[go: up one dir, main page]

JPS5950376B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JPS5950376B2
JPS5950376B2 JP51123053A JP12305376A JPS5950376B2 JP S5950376 B2 JPS5950376 B2 JP S5950376B2 JP 51123053 A JP51123053 A JP 51123053A JP 12305376 A JP12305376 A JP 12305376A JP S5950376 B2 JPS5950376 B2 JP S5950376B2
Authority
JP
Japan
Prior art keywords
oxygen
exhaust gas
catalyst
combustion
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51123053A
Other languages
Japanese (ja)
Other versions
JPS5347392A (en
Inventor
順 八木
正行 若宮
可治 前沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51123053A priority Critical patent/JPS5950376B2/en
Publication of JPS5347392A publication Critical patent/JPS5347392A/en
Publication of JPS5950376B2 publication Critical patent/JPS5950376B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、燃焼用の排ガス浄化用触媒に関するもので、
特に酸素不足雰囲気において、可燃性有害ガス(未燃焼
炭化水素ガスや一酸化炭素ガスなど)排出量を減少させ
るために、通常の(完全酸化)燃焼用触媒に、完全酸化
触媒としては活性は低いが、特定の反応を抑制する物質
を添加することにより、燃焼排ガス中の複数の可燃性有
害ガス成分を、バランスよく低減させ、全体として有害
成分の減少をもたらす新規な燃焼用触媒を得んとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for purifying exhaust gas for combustion.
In order to reduce the amount of flammable harmful gases (such as unburned hydrocarbon gas and carbon monoxide gas) emitted, especially in an oxygen-deficient atmosphere, a normal (full oxidation) combustion catalyst is used, which has low activity as a full oxidation catalyst. However, by adding substances that inhibit specific reactions, we are trying to create a new combustion catalyst that reduces multiple combustible harmful gas components in combustion exhaust gas in a well-balanced manner, resulting in an overall reduction in harmful components. It is something to do.

従来、可燃性有害ガス(COやHCなど)の除去にあっ
ては、それらを酸化燃焼することによりCO2とH2O
などの無害ガス化することが最も確実ノでしかも安易な
方法であり、なかでも触媒による接触燃焼は、他の方法
に較べて、その転換効率のうえからも、また装置構造の
点からも最も優れた方法として、これまでに多くの燃焼
用触媒が開発されてきた。
Conventionally, when removing flammable harmful gases (CO, HC, etc.), CO2 and H2O are removed by oxidizing and burning them.
The most reliable and easiest method is to convert the gas into harmless gases, such as catalytic combustion, which is the most reliable and simplest method compared to other methods in terms of conversion efficiency and equipment structure. Many combustion catalysts have been developed as excellent methods.

しかしながら、これまで゛に発明され1てきた幾多の燃
焼用触媒は、当然のことながら、酸化反応に十分な酸素
雰囲気中での使用を目的としており、このために燃焼排
ガス中に接触燃焼に十分な酸素を含有しているか、もし
くは接触燃焼のために二次空気を助燃成分として排ガス
中に導入し、接触雰囲気を酸素過剰の状態にする必要が
あった。
However, the numerous combustion catalysts that have been invented so far1 are, of course, intended for use in an atmosphere of oxygen sufficient for oxidation reactions, and for this reason, there is sufficient oxygen in the combustion exhaust gas for catalytic combustion. It was necessary to make the catalytic atmosphere rich in oxygen by introducing oxygen into the exhaust gas, or by introducing secondary air as an auxiliary combustion component into the exhaust gas for catalytic combustion.

この点は特に炭化水素の燃焼においては二iH1もし酸
素不足雰囲気中で接触燃焼をした、炭化水素の反応熱に
より触媒床は高温となり、この熱により高級炭化水素の
分解反応が進み、それらを酸化して無害なCO2とH2
Oに変換するに十分な酸素が存在しないために、不完全
燃焼を起こす結果、有害なCOやカーボンを多量に生成
することになり、触媒装置を排気系に設ける初期の目的
に反する結果を生ずる。
This point is particularly important in the combustion of hydrocarbons.If catalytic combustion occurs in an oxygen-deficient atmosphere, the heat of reaction of the hydrocarbons will cause the catalyst bed to reach a high temperature, and this heat will advance the decomposition reaction of higher hydrocarbons, oxidizing them. and harmless CO2 and H2
Because there is not enough oxygen to convert to O, incomplete combustion occurs, resulting in the production of large amounts of harmful CO and carbon, which defeats the purpose of installing a catalyst in the exhaust system. .

とりわけ、排気ガス中に未燃焼ωを含有している場合に
は排ガス中のCO濃度より、接触装置通過後のCO濃度
の方が高くなることすらあり、いわゆる公害防止用装置
としては無意味以上に、有害装置といえる。
In particular, if the exhaust gas contains unburned ω, the CO concentration after passing through the contactor may even be higher than the CO concentration in the exhaust gas, making it meaningless as a so-called pollution prevention device. Therefore, it can be said to be a harmful device.

図面に典型的な完全酸化触媒である白金触媒の酸素不足
雰囲気でのCOとHC混合ガス酸化反応におけるCOと
HCの浄化率を酸素充足率(全反応ガスを完全酸化する
のに必要な理論酸素量を1.0としたときの供給酸素量
の割合)に対してとったグラフを従来例として挙げた。
The figure shows the CO and HC purification rate in the CO and HC mixed gas oxidation reaction of a platinum catalyst, which is a typical complete oxidation catalyst, in an oxygen-deficient atmosphere. A graph plotted against the ratio of the amount of oxygen supplied when the amount is 1.0 is shown as a conventional example.

ここにおいて、一定のガス温度で酸素充足率が1.0に
近ずくにつれてHCの浄化率は単調に上昇するが、一方
、HCの不完全燃焼割合に応じてCO生成が増加するこ
とから、COの浄化率は著しく減少し、極端な場合には
、ママイナス浄化(生成)すら生じることがわかる。
Here, as the oxygen sufficiency rate approaches 1.0 at a constant gas temperature, the HC purification rate increases monotonically, but on the other hand, CO production increases depending on the incomplete combustion rate of HC, so CO It can be seen that the purification rate of is significantly reduced, and in extreme cases, even Ma-minus purification (generation) occurs.

本発明は、反応ガスが酸素不足雰囲気にあっても不完全
燃焼によるCO生成を抑制し、反応ガス中の可燃性有害
成分を常に無害成分に変換させる新規な燃焼触媒を提供
するものである。
The present invention provides a novel combustion catalyst that suppresses CO production due to incomplete combustion even when the reaction gas is in an oxygen-deficient atmosphere, and constantly converts combustible harmful components in the reaction gas into harmless components.

以下本発明を実施例をもって詳細に説明する。The present invention will be explained in detail below with reference to examples.

実施例 1 金属重量比で泊金2に対し銀1となるよう調合した塩化
白金酸と硝酸銀をイオン交換水に溶解させて得られる白
金、銀溶液にアルミナ粒を十分に浸漬したのち、とり出
し120℃で数時間乾燥したのち、水素気流中にて35
0℃、3時間水素還元して、白金、銀担持アルミナ粒触
媒を調製した。
Example 1 Alumina grains were sufficiently immersed in a platinum and silver solution obtained by dissolving chloroplatinic acid and silver nitrate, which were prepared so that the metal weight ratio was 2 parts metal to 1 part silver, in ion-exchanged water, and then taken out. After drying at 120°C for several hours, it was dried at 35°C in a hydrogen stream.
A platinum and silver supported alumina particle catalyst was prepared by hydrogen reduction at 0°C for 3 hours.

担。持した金属量は担体重量に対し重量比で1wt%で
あった。
Responsible. The amount of metal held was 1 wt% based on the weight of the carrier.

実施例 2 金属重量比で泊金8に対しロジウム4、銀1となるよう
に調合した塩化白金酸と塩化ロジウムそ1して過塩素酸
銀をイオン交換水に溶解させて得た白金、ロジウム、銀
溶液に、表面をアルミナでコーティングしたシリカクロ
スを十分に浸漬したのち、120℃で2時間乾燥したも
のを水素気流中350℃、2時間水素還元して、白金、
ロジウム、銀担。
Example 2 Platinum and rhodium obtained by dissolving chloroplatinic acid, rhodium chloride, 1 silver perchlorate, and silver perchlorate in ion-exchanged water, prepared at a metal weight ratio of 8 parts rhodium to 1 part silver. A silica cloth whose surface was coated with alumina was fully immersed in a silver solution, dried at 120°C for 2 hours, and then hydrogen-reduced at 350°C for 2 hours in a hydrogen stream to obtain platinum,
Rhodium, silver-backed.

時シリカクロス触媒を調製した。When a silica cloth catalyst was prepared.

最終的に担持した金属量は担体重量に対し重量比で1w
t%であった。
The final amount of metal supported is 1w in weight ratio to the carrier weight.
It was t%.

実施例 3 金属重量比でパラジウム3に対し銀2となるよ・うに調
合した塩化パラジウムと硝酸銀をイオン交換水で溶解さ
せて得たパラジウム、銀溶液に、ハニカム状成形担体を
十分に浸漬したのち120℃で5時間乾燥したものを、
水素気流中400℃、3時間水素還元して、パラジウム
、銀担持ハニカム状・触媒を調製した。
Example 3 A honeycomb shaped carrier was sufficiently immersed in a palladium and silver solution obtained by dissolving palladium chloride and silver nitrate in ion-exchanged water, which were prepared so that the metal weight ratio was 3 parts palladium to 2 parts silver. After drying at 120℃ for 5 hours,
A honeycomb-shaped catalyst supporting palladium and silver was prepared by hydrogen reduction at 400° C. for 3 hours in a hydrogen stream.

最終的に担持された金属量は担体重量に対し0.95w
t%であった。
The final supported metal amount is 0.95w relative to the carrier weight
It was t%.

実施例 4 金属重量比で泊金1に対し、パラジウム2、銀1となる
ように調合した塩化白金酸、塩化パラジウム、過塩素酸
銀をイオン交換水で溶解させた、白金、パラジウム、銀
混合溶液に、表面をアルミナでコーティングしたシリカ
クロスを十分に浸漬し、120℃で2時間乾燥したのち
に、水素気流中350℃で2時間水素還元をして、白金
、パラジウム、銀担時シリカクロス触媒を調製した。
Example 4 A mixture of platinum, palladium, and silver prepared by dissolving chloroplatinic acid, palladium chloride, and silver perchlorate in ion-exchanged water in a metal weight ratio of 1 part metal to 2 parts palladium to 1 part silver. A silica cloth whose surface was coated with alumina was thoroughly immersed in the solution, dried at 120°C for 2 hours, and then hydrogen-reduced at 350°C for 2 hours in a hydrogen stream to form platinum-, palladium-, and silver-supported silica cloth. A catalyst was prepared.

最終的に担持された金属量は担体重量に対し1wt%で
あった。
The amount of metal finally supported was 1 wt% based on the weight of the carrier.

以上の本発明からなる実施例の触媒特性を比較するもの
として、完全酸化触媒として公知な白金担持アルミナ粒
触媒を次の方法で調製した。
In order to compare the catalyst characteristics of the above-mentioned Examples of the present invention, a platinum-supported alumina granular catalyst known as a complete oxidation catalyst was prepared by the following method.

従来例 塩化白金酸をイオン交換水で溶解させた白金溶液に、ア
ルミナ粒を十分に浸漬したのち、120℃、2時間乾燥
し、水素気流中で400℃、3時間水素還元をして白金
担持アルミナ粒触媒を調製した。
Conventional example Alumina grains were sufficiently immersed in a platinum solution prepared by dissolving chloroplatinic acid in ion-exchanged water, dried at 120°C for 2 hours, and hydrogen-reduced at 400°C in a hydrogen stream for 3 hours to support platinum. An alumina granule catalyst was prepared.

最終的に担持された金属量は担体重量に対し1wt%で
あった。
The amount of metal finally supported was 1 wt% based on the weight of the carrier.

本発明による効果をみるために、上記4実施例触媒と1
従来例触媒について以下の条件で反応させたときのCO
並びにHCの転化率(浄化率)について調べた。
In order to see the effects of the present invention, the above-mentioned 4 Example catalysts and 1
CO when reacting the conventional catalyst under the following conditions
In addition, the HC conversion rate (purification rate) was investigated.

a)反応ガフ、 : CO: 2vo1%、HC(ガソ
リン湿りガスとして) : 3vo1%(CH4換算)
、02:2〜9V01%(酸素充足率変動)、残すN2
ガスでバランス、 b)測定空間速度:8×104h−1 C)浄化率側定時反応ガス流入温度:250℃d)反応
装置:流通式反応装置 以上の測定条件で本実施例並びに従来例の触媒について
反応させた結果は図面と次表に示すとおりであった。
a) Reaction gaff: CO: 2vo1%, HC (as gasoline wet gas): 3vo1% (CH4 conversion)
, 02:2-9V01% (oxygen sufficiency rate fluctuation), remaining N2
Balanced with gas, b) Measured space velocity: 8 x 104 h-1 C) Periodic reaction gas inflow temperature on purification rate side: 250°C d) Reactor: Flow-through reactor Under the following measurement conditions, the catalysts of this example and the conventional example were used. The results of the reaction were as shown in the drawing and the table below.

図面には典型的な本発明の効果を従来例と比較して示す
ために、実施例1と従来例の結果を並記した。
In the drawings, the results of Example 1 and the conventional example are shown side by side in order to show the typical effects of the present invention in comparison with the conventional example.

ここでHCの浄化率は実施例1も従来例も大差なく、酸
素充足率の減少に伴い、HCの浄化率も単調に減少して
おり、特に本発明による効果はないが、COの浄化率の
酸素充足率に対する振舞いは極端なちがいを示している
Here, the HC purification rate is not much different between Example 1 and the conventional example, and as the oxygen sufficiency rate decreases, the HC purification rate also decreases monotonically, and although the present invention has no particular effect, the CO purification rate Their behavior with respect to the oxygen sufficiency rate shows an extreme difference.

すなわち、従来例においては、HCの浄化進行を裏腹に
不完全燃焼によるCO生成が進行し、触媒層に流入する
COの酸化とHC不完全燃焼による生成COとのバラン
スで触媒層を流出する全体としてのCO濃度は、酸素充
足率に対して凹型の浄化率曲線を示し、極端な場合には
、生成CO量が流入CO量を上まわることから、マイナ
スの浄化率、すなわち触媒層出口のCO濃度が入口濃度
を上まわるという結果を呈する。
In other words, in the conventional example, CO production due to incomplete combustion progresses despite the progress of HC purification, and the balance between the oxidation of CO flowing into the catalyst layer and the CO generated due to incomplete HC combustion causes the entire amount to flow out of the catalyst layer. The CO concentration as shown in FIG. The result is that the concentration exceeds the inlet concentration.

この凹型曲線はHCの分解温度と相関をもっており、H
C浄化(酸化もしくは分解)が70%以上では反応熱に
よる触媒床温度は700℃以上にもなり、HCの分解反
応は著しく促進される結果、ω生成が増大するが、酸素
充足率が0.5以下ではHC燃焼が少なく (浄化率も
小さい)、発熱量も少ないために、HC分解は遅く、C
O生成も少ないために流入COの浄化が全体のCO量を
左右していることを示している。
This concave curve has a correlation with the decomposition temperature of HC, and H
When C purification (oxidation or decomposition) is 70% or higher, the catalyst bed temperature due to the reaction heat reaches 700°C or higher, and the HC decomposition reaction is significantly accelerated, resulting in increased ω production, but when the oxygen sufficiency rate is 0. Below 5, there is little HC combustion (the purification rate is also small) and the calorific value is small, so HC decomposition is slow and HC decomposition is slow.
This shows that the purification of inflowing CO affects the total amount of CO since O production is also small.

これに較べて本発明による実施例1ではCO浄化率は酸
素充足率に対して単調に減少しており、先の従来例のよ
うな凹型曲線を示していない。
In contrast, in Example 1 according to the present invention, the CO purification rate monotonically decreases with respect to the oxygen sufficiency rate, and does not show a concave curve as in the prior art example.

このことはとりもなおさず低酸素充足率においてもCO
生成がほとんどないか、全くないかを意味しており、供
給された酸素は完全酸化反応にのみ消費されており、い
わゆる燃焼用触媒としての働きを最大限発揮していると
いえる。
This is true even at low oxygen sufficiency rates.
This means that there is little or no production of oxygen, and the supplied oxygen is consumed only for the complete oxidation reaction, and it can be said that it is functioning to its fullest as a so-called combustion catalyst.

また上表には実施例1〜4と従来例の特に酸素充足率が
1.0.0.9.0.8でのCOとHC浄化率を数値で
まとめた。
In addition, the above table summarizes the CO and HC purification rates of Examples 1 to 4 and the conventional example, especially when the oxygen sufficiency rate is 1.0.0.9.0.8.

ここで酸素充足率を0.8以上についてのみ比較をした
のは、酸素充足率が0.5以下では、いわゆる完全酸化
を利用した燃焼用触媒また触媒式浄化装置としての意味
に乏しく、通常は二次空気等の導入により、反応ガス中
の酸素量を増す方策が構しられるのが普通だからである
The reason why we only compared oxygen sufficiency rates of 0.8 or higher is that if the oxygen sufficiency rate is 0.5 or less, it has little meaning as a combustion catalyst or catalytic purification device that utilizes so-called complete oxidation; This is because it is common to take measures to increase the amount of oxygen in the reaction gas by introducing secondary air or the like.

上表において、実施例のいずれもがCo、HCともに8
0%以上の浄化率を示しており、従来例の数%とは比較
にならない高浄化特性を有していることが判る。
In the above table, all of the examples have both Co and HC of 8.
It shows a purification rate of 0% or more, and it can be seen that it has a high purification property that is incomparable to the conventional example, which is several percent.

本発明の主眼は、上にものべたとうり、燃焼排ガス中の
残存酸素が排ガス中の可燃性有害ガスを完全酸化(燃焼
)するにわずか不足しており、通常の触媒では系外部よ
り二次空気などの方法により助燃剤を供給しなてはなら
ないところを、このような付加装置を使用せずに接触装
置のみで処理出来る酸素不足雰囲気使用の燃焼触媒をえ
ることにある。
As stated above, the main focus of the present invention is that the residual oxygen in the combustion exhaust gas is slightly insufficient to completely oxidize (combust) the combustible harmful gases in the exhaust gas, and with ordinary catalysts, the oxygen is The object of the present invention is to provide a combustion catalyst for use in an oxygen-deficient atmosphere, which can be processed only by a contact device without using such an additional device, where a combustion improver must be supplied by a method such as air.

このために排気ガス中の酸素濃度としては少なくとも酸
素充足率で0.6以上は必要となるが、このような条件
での燃焼機関の排ガスは意外と多く、また燃焼機関以外
の高炭化水素系のブロワ−排ガスなどの浄化にも適して
いる。
For this reason, the oxygen concentration in the exhaust gas needs to be at least 0.6 or higher in terms of oxygen sufficiency, but under these conditions the exhaust gas from a combustion engine is surprisingly large, and the amount of high-hydrocarbon gas other than combustion engines is It is also suitable for purifying blower exhaust gas, etc.

さらに特に2サイクルガソリン機関は、このような情況
に最も適した排ガス組成をもっているものの一つに挙げ
られよう。
In particular, two-stroke gasoline engines are one of the engines that have the most suitable exhaust gas composition for such situations.

この種の機関はその軽量さと価格安、さらには機関の加
速性が大きいことから、多方面で使用されているが、そ
の排気ガス成分の特徴は、CO,HCの濃度が高く、ま
た02濃度もかなり高いために、4サイクル機関等で普
通に考えられている2次空気導入も、必ずしも必要では
なく、機関の運転条件を変化させことにより、かなりの
酸素充足を満たすことが可能である。
This type of engine is used in many fields because of its light weight, low price, and high engine acceleration, but its exhaust gas components are characterized by high concentrations of CO and HC, and 02 concentration. Since the oxygen content is quite high, it is not necessarily necessary to introduce secondary air, which is normally thought of in four-cycle engines, and it is possible to achieve a considerable amount of oxygen sufficiency by changing the operating conditions of the engine.

しかしながら、全運転条件下で必要な酸素充足率を確保
することは不可能で、それ以上に実際には、HC燃焼に
よる反応熱が非常に高く、これに起因するHC分解とそ
れに続くCO生成が多く、HC浄化は可能でもCO浄化
が困難である。
However, it is impossible to ensure the required oxygen sufficiency under all operating conditions, and moreover, in practice, the heat of reaction due to HC combustion is very high, resulting in HC decomposition and subsequent CO production. In many cases, HC purification is possible, but CO purification is difficult.

本発明の触媒を2サイクル機関の排気ガス浄化に用いた
ところ、CO,HCともに60%以上の浄化を得ること
が出来た。
When the catalyst of the present invention was used to purify the exhaust gas of a two-stroke engine, it was possible to purify both CO and HC by 60% or more.

このようにAgを添加することにより酸素不足雰囲気下
における燃焼反応の副次的生成物であるCO生成を抑制
し、全体として可燃性有害成分の低減をさせる本発明の
効果をそこなうものではなく、またAgの添加量は本実
施例にあるように重量比で1:1.5〜1:12の範囲
にあることが本発明の効果を発揮するうえで好ましかっ
た。
The addition of Ag in this way does not impair the effect of the present invention, which suppresses the production of CO, which is a by-product of combustion reactions in an oxygen-deficient atmosphere, and reduces the combustible harmful components as a whole. Further, the amount of Ag added was preferably in the range of 1:1.5 to 1:12 in terms of weight ratio, as shown in this example, in order to exhibit the effects of the present invention.

さらに担持すべき担体もしくは支持体は、本実施例での
べた以外に、いかなる材質または形状であっても本発明
の効果をそこなうものではない。
Furthermore, the effect of the present invention will not be impaired even if the carrier or support to be supported is made of any material or shape other than those described in this example.

以上のとおり本発明による触媒を用いることにより、従
来より困難と考えられていた酸素不足雰囲気下での可燃
性有害成分の接触燃焼に、2次空気の導入や機関の特別
な運転制約なしに行なうことが可能となったものであり
、その利用価値は大なるものである。
As described above, by using the catalyst of the present invention, catalytic combustion of combustible harmful components in an oxygen-deficient atmosphere, which was previously thought to be difficult, can be carried out without introducing secondary air or special operating restrictions on the engine. It has become possible to do this, and its utility value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図面は酸素充足率に対するC0−HC浄化率特性図であ
る。
The figure is a characteristic diagram of C0-HC purification rate with respect to oxygen sufficiency rate.

Claims (1)

【特許請求の範囲】 1 排ガス中の一酸化炭素や炭化水素類の可燃性有害ガ
ス成分を化学量論酸素量以下の雰囲気において低減させ
るための白金、ロジウム、パラジウムの少なくとも一つ
と銀を組合せたことを特徴とする排ガス浄化用触媒。 2 銀と白金、ロジウム、パラジウムの少なくとも一つ
との組合せが重量比で1:1,5〜1:12の範囲にあ
ることを特徴とする特許請求の範囲第1項に記載の排ガ
ス浄化用触媒。
[Claims] 1. A combination of silver and at least one of platinum, rhodium, and palladium for reducing combustible harmful gas components such as carbon monoxide and hydrocarbons in exhaust gas in an atmosphere below the stoichiometric oxygen amount. An exhaust gas purification catalyst characterized by: 2. The catalyst for exhaust gas purification according to claim 1, wherein the combination of silver and at least one of platinum, rhodium, and palladium is in a weight ratio of 1:1.5 to 1:12. .
JP51123053A 1976-10-13 1976-10-13 Exhaust gas purification catalyst Expired JPS5950376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51123053A JPS5950376B2 (en) 1976-10-13 1976-10-13 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51123053A JPS5950376B2 (en) 1976-10-13 1976-10-13 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPS5347392A JPS5347392A (en) 1978-04-27
JPS5950376B2 true JPS5950376B2 (en) 1984-12-07

Family

ID=14851026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51123053A Expired JPS5950376B2 (en) 1976-10-13 1976-10-13 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPS5950376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128128A (en) * 1982-01-27 1983-07-30 Toyota Motor Corp Filter for purifying exhaust gas of internal-combustion engine
JPS58131123A (en) * 1982-02-01 1983-08-04 Toyota Motor Corp Filter for purifying exhaust gas from internal combustion engines
JP2972554B2 (en) * 1995-05-31 1999-11-08 日本電気株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5347392A (en) 1978-04-27

Similar Documents

Publication Publication Date Title
SU1069606A3 (en) Method for cleaning exhaust and industrial gases
US7976784B2 (en) Methods and systems including CO oxidation catalyst with low NO to NO2 conversion
US5589432A (en) Exhaust gas cleaner and method for cleaning same
US5670443A (en) Exhaust gas cleaner and method for cleaning exhaust gas
Fridell et al. Platinum oxidation and sulphur deactivation in NO x storage catalysts
JPS5950376B2 (en) Exhaust gas purification catalyst
Ball et al. Catalysts for diesel powered vehicles
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH0663359A (en) Nitrogen oxide purification method and exhaust gas purification device
JPH10309462A (en) NMHC oxidation catalyst in combustion exhaust gas and method for removing the same
JPH06165920A (en) Exhaust gas purifying method
JPH04267950A (en) Catalyst for purifying exhaust gas
JPH09103651A (en) Exhaust gas purification device and exhaust gas purification method
JP2011050855A (en) Exhaust gas purifying apparatus
JPH03202154A (en) Catalyst for purifying exhaust gas of engine
Palke et al. The catalytic reduction of hydrocarbons and carbon monoxide in small two-stroke engine powered vehicle exhaust streams
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH07163878A (en) Nitrogen oxide removing catalyst and method
JPH07284664A (en) Waste gas purification material and method for purifying waste gas
JPH06285335A (en) Method for purifying nox-containing exhaust gas
JP2005218976A (en) Emission gas purification catalyst and its producing method
JPH06327941A (en) Removing method of nitrogen oxide
Crucq Douglas J. Ball and Robert G. Stack
JPH0824653A (en) Material and method for purifying exhaust gas
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas