JPS59502062A - Chemical vapor deposition method for titanium nitride film - Google Patents
Chemical vapor deposition method for titanium nitride filmInfo
- Publication number
- JPS59502062A JPS59502062A JP58503797A JP50379783A JPS59502062A JP S59502062 A JPS59502062 A JP S59502062A JP 58503797 A JP58503797 A JP 58503797A JP 50379783 A JP50379783 A JP 50379783A JP S59502062 A JPS59502062 A JP S59502062A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- gas
- film
- glass substrate
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 37
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 title claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 title description 4
- 239000011521 glass Substances 0.000 claims description 52
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 38
- 239000007789 gas Substances 0.000 claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 20
- 229910021529 ammonia Inorganic materials 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 16
- 239000000376 reactant Substances 0.000 claims description 15
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 239000012159 carrier gas Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 238000005299 abrasion Methods 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 150000004820 halides Chemical class 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical group Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- DYRBFMPPJATHRF-UHFFFAOYSA-N chromium silicon Chemical compound [Si].[Cr] DYRBFMPPJATHRF-UHFFFAOYSA-N 0.000 claims description 2
- 230000003750 conditioning effect Effects 0.000 claims description 2
- 239000008246 gaseous mixture Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 claims 1
- 239000010408 film Substances 0.000 description 48
- 238000000576 coating method Methods 0.000 description 35
- 239000011248 coating agent Substances 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- -1 llf Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000005328 architectural glass Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Surface Treatment Of Glass (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 窒化チタニウム及び同効物の フィルムの化学芸着方法 発明の背景 窓に入る太陽エネルギーの調節は暖かい地域において快適な室内状態を保つのに 重要である。窓材料は強烈な光を減少するために又発達して来ている。太陽熱の 調節は普通ガラスに吸収性着色剤を添加することによって行なわれている。しか しながら、この手段におけるガラスの着色は長時間か日陰を変えるのに要するか もしれないので製造において不利である。最近、反射及び吸収フィルムがガラス を透明にし、太陽熱の調節を行なうために適用されている。反射は完全に輻射を 排除するので、不必要な輻射の反射は吸収よりさらに効果的であるか、一方吸収 執の部分は結局は建物にもたらされる。[Detailed description of the invention] Titanium nitride and its equivalents How to wear film chemistry Background of the invention Adjusting the amount of solar energy that enters windows helps maintain comfortable indoor conditions in warm regions. is important. Window materials have also been developed to reduce intense light. solar heat Conditioning is commonly accomplished by adding absorbing colorants to the glass. deer However, the tinting of the glass by this means may take a long time or change the shade. This is disadvantageous in manufacturing as there may be problems. Recently, reflective and absorbing films have been developed on glass. It is applied to make the sun transparent and to regulate solar heat. Reflection completely eliminates radiation Reflection of unwanted radiation is even more effective than absorption because it eliminates absorption, whereas absorption The final part is ultimately brought to the building.
反射性及び吸収性太陽熱調節フィルムの適用する方法はガラス製造の分野ではよ く知られている。例えば、クロム又はニッケルの如き金属のフィルムが市販され 、かつ従来周知の設備を使用して真空においてガラスの上に蒸発又は飛唾(スパ ッター)される。The method of applying reflective and absorbing solar control films is well known in the field of glass manufacturing. well known. For example, films of metals such as chromium or nickel are commercially available. , and evaporate or spray onto the glass in a vacuum using equipment well known in the art. ter) to be done.
良好な品質の反射性及び吸収性フィルムは真空法によって生成されるが、コスト は寧ろ高い。金属酸化物例えは酸化クロム、酸化コバルト、酸化鉄の混合物は例 えば米国特許第3.652,246号に記載奎れているような噴霧熱分解(5p ray pyrolysis )によって析出される。同様のフィルムが例えは 米国特許第3.850.679号に記載されているような化学蒸着法及び米国特 許第4,325.988号に記載されているような微粉末材料の熱分解によって 形成されている。Good quality reflective and absorbent films are produced by vacuum methods, but the cost is rather expensive. Examples of metal oxides include mixtures of chromium oxide, cobalt oxide, and iron oxide. Spray pyrolysis (5p ray pyrolysis). A similar film is Chemical vapor deposition methods such as those described in U.S. Pat. No. 3,850,679 and U.S. Pat. By pyrolysis of fine powder materials as described in U.S. Patent No. 4,325.988 It is formed.
これらのフィルムは真空蒸着金属のように反射性でないが、より廉価に製造する ことができる。これらは制限された供給源を有し、米国に輸入されなければなら ないコバルト及びクロムの如き材料を必要とする。又クロム及びニッケルは癌を 発生するものと疑われ、そのためこのような被膜製品の広範囲の使用に対する安 全性は疑問視されている。These films are not as reflective as vacuum-deposited metals, but are cheaper to produce. be able to. These have limited sources and must be imported into the United States. Requires materials such as free cobalt and chromium. Chromium and nickel also cause cancer. are suspected of occurring and therefore pose a safety risk for widespread use of such coated products. Integrity is being questioned.
米国特許第3.885.855号では金属TI、Zr、llf、V、Nb、 T a、 Cr、 Mo又はWの窒化物、炭化物又はボウ化物の反応性スパッタリン グによって太陽熱調節フィルムを製造することを又提案している。有効な光学的 性質がこれらの材料のあるものに対し−て知られているが、反応性スパッタリン グの真空電気的方法による建築ガラスの大規模の生産は寧ろ高価である。U.S. Pat. No. 3,885,855 describes metals TI, Zr, llf, V, Nb, T a, Reactive sputtering of nitride, carbide or boride of Cr, Mo or W It is also proposed to produce solar thermal control films by effective optical Although properties are known for some of these materials, reactive sputtering Large-scale production of architectural glass by vacuum-electrical methods is rather expensive.
工作機械工業は窒化チタニウムの硬い、比較的厚い、不透明の耐摩耗性被膜を利 用している。これらの被膜は非常に高い温度、即ち1000′cで窒素、水素及 び四塩化チタニウム反応混合物で形成される。然しなから、日本特許74−83 679及び瑞兆特許第397,370号はこのような耐摩耗性被膜を開示し、そ れのすべては機能的に不透明であり、550 ℃の範囲内の温度でアンモニアと 四塩化チタニウムとの反応により生成されて、少なくとも約3ミクロンの厚さで ある。The machine tool industry takes advantage of titanium nitride's hard, relatively thick, opaque, wear-resistant coating. I am using it. These coatings are exposed to nitrogen, hydrogen and and titanium tetrachloride reaction mixture. However, Japanese Patent 74-83 No. 679 and Zuicho Patent No. 397,370 disclose such wear-resistant coatings, and All of them are functionally opaque and combust with ammonia at temperatures within the range of 550°C. produced by reaction with titanium tetrachloride and at least about 3 microns thick. be.
米国特許第4.31.0.567号は窒化物被膜の形成を述べているが、太陽熱 利用に対する薄い透明なフィルムを提供できる方法については開示していない。U.S. Pat. No. 4.31.0.567 describes the formation of nitride films, but solar heat There is no disclosure of how a thin transparent film can be provided for use.
Bitzerの米国特許第4,196,233号も又窒化物被覆方法について記 載している。Bitzer, U.S. Pat. No. 4,196,233 also describes a nitride coating method. It is listed.
発明の概要 加温ガラスの表面上に反応性蒸気混合物より化学蒸着にょっ゛Cガラスに太陽熱 調節被膜の非常に速い析出方法を(に供するのが本発明の一つの目的である。Summary of the invention Chemical vapor deposition by reactive vapor mixture onto the surface of heated glass It is an object of the present invention to provide a very fast method for depositing control coatings.
他の目的はもしこのような組合せが望まれるならば、フロ2トガラスラインへの 組合せに適する方法を包含する連続方法で迅速に太陽熱調節フィルムを析出する にある。Another purpose is to add a line to the float glass line if such a combination is desired. Depositing solar control films quickly in a continuous process including methods suitable for combinations It is in.
さらに目的は複雑にして高価な真空及び電気設備を必要としないで、大気圧にお いて作動する簡華にして安価な設備でこの析出方法を行なうことである。Furthermore, the objective is to provide a solution to atmospheric pressure without the need for complex and expensive vacuum and electrical equipment. The purpose of this method is to carry out the precipitation process using simple and inexpensive equipment that operates in a controlled manner.
なお他の目的は、稀で、輸入され或は高価な原料を必要としないで、安価にして 豊富な原料を使用して」1記の目標を達成するにある。Yet another objective is to produce products that are inexpensive and do not require rare, imported or expensive raw materials. By using abundant raw materials, we can achieve the goals listed in item 1.
本発明の特別の目的はガラス基体」二に高速度の窒化チタニウムフィルムの形成 を可能にするアンモニアとの反応を発展せしめることによって、ある塩化チタニ ウムの揮発性と反応性とを利用するにある。A particular object of the present invention is the high speed formation of titanium nitride films on glass substrates. By developing a reaction with ammonia that allows titanium chloride to The purpose is to take advantage of the volatility and reactivity of um.
本発明のもう一つの目的はすくれた太陽熱調節(5olarcontrol ) フィルムを提供するにある。Another object of the present invention is solar control. There is a film to offer.
本発明の他の目的は本発明を読めば当業者ならば明らかとなるであろう。Other objects of the invention will become apparent to those skilled in the art after reading the invention.
本発明は四塩化チタニウムのような金属−含有化合物とアンモニアの如き還元ガ スとの間の反応を利用する。金属含有化合物と還元ガスとの各々は加温不活性キ ャリヤーガス中に含有され、加温されたガラス表面にすく近い処で反応される。The present invention utilizes a metal-containing compound such as titanium tetrachloride and a reducing gas such as ammonia. Take advantage of the reaction between you and your partner. The metal-containing compound and the reducing gas are each It is contained in the carrier gas and reacts close to the heated glass surface.
ガラス表面の温度が400℃以上、好ましくは約600 ’C以上の温度である とき、析出速度は最も速くまた品質は最適である。勿論、多くのガラス基体は軟 化し、約700℃の実際の加工制限を有している。ホウケイ酸ガラスは本発明の 製品の生成するのに特に望ましい基体であるようである。四塩化チタニウム及び アンモニアの好ましい反応物質の組合せは惣速に反応して強固に付着するフィル ムを形成し、そのフィルムの組成はフィルム中に又包含される若干の塩素ととも に主として窒化チタニウム、TiNである。析出雰囲気は酸素及び水蒸気がない ように保っ−、きであり、さもなiノれば、析出フィルムは所望の窒化チタニウ ムよりはむしろ主として酸化チタニウムより成るであろう。非常に少量の酸素及 び水分は過剰のアンモニアか使用される場合に黙認されるようである。二酸化チ タニウムはガラス表面からの反射番増加するが、窒化チタニウムはど多くは光を 殆と吸収しない。The temperature of the glass surface is 400°C or higher, preferably about 600'C or higher. When the precipitation rate is the fastest and the quality is optimal. Of course, many glass substrates are soft. and has a practical processing limit of about 700°C. The borosilicate glass of the present invention It appears to be a particularly desirable substrate for the production of products. Titanium tetrachloride and A preferred reactant combination of ammonia is a film that reacts quickly and adheres strongly. The composition of the film is similar to that of some chlorine which is also included in the film. The main material is titanium nitride, TiN. The deposition atmosphere is free of oxygen and water vapor. Otherwise, the deposited film will be the desired titanium nitride layer. It will consist primarily of titanium oxide rather than aluminum. very small amounts of oxygen and Water and water appear to be tolerated when excess ammonia is used. Chi dioxide Tanium increases the number of reflections from the glass surface, but titanium nitride does not allow much light to pass through. Doesn't absorb much.
フィルムは平滑で鏡面のよってあり、曇がないものである。薄いフィルム、例え ば約200オングストロームのものは反射色で銀色であるが、厚いフィルムはそ の厚さが0.1ミクロンに近付くに従い金色、淡青色、灰色、黒色、帯赤色、褐 色である。透過色(transmitted color )は無彩色(neu tral )、灰色、淡黄色、淡緑色、淡青色、褐色である。The film should be smooth, mirror-like, and free from fog. thin film, example For example, films with a thickness of about 200 angstroms have a reflective silver color, but thicker films have a silver color. As the thickness approaches 0.1 micron, the color changes to gold, light blue, gray, black, reddish, and brown. It's a color. Transmitted color is achromatic color (neu tral), gray, pale yellow, pale green, pale blue, and brown.
フィルムの機械的性質は良好である。耐摩耗性及び掻傷抵抗性は市販のガラス上 の太陽熱調節フィルムに匹敵するが又はより良好である。フィルムの耐薬品性は 優秀で水、石けん、塩基及びフィルムとガラスの両者を腐食する弗酸を除く酸に 耐える。The mechanical properties of the film are good. Abrasion and scratch resistance compared to commercially available glass Comparable or better than solar thermal control films. The chemical resistance of the film is Excellent against water, soap, bases, and acids excluding hydrofluoric acid, which corrodes both film and glass. Endure.
窒化チタニウムのフィルムは又導電性である。この性質は太陽熱調節フィルム以 外の用途を有する。これは盗難報知システムにおけるように、破壊された窓を検 出するために電気回路の部分として使用できる。Titanium nitride films are also electrically conductive. This property is better than solar heat control film. It has other uses. This is used to detect broken windows, such as in a burglar alarm system. It can be used as part of an electrical circuit to generate electricity.
図面の説明 図面は被覆方法を実施するのに適する装置の断面図である。Drawing description The drawing is a sectional view of a device suitable for carrying out the coating method.
新しい方法は、金属含有ハロゲン反応物質と還元ガスとの間の反応の注意深い温 度調節がフィルム−形成反応物質を達成し、かつこのような反応の正常の付加物 の粉末の形成を回避するという5 え透明なガラス基体に望ましくない曇りを与えるので最も重要に、回避される。The new method involves careful heating of the reaction between a metal-containing halogen reactant and a reducing gas. degree control is achieved with film-forming reactants, and normal adducts of such reactions. 5 to avoid the formation of powder Most importantly, it is avoided since it imparts undesirable haze to the transparent glass substrate.
末法は被膜内に残るハロゲンの量を最小にするために極めて大過剰の還元ガスを 使用することによって、容易にすることができる。残留するいくらかの量の酸素 及びハロゲンは被膜の性質に有害な影響を与えない。事実、少量のハロゲンは望 まれ場合、着色調節及び電気的性質を助長する。例えば、フィルムの内部性質に よって支配される色を有するのに十分な厚さのフィルムでは、ハロゲンの増加は 色を金色から赤へさらに黒へと変える傾向を有する。The final method uses an extremely large excess of reducing gas to minimize the amount of halogen remaining in the film. It can be made easier by using some amount of oxygen remaining and halogens do not have a detrimental effect on the properties of the coating. In fact, small amounts of halogen are In rare cases, it promotes color regulation and electrical properties. For example, the internal properties of the film In a film thick enough to have a color dominated by It has a tendency to change color from gold to red to black.
四塩化チタニウムとアンモニアとは室温で反応して固体の付加化合物を形成する ので、これらの反応物質は被覆される加温されたガラス表面の極く付近で混合さ れなければならない。混合点におけるガスの温度は200℃以上であるが約40 0 ’C以下とずべきである。もし混合の温度が低すぎると、若干の固体付加化 合物が被覆装置を被覆するか又は塞いだりする。一方、約500°C以上のあま り高い温度でガスを混合すると所望のガラス上の付着フィルムよりは寧ろ装置」 二に粉末状の窒化チタニウム生成物及び(又は)フィルムを生じ勝ちである。混 合の好ましい温度範囲は約250〜320℃である。Titanium tetrachloride and ammonia react at room temperature to form a solid addition compound. Therefore, these reactants are mixed very close to the heated glass surface to be coated. must be The temperature of the gas at the mixing point is over 200°C, but about 40°C. It should be less than 0'C. If the mixing temperature is too low, some solids addition may occur. The compound coats or blocks the coating equipment. On the other hand, if the temperature exceeds about 500°C, Mixing the gas at a higher temperature will result in a film sticking on the glass rather than the device. Second, powdered titanium nitride products and/or films are likely to result. Mixed The preferred temperature range for this is about 250-320°C.
混合及び被覆を実施するだめの装置を第1図に断面図として示す。加温ガラスの リボン10をガラス製造中の冷却レーヤー(lehr)におけるように、ローラ ー(図示せず)」二を横に移動させる。窒素の如きキャリヤーガスと混合した四 塩化チタニウム蒸気を加温ガラスリボン10の巾を横切る分配導管12に入れる 。The apparatus for carrying out the mixing and coating is shown in cross-section in FIG. heated glass The ribbon 10 is placed on a roller, such as in a cooling layer (LEHR) during glass manufacturing. - (not shown)" 2 to the side. 4 mixed with a carrier gas such as nitrogen. Titanium chloride vapor is introduced into a distribution conduit 12 across the width of the heated glass ribbon 10. .
四塩化チタニウム蒸気混合物はそれから流れ中細口14 (flowconst riction )を通って狭い分配線長孔16 (distribution slot ’lに入り、それから混合帯18に送られる。窒素の如き不活性キャ リヤーガスで又希釈されているアンモニアは分配導管22に入り、中細口24及 び分配線長孔26を通って混合帯18に送られる。流れ中細口14.24はガス 状反応物質の均一な分布及び被膜の均一の厚さを設けるように、ガラスリボンの 巾を横切って均一に配置される。層28は、熱絶縁層であり、その厚さは分配線 長孔16.26におけるガスの温度が所望の範囲に保たれるように選ばれる。The titanium tetrachloride vapor mixture is then passed through the flow const The narrow distribution line elongated hole 16 (distribution slot 'l and then sent to mixing zone 18. Inert gas such as nitrogen The ammonia, which has also been diluted with the rear gas, enters the distribution conduit 22 and enters the medium narrow opening 24 and and is sent to the mixing zone 18 through the distribution line slot 26. Narrow opening 14.24 in the flow is gas of the glass ribbon to provide a uniform distribution of reactants and a uniform thickness of the coating. Evenly distributed across the width. Layer 28 is a thermally insulating layer whose thickness is equal to that of the distribution line. It is chosen so that the temperature of the gas in the elongated hole 16.26 is maintained within the desired range.
帯18における混合ガスは加温ガラス10の表面上を流れて排出導管30に送ら れる。この流れの過程中に窒化チタニウムのフィルムは加温ガラスの表面上に析 出される。数個の被覆段階が所望のフィルムの厚さを形成するために一系列の被 覆装置でガラスリボンの単独通過中並んで配置される。事実、多段被覆装置の使 用は、1個の被覆装置の不均一性が通常、他のものと一致せず又異なる被覆装置 からの厚さの誤差をいくらか解消する傾向があるので、均一な被覆を助長する。The gas mixture in band 18 flows over the surface of heated glass 10 and is directed to exhaust conduit 30. It will be done. During this flow process, a film of titanium nitride is deposited on the surface of the heated glass. Served. Several coating steps are applied in a series to form the desired film thickness. The glass ribbons are placed side-by-side during their single passage through the capping device. In fact, the use of multi-stage coating equipment In some applications, non-uniformity in one coating device is usually inconsistent with the others or in different coating devices. It tends to eliminate some of the thickness error from the coating, thus promoting uniform coverage.
空気及び水蒸気は析出領域より排除されなければならず、そこで窒素の如き乾燥 不活性ガスの流れが被覆装置のあらゆる方面に導管32を通して与えられる。Air and water vapor must be excluded from the deposition area where drying agents such as nitrogen A flow of inert gas is provided through conduits 32 on all sides of the coating apparatus.
被覆装置は又逆方向にされてガラスの下に位置される。ガラスの下に位置された 被覆WWを有する利点は形成される被覆又は粉末副生物が被覆装置の表面に残る ことであり、このような材料にはガラスの表面に達する機会がなく、それによっ て被膜の均一性を損なう。斯くて、被覆装置の清掃間の時間は、それらがガラス の上面にあるときより、ガラスの下に被覆装置があるときは長くなる。The coating device is also reversed and placed under the glass. placed under glass The advantage of having a coating WW is that the coating or powder by-products that are formed remain on the surface of the coating equipment. This means that such materials have no chance of reaching the surface of the glass and therefore This will impair the uniformity of the coating. Thus, the time between cleaning the coating equipment is longer when the coating device is below the glass than when it is on the top surface of the glass.
被覆装置は反応物質の四塩化チタニウム及び副生物の塩化水素を包含する腐食性 ガスにさらされる。従って、被覆装置は耐食性材料で構成すべきである。ニッケ ル及びNi 、 Cr、Mo 、Wを含有するニッケル基合金(例えばハステロ イC(Cabot社の商標))は特に好適な構造材料である。The coating equipment is corrosive, including the reactant titanium tetrachloride and the by-product hydrogen chloride. exposed to gas. Therefore, the coating device should be constructed of corrosion-resistant materials. Nike and nickel-based alloys containing Ni, Cr, Mo, and W (e.g. Hastero Cabot (trademark of Cabot Corporation) is a particularly suitable construction material.
反応物質蒸気の濃度及び流動速度は化学量論的に大過剰のアンモニアが存在する ように選ばれる。さもないと、大量の塩素か被膜内に保有される。例えば、5〜 50モルのアンモニアが四塩化チタニウムの各1モルに対し用いられる。混合ガ スの典型的濃度は0.1〜0.5モル%の四塩化チタニウムと1〜5%のアンモ ニアの範囲である。低い濃度は低い被覆速度を生し、一方高い濃度は過剰の粉末 形成を生しる。The concentration and flow rate of the reactant vapors are such that a large stoichiometric excess of ammonia is present. are selected as such. Otherwise, large amounts of chlorine will be retained within the coating. For example, 5~ 50 moles of ammonia are used for each mole of titanium tetrachloride. mixed moth Typical concentrations of titanium tetrachloride are 0.1-0.5 mol% and 1-5% ammonia. It is in the near range. Lower concentrations result in lower coating rates, while higher concentrations result in excess powder. give rise to formation.
他の特徴は被膜が析出せられるガラスのすく近くで混合されることである。特許 第3.979.500号に述べた処置は曇り又は粉末なしで所望のフィルム形成 を達成するために避けられる。Another feature is that the coating is mixed very close to the glass on which it is deposited. patent The treatment described in No. 3.979.500 produces the desired film formation without haze or powder. can be avoided to achieve.
ガラスの温度は典型的には被覆が適用されるとき400〜700℃である。低い 温度は非常に遅い反応速度を生し、−力筒温度は粉末状又は粗い、かすんだ被膜 を生成する。好ましい温度範囲は約500〜650 cである。The temperature of the glass is typically 400-700°C when the coating is applied. low Temperatures produce very slow reaction rates - powdery or coarse, hazy coatings generate. The preferred temperature range is about 500 to 650 degrees Celsius.
本発明により形成される製品は1〜40%の範囲の光透過率が通常望まれる太陽 熱−調節作業に特に価値がある。これはメタロセラミック硬合金(cement ed carbide )及び他の機械素材に用いられる初期の耐摩耗性被膜を 透過している無感知光線(non−sensible ligh、t )以上の 大きさのオーダーである。Articles formed in accordance with the present invention are suitable for solar radiation, where light transmission in the range of 1 to 40% is typically desired. It is of particular value in thermo-conditioning operations. This is a metalloceramic hard alloy (cement). early wear-resistant coatings used on ed carbide) and other mechanical materials. More than the transmitted non-sensible light (t) It is an order of magnitude.
発明の解説的実施例 本出願及び添付図面では本発明の好ましい具体例を示し、記載し、それの種々の 変型及び修正を示唆しているが、これらは徹底しようとするものではなく、他の 変化及び修正を本発明の範囲内でするこ、とができるものである。こ・において 、これらの示唆はこの技術に熟練している他のものが完全に本発明及びその原理 を理解するための解説の目的に対し選択、包含されるものであり、種々の形式で 、その各々は特別の場合の条件に最適であるように修正及び具現することができ るものである。Illustrative embodiments of the invention The present application and accompanying drawings illustrate and describe preferred embodiments of the invention and various aspects thereof. Although variations and modifications are suggested, these are not intended to be exhaustive and may be helpful to others. Changes and modifications may be made within the scope of the invention. In this , these suggestions may be used by others skilled in the art to fully understand the invention and its principles. selected and included for the purpose of explanation for understanding the , each of which can be modified and implemented to best suit the conditions of a particular case. It is something that
実施例1 約590°Cに加熱されたボウケイ酸ガラスを第1図に示すような連続せる3つ の被覆装置で20 am / secの速度で移動させる。Example 1 Three pieces of borosilicate glass heated to about 590°C are placed in series as shown in Figure 1. The coating equipment was moved at a speed of 20 am/sec.
各被覆装置は窒素中に0.4モル%の四塩化チタニウム蒸気を含有する混合物で 導管12を通し、又窒素中の4モル%のアンモニアの混合物で導管22を通して 供給される。各被覆装置に入って来るガス全部の全流動速度は被覆されるガラス 中の1m当たり、約2507!/minである。Each coater was coated with a mixture containing 0.4 mole percent titanium tetrachloride vapor in nitrogen. through conduit 12 and through conduit 22 with a mixture of 4 mole percent ammonia in nitrogen. Supplied. The total flow rate of all gases entering each coating device is Approximately 2507 per meter inside! /min.
各被覆装置の入口細長孔16.26は被覆されるガラスの表面上約3cmで終わ っている。The inlet slot 16.26 of each coating device terminates approximately 3 cm above the surface of the glass to be coated. ing.
被覆せるガラスは透光の褐色であり、約10%の可視光線透過率を有する。被膜 はスクエア当たり約100オームの導電率とすくれた赤外線反射率を有し、約6 00人の厚さである。The coated glass is transparent brown in color and has a visible light transmittance of approximately 10%. coating has a conductivity of about 100 ohms per square and a low infrared reflectance of about 6 00 people thick.
実施例2 0.5%の四塩化チタニウムと0.5%のアンモニアとの濃度を使用して請求の 範囲第1項記載の方法を繰返した。フィルムは600°Cに加熱されたホウケイ 酸ガラス(パイレックスガラス)基体の4秒間の露出で析出された。全太陽熱輻 射の僅か20%の透過を許容するフィルムが形成された。Example 2 of the claims using a concentration of 0.5% titanium tetrachloride and 0.5% ammonia. The method described in Range 1 was repeated. The film is heated to 600°C. Deposited with a 4 second exposure of an acid glass (Pyrex glass) substrate. total solar radiation A film was formed that allowed transmission of only 20% of the radiation.
である。然し、これらの金属はTiより高価であり、豊富ではない。It is. However, these metals are more expensive than Ti and are less abundant.
従って、窒化チタニウムがZr 、 Hf’ 、 V 、 Nb 、 Ta 、 Cr 、 Mo、−の窒化物より好ましい。これらの金属を輸送するために塩 化物の代わりに臭化物又は沃化物が使用できるが、臭化物、沃化物の高コストと 低揮発度は塩化物を本方法において有利とする。Therefore, titanium nitride is Zr, Hf', V, Nb, Ta, It is more preferable than nitrides of Cr, Mo, and -. salt to transport these metals Bromide or iodide can be used instead of chloride, but the high cost and Low volatility makes chloride advantageous in this process.
上述の金属の炭化物及びホウ化物が窒化物の代わりに使用できる。ある炭化物は 公知の化学蒸着法による形成に高い反応温度を必要とし、又このような高温度は これらの炭化物析出を通常のガラス加工法と相客れないものとする。金属ホウ化 物はガラス加工法に適する温度で化学蔽着法により形成できるが、ジボランの如 きホウ素の好ましい、より反応性の供給源は高価である。それ故故に、窒化物は 炭化物及びホウ化物より好ましい。Carbides and borides of the metals mentioned above can be used in place of the nitrides. Some carbides are Formation by known chemical vapor deposition methods requires high reaction temperatures; These carbide precipitations are made incompatible with conventional glass processing methods. metal boride Although materials such as diborane can be formed by chemical deposition at temperatures suitable for glass processing methods, Preferred, more reactive sources of boron are expensive. Therefore, the nitride More preferred than carbides and borides.
前記化合物のすべての場合、混合温度は反応温度以下とすべきであり、混合はガ スが加温ガラス表面の付近に位置する直前に行うべきであり、又ガラスの温度は 析出が起こるのと丁度同じ所望の無機生成物を形成せしめるのに充分な高さとし なければならない。In all cases of the above compounds, the mixing temperature should be below the reaction temperature and the mixing should be This should be done just before the glass is near the heated glass surface, and the temperature of the glass should be The height should be high enough to form the desired inorganic product just as precipitation occurs. There must be.
本発明のガラス被覆フィルムは特に望ましい性質を有し、可視光線より多くの太 陽熱輻射を阻止するのに使用される。例えば、全太陽熱の85%を阻止するのに 充分な厚さのフィルムは可視光線の75%だけを阻止する。これは本発明により 生成された多くの太陽熱調節フィルムは、例え可視光線の75%だけを阻止する のに充分な薄さでも全太陽熱輻射の75%以下を阻止する。The glass-coated film of the present invention has particularly desirable properties, including Used to block solar radiation. For example, to block 85% of all solar heat, A sufficiently thick film blocks only 75% of visible light. This is according to the present invention. Many solar control films produced block even 75% of visible light. Even thin enough to block less than 75% of total solar radiation.
さらに、本発明の窒化チタニウムのフィルムは波長の熱赤外線の範囲、例えば約 10ミクロンにおいて、0.3以下、代表的には0.1〜0.2の放射率を存す る。従って、それらは主目的が窓に入る太陽熱輻射を低減するにある空気調節の 建物の窓に建築用ガラスとして利用されるとき良好な熱絶縁特性を有する。約率 に匹敵するものである。これらの範囲は代表的には0.5〜0.9である。Additionally, the titanium nitride films of the present invention can be used in the thermal infrared range of wavelengths, e.g. At 10 microns, it has an emissivity of 0.3 or less, typically 0.1 to 0.2. Ru. Therefore, they are used in air conditioning whose main purpose is to reduce solar radiation entering windows. It has good thermal insulation properties when used as architectural glass for building windows. discount rate It is comparable to These ranges are typically 0.5 to 0.9.
本発明方法により析出されたこのようなフィルムは上述の利点を存するばかりで な(、クロム、けい素を基礎とする型K又はコバルト、クロム、鉄の混合酸化物 の市販の太陽熱調節フィルムより良好である耐摩耗性を有する。Such films deposited by the method of the invention not only possess the above-mentioned advantages. (type K based on chromium, silicon or mixed oxides of cobalt, chromium, iron) It has better abrasion resistance than commercially available solar control films.
次の請求の範囲はこ・に記載した本発明の一般的並びに特殊の特徴のすべて及び そこに入ると謂われる本発明の範囲の記述のすべてを包含しようとするものであ ることを又理解さるべきである。The following claims cover all the general and specific features of the invention as set forth herein. It is intended to encompass all descriptions of the scope of the invention that fall therein. It should also be understood that
補正書の翻訳文提出書 (特許法第184条の7第1項) 特許庁長官 志 賀 学 殿 1、特許出願の表示 PCT/US 831016 ’783、特許出願人 氏 名 ゴートン ロイ ジエラルド 6、添付書類の目録 (11補正書の翻訳文 1 通 補正請求の範囲 1.a)四ハロゲン化チタニウム蒸気反応物質と不活性キャリヤーガスとのガス 状混合物を生成し、 b)窒素供与体の如きアンモニア反応物質及び還元性ガス、並C)2つの前記ガ ス混合物を加熱せるガラス基体のす(近くで、反応生成物が前記ガラス基体で形 成されるように混合する工程によって加熱せるガラス基体」二に主として窒化チ タニウムより成る太陽熱調節フィルムを析出する方法。Submission of translation of written amendment (Article 184-7, Paragraph 1 of the Patent Act) Mr. Manabu Shiga, Commissioner of the Patent Office 1. Indication of patent application PCT/US 831016 '783, patent applicant Mr. Gorton Roy Gierardo 6. List of attached documents (1 translation of the 11th Amendment Scope of request for amendment 1. a) Gas of titanium tetrahalide vapor reactant and inert carrier gas produces a mixture of b) an ammonia reactant such as a nitrogen donor and a reducing gas; and C) two of the aforementioned gases. of the glass substrate on which the gas mixture is heated (nearby the reaction products are formed on said glass substrate). The glass substrate is heated by the mixing process so that A method of depositing solar control films consisting of tanium.
2、前記ハロゲン化物は四塩化物である請求の範囲第1項記載の方法。2. The method according to claim 1, wherein the halide is a tetrachloride.
3、 前記四塩化物と前記アンモニアとの最終混合は約200〜400°Cの範 囲内で行われる請求の範囲第1項記載の方法。3. The final mixing of the tetrachloride and the ammonia is in the range of about 200-400°C. 2. The method of claim 1, which is carried out within the scope of the present invention.
4、 基体は500℃以上の温度に加熱される請求の範囲第1項記載の方法。4. The method according to claim 1, wherein the substrate is heated to a temperature of 500°C or higher.
5、25〜50モルのアンモニアが四塩化チタニウムの1モルと混合される請求 の範囲第2項記載の方法。5. Claim in which 25 to 50 moles of ammonia are mixed with 1 mole of titanium tetrachloride The method according to item 2 of the scope of the invention.
6、 前記四ハロゲン化チタニウムは四臭化チタニウム又は四状化チタニウムで ある請求の範囲第1項記載の方法。6. The titanium tetrahalide is titanium tetrabromide or titanium tetrahydride. A method according to claim 1.
7、a)金属Ti 、、 Zr、1(f1ν、Nbs Tas Cr、Mo−、 、Wの1つ又はそれ以上のハロゲン化物反応物質の不活性キャリヤーガスにおけ るガス状混合物を生成し、 b)窒素供与体反応物質、還元性ガス及び不活性キャリヤーガスの第二ガス混合 物を生成し、 c)2つの前記ガス混合物を加熱せるガラス基体の直ぐ近くで、反応生成物がガ ラス基体上で形成されるように混合する工程によって加熱廿るガラス基体上に金 属Ti 、、Zr、Hf 、ν、Nb 、 Ta 、 Cr 、 Mo 、 W の1゛っ又はそれ以上の窒化物の透明な吸収性及び反射性太陽熱調節フィルムを 析出する方法。7, a) Metal Ti,, Zr, 1(f1ν, Nbs Tas Cr, Mo-, , one or more halide reactants of W in an inert carrier gas. produces a gaseous mixture that b) a second gas mixture of a nitrogen donor reactant, a reducing gas and an inert carrier gas; generate things, c) in the immediate vicinity of the glass substrate on which the two said gas mixtures are heated, the reaction products are Gold is heated on a glass substrate by a mixing process to form on a glass substrate. Genus Ti, Zr, Hf, ν, Nb, Ta, Cr, Mo, W transparent absorbing and reflective solar control films of one or more nitrides. How to precipitate.
8、 フィルムは全太陽熱輻射より多くの可視光線を透過せしめ、かつ約0.3 以下の放射率を特徴とする請求の範囲第3項記載の方法によって製造された窒化 チタニウムの太陽熱調節フィルムをその上に包含する透明なガラス製品。8. The film transmits more visible light than total solar radiation, and about 0.3 A nitride produced by the method according to claim 3 characterized by the following emissivity: A transparent glassware containing a titanium solar control film thereon.
9、 色を修正するのに充分な残留ハロゲンより成る請求の範囲第8項記載の太 陽熱調節フィルム。9. The thick material according to claim 8 comprising sufficient residual halogen to modify the color. Solar control film.
10、けい素−及びクロム基−太陽熱調節フィルムに匹敵する改良せる耐摩耗性 を特徴とする請求の範囲第8項記載の太陽熱調節フィルム。10. Improved abrasion resistance comparable to silicon- and chromium-based solar control films The solar heat regulating film according to claim 8, characterized in that:
11、前記四塩化物と前記アンモニアとの最終混合は約200〜400°Cの範 囲内の温度で行われる請求の範囲第2項記載の方法。11. The final mixing of the tetrachloride and the ammonia is in the range of about 200-400°C. 3. The method of claim 2, wherein the method is carried out at a temperature within the range.
12、基体は500℃以上の温度に加熱される請求の範囲第3項記載の方法。12. The method according to claim 3, wherein the substrate is heated to a temperature of 500° C. or higher.
13、前記四ハロゲン化チタニウムは四臭化チタニウム又は四状化チタニウムで ある請求の範囲第3項記載の方法。13. The titanium tetrahalide is titanium tetrabromide or titanium tetrahydride. A method according to certain claim 3.
特許庁長官 志 賀 学 殿 1、事件の表示 PCT/US 831016783、補正をする者 事件との関係 出願人 氏名 ゴートン ロイ ジェラルド 5、補正命令の日付 昭和59年9月11日国際調沓翰害Mr. Manabu Shiga, Commissioner of the Patent Office 1. Indication of case PCT/US 831016783, person making amendment Relationship to the case: Applicant Name Gorton Roy Gerald 5. Date of amendment order: September 11, 1981
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1983/001678 WO1984002128A1 (en) | 1982-11-22 | 1983-10-28 | Chemical vapor deposition of titanium nitride and like films |
US443340 | 1999-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59502062A true JPS59502062A (en) | 1984-12-13 |
Family
ID=22175519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58503797A Pending JPS59502062A (en) | 1982-11-22 | 1983-10-28 | Chemical vapor deposition method for titanium nitride film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59502062A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829815A (en) * | 1971-08-16 | 1973-04-20 | ||
JPS4983679A (en) * | 1972-12-19 | 1974-08-12 | ||
JPS52124440A (en) * | 1976-04-13 | 1977-10-19 | Bfg Glassgroup | Method of forming metal or metal compound on surface of glass substrate and device used for forming such coat |
JPS5753308A (en) * | 1980-09-17 | 1982-03-30 | Kazuo Takatsu | Ornament |
-
1983
- 1983-10-28 JP JP58503797A patent/JPS59502062A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829815A (en) * | 1971-08-16 | 1973-04-20 | ||
JPS4983679A (en) * | 1972-12-19 | 1974-08-12 | ||
JPS52124440A (en) * | 1976-04-13 | 1977-10-19 | Bfg Glassgroup | Method of forming metal or metal compound on surface of glass substrate and device used for forming such coat |
JPS5753308A (en) * | 1980-09-17 | 1982-03-30 | Kazuo Takatsu | Ornament |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4535000A (en) | Chemical vapor deposition of titanium nitride and like films | |
Kurtz et al. | Chemical vapor deposition of titanium nitride at low temperatures | |
US4847157A (en) | Glass coating method and resulting article | |
US4806220A (en) | Method of making low emissivity film for high temperature processing | |
US4898790A (en) | Low emissivity film for high temperature processing | |
RU2120919C1 (en) | Method of manufacturing mirrors, and mirror | |
JPS62216943A (en) | Protective coating for solar shielding film | |
JPH08508708A (en) | Coating on glass | |
JPS62256742A (en) | Chemical vapor deposition for vanadium oxide film | |
CN102378682A (en) | Thin film coating and method of making the same | |
US4857361A (en) | Haze-free infrared-reflecting coated glass | |
US5773086A (en) | Method of coating flat glass with indium oxide | |
JP3059758B2 (en) | Coated glassware | |
WO2008009967A1 (en) | Thermochromic coatings ii | |
AU628049B2 (en) | Titanium silicide-coated glass windows | |
Lane et al. | Optical properties and structure of thermally evaporated tin oxide films | |
EP0353461B1 (en) | Chemical vapor deposition of bismuth oxide | |
JPS60502002A (en) | Coating method for producing non-pearlescent glass structures | |
JPH01249634A (en) | Conductive glass and production thereof | |
JPS59502062A (en) | Chemical vapor deposition method for titanium nitride film | |
US5167986A (en) | Titanium silicide-coated glass windows | |
JP2012020937A (en) | Vapor deposition of iron oxide coating onto glass substrate | |
AU576676B2 (en) | Method of producing transparent, haze-free tin oxide coatings | |
EP1105356A1 (en) | Process for coating glass | |
JPH0230765A (en) | Method for forming a tin oxide coat |