[go: up one dir, main page]

JPS5949770B2 - How to prevent wind noise from multi-conductor power transmission lines - Google Patents

How to prevent wind noise from multi-conductor power transmission lines

Info

Publication number
JPS5949770B2
JPS5949770B2 JP57185000A JP18500082A JPS5949770B2 JP S5949770 B2 JPS5949770 B2 JP S5949770B2 JP 57185000 A JP57185000 A JP 57185000A JP 18500082 A JP18500082 A JP 18500082A JP S5949770 B2 JPS5949770 B2 JP S5949770B2
Authority
JP
Japan
Prior art keywords
power transmission
wind
transmission lines
wind noise
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57185000A
Other languages
Japanese (ja)
Other versions
JPS58190216A (en
Inventor
清志 下嶋
征広 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57185000A priority Critical patent/JPS5949770B2/en
Publication of JPS58190216A publication Critical patent/JPS58190216A/en
Publication of JPS5949770B2 publication Critical patent/JPS5949770B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Description

【発明の詳細な説明】 本発明はとくに半導体送電線において効果的に。[Detailed description of the invention] The present invention is particularly effective in semiconductor power transmission lines.

風騒音を防止してなる風音防止方法に関する。近年架空
送電線が風圧を受けた場合に発生する騒音について注目
されるようになった。これは送電線が長手方向において
同一断面形状を有していることから、これに風が吹きつ
けた場合に電線表。面を流動する空気流体が長手方向に
わたり同一剥離挙動を示し、それによって生ずる空気振
動が定周期化して、100〜200Hzくらいの周波数
域において音出力レベルにピークが生じ、低周波の騒音
を発するためである。これを防止する目的で、第1図に
示すように電線1の外周にスパイラル状に素線2を巻回
することが提案され、実効が立証されている。
This invention relates to a method for preventing wind noise. In recent years, attention has been paid to the noise generated when overhead power transmission lines are subjected to wind pressure. This is because power transmission lines have the same cross-sectional shape in the longitudinal direction, so when wind blows on them, The air fluid flowing on the surface exhibits the same separation behavior in the longitudinal direction, and the resulting air vibration becomes regular in frequency, causing a peak in the sound output level in the frequency range of about 100 to 200 Hz, producing low-frequency noise. It is. In order to prevent this, it has been proposed to wind the strands 2 in a spiral around the outer periphery of the electric wire 1 as shown in FIG. 1, and its effectiveness has been proven.

単導体よりなる電線1の場合は、素線2の巻き付け方向
はいずれでもよいのであるが、第2図に示すように、電
線1および1’(2導体に限るものではないが)が並行
に配設され各電線1、1’がスペーサ(図示してない)
によって定間隔に保持されてなる半導体送電線の場合に
は、各電線1および1’の外周に巻回される素線の巻回
条件がその低騒音化効果に対し、大きな影響を有してい
ることが判明した。
In the case of the electric wire 1 made of a single conductor, the wire 2 may be wound in any direction, but as shown in Fig. 2, the electric wires 1 and 1' (not limited to two conductors) may be wound in parallel Each wire 1, 1' is arranged with a spacer (not shown)
In the case of semiconductor power transmission lines held at regular intervals by It turned out that there was.

本発明は上記実情にかんがみてなされたものであり、半
導体送電線においてもっとも効果的に風騒音を防止し得
る電線の騒音防止方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a noise prevention method for electric wires that can most effectively prevent wind noise in semiconductor power transmission lines.

以下に実施例に基づいて説明する。This will be explained below based on examples.

第4図は240−ACSR(鋼心アルミ撚線)2導体送
電線について、なんら風音防止処理を施すことなく風洞
実験を行なった結果を示す線図である。
FIG. 4 is a diagram showing the results of a wind tunnel experiment conducted on a 240-ACSR (steel-core aluminum stranded) two-conductor power transmission line without any wind noise prevention treatment.

図にみられるように、風速によって風音出力レベルに差
異があるが、風速15m/Sの場合には120H2(寸
近に、また風速20m/Sの場合にはl80H2付近に
いずれも風音出力レベルのピークP、P’ができ、特定
の音域できわ立った騒音を形成することがわかるであろ
う。このような半導体送電線の場合には、各電線1、1
’に素線を巻回することにより、低騒音化せしめること
ができるのであるが、電線1、1’が風の方向(第2お
よび3図に矢印で示した)に対して並列に配置せられて
いる場合には、この素線の巻き付け条件により、低騒音
化効果に歴然とした差異が生ずる。
As seen in the figure, there are differences in the wind sound output level depending on the wind speed, but when the wind speed is 15 m/s, the wind sound output level is around 120 H2 (nearly 120 H2), and when the wind speed is 20 m/S, the wind sound output level is around 180 H2. It will be seen that level peaks P and P' are formed, and a pronounced noise is formed in a specific sound range.In the case of such a semiconductor power line, each electric wire 1, 1
It is possible to reduce the noise by winding wires around the wires, but if the wires 1 and 1' are placed parallel to the direction of the wind (indicated by arrows in Figures 2 and 3), In this case, the winding conditions of this strand make a clear difference in the noise reduction effect.

すなわち、第2図は相隣る電線1、1に巻回する素線3
、3をいずれも同方向すなわち図における同じS方向に
巻回した場合を示し、第3図は、電線1に巻回する素線
3はS方向、相隣る電線1’に巻回する素線3’はZ方
向にお互いに逆方向となるように巻回した場合を示す説
明平面図である。この第2図の場合と第3図の場合とで
は、電線径および素線の構成が同じであっても騒音防化
効果上に明らかな差異が存在する。第5および6図はそ
れらについての風洞実験結果を示した線図である。
That is, FIG. 2 shows the strands 3 wound around adjacent electric wires 1, 1.
, 3 are all wound in the same direction, that is, in the same S direction in the figure, and in FIG. Line 3' is an explanatory plan view showing a case where the wires are wound in opposite directions in the Z direction. There is a clear difference in the noise prevention effect between the case of FIG. 2 and the case of FIG. 3 even though the wire diameter and the structure of the strands are the same. Figures 5 and 6 are diagrams showing the results of wind tunnel experiments regarding them.

供試電線は第4図の実験に供したと同じ240mILA
CSR2導体、これに素線径4mmでピッチをいずれも
250mmとし、S方向およびZ方向にプレフォームし
た素線をそれぞれ第2図および第3図に示した条件で巻
回した。第5および6ずにおいて、S−Sと示したもの
は第2図のように相隣る電線1,1″においていずれも
同じS方向に巻回した場合であって、S−Zと示したも
のは、第3図のように相隣る電線1,1″において一方
はS方向に、他方はZ方向にお互いに逆方向となるよう
に巻回した場合を示す。第5図は風速20m/Sでの風
洞実験結果である。
The test wire was the same 240mILA used in the experiment shown in Figure 4.
A CSR2 conductor was wound with preformed wires having a wire diameter of 4 mm and a pitch of 250 mm in the S direction and the Z direction under the conditions shown in FIGS. 2 and 3, respectively. In Nos. 5 and 6, what is indicated as S-S is the case where adjacent electric wires 1 and 1'' are both wound in the same S direction as shown in Fig. 2, and indicated as S-Z. As shown in FIG. 3, adjacent electric wires 1 and 1'' are wound in opposite directions, one in the S direction and the other in the Z direction. Figure 5 shows the results of a wind tunnel experiment at a wind speed of 20 m/s.

S−Sの場合には第4図の無処理のヒータP″がほぼ7
5dBであったものが68dBほどに低下し、低騒音効
果はある程度みとめられはするが、S−Zの場合にはこ
れが58dBまでにも下り、一挙に,10dBも風音レ
ベルが低下した。その差異は一見歴然たるものがある。
この原因については、風洞実験結果がそう出るという以
外によくわからない。思うに、相隣る電線の外形が異る
ことで空気流体のかく乱効果が大となり、周波数の定周
期化Jが一層さまたげられる結果ではなかろうか。すな
わち第3図で矢印方向に吹きつけた風は電線1のS方向
巻きの素線3によりその流体の方向が乱されるが、つぎ
の電線1″ではそれがZ方向の素線3″により流体は今
度は逆の方向に乱されるわけであり、その空気流体の乱
され度合が著るしくなるであろうことが考えられ、空気
流体の乱れがはげしければ、空気振動の定周期化は一層
さまたげられるのである。第6図は風速15m/Sでの
風洞実験結果であり、その挙動は20m/Sの場合と似
たような結果となっていることがわかる。
In the case of S-S, the untreated heater P'' in Fig. 4 is approximately 7
The noise level decreased from 5 dB to about 68 dB, and although the noise reduction effect can be seen to some extent, in the case of S-Z, this decreased to 58 dB, and the wind noise level decreased by 10 dB all at once. The difference is obvious at first glance.
We don't know much about the cause of this, other than the results of wind tunnel experiments. I think this is because the different external shapes of adjacent wires increase the disturbance effect of the air and fluid, further hindering the periodization of the frequency J. In other words, the direction of the wind blowing in the direction of the arrow in Fig. 3 is disturbed by the strands 3 wound in the S direction of the electric wire 1, but in the next electric wire 1'', the direction of the fluid is disturbed by the strands 3'' wound in the Z direction. The fluid is now disturbed in the opposite direction, and it is thought that the degree of disturbance of the air fluid will be significant.If the disturbance of the air fluid is severe, the periodicization of air vibration will be further hindered. Figure 6 shows the results of a wind tunnel experiment at a wind speed of 15 m/s, and it can be seen that the behavior is similar to that at 20 m/s.

同様の実験は、さらに電線径や素線径を異ならしめて繰
り返されたが、その結果に変りないことが明らかとなっ
た。以上、本発明に係る方法によれば多導体送電線の風
音をより顕著に低減できるものであって、電力事情の増
大住宅事情の変遷から多導体送電線路がその近傍を通過
することの多くなった今眠その意義はけだし大きい。
Similar experiments were repeated with different wire diameters and strand diameters, but it became clear that the results remained the same. As described above, according to the method according to the present invention, wind noise from multi-conductor power transmission lines can be more significantly reduced. The significance of this sleep is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は低騒音電線の説明図、第2および3図は複導体
に巻回した素線の巻回方向を示す説明平面図、第4〜6
図は風洞実験結果を示す線図である。 1,]″:電線、2,3,3″:素線。
Figure 1 is an explanatory diagram of a low-noise electric wire, Figures 2 and 3 are explanatory plan views showing the winding direction of a wire wound around a double conductor, and Figures 4 to 6
The figure is a diagram showing the results of wind tunnel experiments. 1, ]″: electric wire, 2, 3, 3″: bare wire.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の電線を並列配置してなる半導体送電線の各電
線の外周にスパイラル状の素線を風が吹きつける方向に
相隣る電線相互においては、素線の巻回方向が逆になる
ように巻回する半導体送電線の風音防止方法。
1. In a semiconductor power transmission line consisting of multiple electric wires arranged in parallel, spiral strands are placed around the outer periphery of each wire so that the winding direction of the strands is opposite between adjacent wires in the direction in which the wind blows. A method for preventing wind noise from winding semiconductor power lines.
JP57185000A 1982-10-20 1982-10-20 How to prevent wind noise from multi-conductor power transmission lines Expired JPS5949770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185000A JPS5949770B2 (en) 1982-10-20 1982-10-20 How to prevent wind noise from multi-conductor power transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185000A JPS5949770B2 (en) 1982-10-20 1982-10-20 How to prevent wind noise from multi-conductor power transmission lines

Publications (2)

Publication Number Publication Date
JPS58190216A JPS58190216A (en) 1983-11-07
JPS5949770B2 true JPS5949770B2 (en) 1984-12-05

Family

ID=16163021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185000A Expired JPS5949770B2 (en) 1982-10-20 1982-10-20 How to prevent wind noise from multi-conductor power transmission lines

Country Status (1)

Country Link
JP (1) JPS5949770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167207A (en) * 1984-02-10 1985-08-30 日立電線株式会社 Vibration preventive type low noise wire

Also Published As

Publication number Publication date
JPS58190216A (en) 1983-11-07

Similar Documents

Publication Publication Date Title
CA2099164A1 (en) Overhead transmission conductor
JPS5949770B2 (en) How to prevent wind noise from multi-conductor power transmission lines
JP2000090744A (en) Steel core aluminum stranded wire
JP3191913B2 (en) Overhead wire
JP2945150B2 (en) Low wind noise electric wire
JPS6329490B2 (en)
JPS61245409A (en) Low noise wire
JPS6353764B2 (en)
JPH0877831A (en) Overhead power transmission line
JP2559587Y2 (en) Low wind noise multi-conductor transmission line
JP3239749B2 (en) Wind noise prevention method for multi-conductor transmission lines
JP2959884B2 (en) Low wind noise type stranded conductor
JPH04126306A (en) Low wind noise multiple conductor electric wire and drawing method therefor
RU2014652C1 (en) Conductor of electric power line
JP2945149B2 (en) Low wind noise electric wire
JPS5914216A (en) Aerial transmission line
JPS59103207A (en) overhead power lines
JPS6334167Y2 (en)
JPH06176623A (en) Bubbly wind noise prevention type electric wire and its method
JPS5838884B2 (en) overhead power lines
JPH0412563B2 (en)
JPS58140906A (en) Twisted steel core aluminum wire and method of producing same
JPS59194308A (en) Low noise wire
JPH06178427A (en) Wind noise prevention type electric wire and method for preventing electric noise from electric wires
JP2000067656A (en) Low wind noise electric wire