーダンスの幾何平均に近似した二酸化ケイ素等の材質
を超音波の波長の4分の1の奇数倍の厚さに形成したこ
とを特徴とする超音波顕微鏡の試料保持板。[Scope of Claims] 1. In an ultrasonic microscope that detects an ultrasonic beam transmitted through a sample and a sample holding plate that holds the sample, the sample holding plate is made of a material with low propagation loss of the ultrasonic beam, and The thickness of the plate is 1/2 of the wavelength of the ultrasonic beam.
A sample holding plate for an ultrasonic microscope, characterized in that the plate is an integral multiple of . 2. In an ultrasonic microscope that detects an ultrasonic beam transmitted through a sample and a sample holding plate that holds this sample, the sample holding plate is made of a material with low propagation loss of the ultrasonic beam, and the thickness of the plate is 1/2 of the wavelength of the beam
The upper and lower surfaces of the sample holding plate are made of a material such as silicon dioxide whose specific acoustic impedance approximates the geometric mean of the specific acoustic impedance of the sound field medium and the sample holding plate, which is a quarter of the wavelength of the ultrasonic wave. A sample holding plate for an ultrasonic microscope, characterized in that it is formed to have a thickness that is an odd number times as large as .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54003737A JPS5950936B2 (en) | 1979-01-16 | 1979-01-16 | Ultrasonic microscope sample holding plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54003737A JPS5950936B2 (en) | 1979-01-16 | 1979-01-16 | Ultrasonic microscope sample holding plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5595859A JPS5595859A (en) | 1980-07-21 |
JPS5950936B2 true JPS5950936B2 (en) | 1984-12-11 |
Family
ID=11565537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54003737A Expired JPS5950936B2 (en) | 1979-01-16 | 1979-01-16 | Ultrasonic microscope sample holding plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5950936B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02147436U (en) * | 1989-05-16 | 1990-12-14 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780556A (en) * | 1980-11-07 | 1982-05-20 | Noritoshi Nakabachi | Concave transducer for focusing ultrasonic wave of ultrasonic microscope |
JP5130451B2 (en) * | 2007-02-27 | 2013-01-30 | 国立大学法人豊橋技術科学大学 | Acoustic parameter measuring device, sample support for acoustic parameter measuring device, acoustic parameter measuring method, and ultrasonic brain tissue observation method |
JP2008209258A (en) * | 2007-02-27 | 2008-09-11 | Honda Electronic Co Ltd | Sample support for acoustic parameter measuring device, and acoustic parameter measuring device |
-
1979
- 1979-01-16 JP JP54003737A patent/JPS5950936B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02147436U (en) * | 1989-05-16 | 1990-12-14 |
Also Published As
Publication number | Publication date |
---|---|
JPS5595859A (en) | 1980-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4028933A (en) | Acoustic microscope | |
Lemons et al. | Acoustic microscope—scanning version | |
US3790281A (en) | Combined system for acoustical-optical microscopy | |
US4012951A (en) | Acoustic examination methods and apparatus | |
JPH0254503B2 (en) | ||
US4510810A (en) | Ultrasonic microscope | |
JPS5944582B2 (en) | scanning acoustic microscope | |
JPS5816672B2 (en) | Onpaketsuzohou Oyobi Onpaketsuzoouchi | |
JPS5950936B2 (en) | Ultrasonic microscope sample holding plate | |
US4566333A (en) | Focusing ultrasonic transducer element | |
JPH0330105B2 (en) | ||
SU832449A1 (en) | Scanning acoustic microscope | |
JPS6152426B2 (en) | ||
JPS634142B2 (en) | ||
JPS5831200Y2 (en) | ultrasonic focusing lens | |
JPS6145772B2 (en) | ||
JPS5928362Y2 (en) | ultrasound microscope | |
JPS6222838Y2 (en) | ||
JPH0222343B2 (en) | ||
JP3002082B2 (en) | Ultrasonic probe | |
JPS5950937B2 (en) | ultrasound microscope | |
JPS62142267A (en) | Ultrasonic convergent lens | |
JPH07270386A (en) | Ultrasonic microscope | |
Litniewski | On the possibility of the visualization of the velocity distribution in biological samples using SAM | |
Chubachi et al. | Scanning acoustic microscope employing concave ultrasonic transducers |