JPS5948080A - Immobilized composite enzyme - Google Patents
Immobilized composite enzymeInfo
- Publication number
- JPS5948080A JPS5948080A JP15988082A JP15988082A JPS5948080A JP S5948080 A JPS5948080 A JP S5948080A JP 15988082 A JP15988082 A JP 15988082A JP 15988082 A JP15988082 A JP 15988082A JP S5948080 A JPS5948080 A JP S5948080A
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- immobilized
- enzymes
- carrier
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、触媒等として用いられる固定化複合酵素の
製法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an immobilized complex enzyme used as a catalyst or the like.
近年、酵素は医薬品工業1食品工業等、各種分野で利用
が進みつつある。酵素を触媒とする反応は常温、常圧と
いう緩やかな条件で進行し、しかも、従来の化学反応に
比べ公害の発生する心配がない。さらに、酵素は基質特
異性が優れていることから副反応を生じさせず、反応生
成物の処理等を極端に軽減させるという長所も併せて持
っている。しかし、酵素は水溶性であって、従来では酵
素を水に溶解させた状態で酵素反応を行なうようにして
いたので、反応終了後に反応溶液中から酵素のみを分離
回収し、酵素を再利用することは技術的、こ極めて困難
であった。酵素は高価であるので、酵素を再利用するこ
とができないということは、コスト的に非常に不利であ
る。そこで、このような欠点を除くため、何らかの形で
酵素に修飾を行なって酵素を水不溶性にすること等、酵
素を固定化することが提案された。In recent years, enzymes have been increasingly used in various fields such as the pharmaceutical industry and the food industry. Reactions catalyzed by enzymes proceed under mild conditions of room temperature and pressure, and are less likely to cause pollution than conventional chemical reactions. Furthermore, enzymes also have the advantage of not causing side reactions due to their excellent substrate specificity, which greatly reduces the processing of reaction products. However, enzymes are water-soluble, and conventionally the enzyme reaction was carried out with the enzyme dissolved in water, so after the reaction was completed, only the enzyme was separated and recovered from the reaction solution and the enzyme was reused. This was technically extremely difficult. Since enzymes are expensive, the inability to reuse enzymes is a significant cost disadvantage. Therefore, in order to eliminate such drawbacks, it has been proposed to immobilize the enzyme, such as by modifying the enzyme in some way to make it water-insoluble.
これまでに提案された酵素の固定化法は、一般に三つの
方法、すなわち担体結合法、架橋法および包括法に大別
することができる。もつとも普通の場合について述べれ
ば、担体結合法は酵素を担体に結合させて水不溶性とす
る方法、架橋法は酵素を2個もしくはそれ以上の官能基
を有する試薬(架橋剤)と反応させ、酵素同士を架橋剤
で結合さ・υて水不溶性とする方法、包括法は酵素をゲ
ルの微細な格子の中に包み込んだり(格子型)、半透膜
性のポリマーの皮膜によって被覆する(マイクロカプセ
ル型)方法である。Enzyme immobilization methods proposed so far can generally be divided into three methods: carrier binding methods, crosslinking methods, and entrapment methods. In the most common cases, the carrier binding method is a method in which the enzyme is bound to a carrier to make it water-insoluble, and the crosslinking method is a method in which the enzyme is reacted with a reagent (crosslinking agent) having two or more functional groups, and the enzyme is A method of binding enzymes with a cross-linking agent to make them water-insoluble, and an entrapment method involve enclosing the enzyme in a fine gel lattice (lattice type) or covering it with a semipermeable polymer film (microcapsules). type) method.
これらの方法で得られた固定化酵素を用いるようにすれ
ば、従来では酵素反応を回分式(ハツチ式)でしか行う
ことができなかったのに対し、連続法で行うことが可能
となる。また、酵素が失活あるいは変性するまで何度も
反応に利用できるので、コスト的にも非常に有利となる
。さらに、酵素の基質特異性を利用して、特定の物質を
検出するセンサをつくることができるようにもなる。If immobilized enzymes obtained by these methods are used, enzymatic reactions can be carried out in a continuous manner, whereas conventional enzyme reactions could only be carried out in a batch manner (hatch type). Furthermore, since the enzyme can be used for many reactions until it is deactivated or denatured, it is very advantageous in terms of cost. Furthermore, by utilizing the substrate specificity of enzymes, it will be possible to create sensors that detect specific substances.
ところで、2段階以上の一連の酵素反応に使用される酵
素の群は複合酵素と呼ばれるが、複数の酵素が複合的に
固定されてなる固定化酵素、すなわち固定化複合酵素が
最近使用されるようになってきた。固定化複合酵素を酵
素反応に用いるようにすると、1種類あれば、1段階の
酵素反応のみならず2段階あるいはそれ以上の段階の酵
素反応も行なうごとができるので、1種類の酵素が固定
された固定化酵素を2種類以上用いるようにする場合に
1ヒベ、非常に便利である。By the way, a group of enzymes used in a series of enzymatic reactions of two or more steps is called complex enzymes, but immobilized enzymes in which multiple enzymes are immobilized in a complex manner, that is, immobilized complex enzymes, have recently been used. It has become. When immobilized complex enzymes are used for enzymatic reactions, one type of enzyme can perform not only one-step enzymatic reaction but also two or more steps of enzymatic reactions. This method is very convenient when using two or more types of immobilized enzymes.
従来、複合酵素の固定化は、複合酵素をポリマーマトリ
ックス中に1度に包括するという方法がとられていた。Conventionally, the immobilization of a complex enzyme has been carried out by enclosing the complex enzyme in a polymer matrix at once.
しかしながら、この方法により得られる固定化複合酵素
は、ポリマーマトリックス中で、特定の異種酵素同士の
みが接近したり、特定の酵素が局在したりする等の原因
により、不均一な反応系、すなわち拡散抵抗の大きな反
応系になってしまうことが多く、このことが酵素反応の
反応速度を遅くさせる等種々の問題を生じさせていた。However, the immobilized complex enzyme obtained by this method has a heterogeneous reaction system due to factors such as only specific different enzymes coming close to each other or specific enzymes being localized in the polymer matrix. This often results in a reaction system with large diffusion resistance, which has caused various problems such as slowing down the reaction rate of the enzyme reaction.
また、複合酵素の各酵素についての最適の固定化条件が
それぞれ異なることが多いので、一度に全酵素をポリマ
ーマトリックスで包括すると、複合酵素中のいくつかの
酵素が失活あるいは変性し、一連の酵素反応が進まない
、すなわち複合酵素としての活性を示さないというよう
なことも起きることが多かった。Furthermore, since the optimal immobilization conditions for each enzyme in a complex enzyme are often different, if all the enzymes are wrapped in a polymer matrix at once, some of the enzymes in the complex enzyme may be deactivated or denatured, resulting in a series of In many cases, the enzymatic reaction did not proceed, that is, the enzyme did not show any activity as a complex enzyme.
この発明は、このような事情に鑑みなされたもので、基
質の拡散抵抗が小さい等、性能のすぐれた固定化複合酵
素を提供するものである。The present invention was made in view of the above circumstances, and aims to provide an immobilized complex enzyme with excellent performance such as low substrate diffusion resistance.
すなわち、この発明は、複数の酵素が複合的に固定され
てなる固定化複合酵素であって、前記複数の酵素がいず
れも膜状となって担体表面に積層固定されていることを
特徴とする固定化複合酵素をその要旨とする。以下、こ
の発明の詳細な説明する。That is, the present invention provides an immobilized complex enzyme in which a plurality of enzymes are immobilized in a complex manner, and is characterized in that the plurality of enzymes are all fixed in a layered manner on the surface of a carrier in the form of a membrane. The gist is immobilized complex enzymes. The present invention will be explained in detail below.
この発明にかかる固定化複合酵素は、複数の酵素(複合
酵素)が順次膜状に積層固定されているので、担体と最
も外の酵素膜の間に他のすべての酵素膜がはさまれ5、
特定の異種酵素同士のみが接近したり、特定の酵素が局
在したりしていない。In the immobilized composite enzyme according to the present invention, a plurality of enzymes (complex enzymes) are sequentially stacked and fixed in a membrane shape, so that all other enzyme membranes are sandwiched between the carrier and the outermost enzyme membrane. ,
Only specific dissimilar enzymes are close to each other, and specific enzymes are not localized.
したがって、この発明にかかる固定化複合酵素を酵素反
応に使用すると反応速度が速い。また、これをセンサに
使用すると応答速度が速くなる。そして、固定化複合酵
素をつくる場合、酵素を順次膜状に固定するので、各酵
素について最適の固定化条件を用いて固定することがで
きる。したがって、酵素が失活、変性する恐れが少なく
なり、製造された固定化複合酵素が複合酵素としての活
性を示さないというようなことはほとんど起こらなくな
る。Therefore, when the immobilized complex enzyme according to the present invention is used in an enzymatic reaction, the reaction rate is high. Moreover, when this is used in a sensor, the response speed becomes faster. When producing an immobilized complex enzyme, the enzymes are sequentially immobilized in a membrane shape, so each enzyme can be immobilized using optimal immobilization conditions. Therefore, there is less possibility that the enzyme will be deactivated or denatured, and it will almost never occur that the produced immobilized composite enzyme does not exhibit activity as a composite enzyme.
この発明にかかる固定化酵素は、たとえばつぎのように
してつくられる。複合酵素のうちのある酵素をイオン的
、物理的に結合させたのち、担体表面に架橋剤等の試薬
を用いて酵素と担体を架橋あるいは共有結合により固定
し、酵素膜を形成する。つぎに、固定化された酵素と他
の酵素をイオン結合させて、前記酵素膜の外側にざらに
酵素膜を形成させる。このようにすれば2層の酵素膜を
持つ固定化複合酵素が得られる。同様にして順次酵素膜
を形成させれば、3層以上の酵素膜を持つ固定化複合酵
素が得られる。担体としては、篩−berliLe
I RA−94やアミノ化ポリビニルアルコールで被覆
した白金等が使用され、複合酵素としては、たとえば、
グルコースイソメラーゼとインへルターゼの紹合わせ、
あるいは、グルコースオキシダーゼとインベルターゼの
組合わせ等が使用される。架橋剤を使用する場合は、グ
ルクルアルデヒド等が使用される。複合酵素のうちのあ
る酵素をイオン的に結合させる場合は、たとえば、酵素
の等電点に着目してつぎのようにして行うようにすると
よい。ある酵素の等電点pI、とは異なるp l(の溶
液中に担体とこの酵素を混合すると、pHとp I、と
いう水素指数(イオン指数)の差によって両者の間にイ
オン結合が生しる。先に固定された酵素に他の酵素をイ
オン的に結合させる場合も同様にして行うことができる
。すなわち、他の酵素の等電点p■2とは異なるp H
の溶液中に酵素を溶解して酵素溶液をつくる。この酵素
溶液に第1の酵素膜が形成された担体を浸せば、先に固
定された酵素と、他の酵素との間にイオン結合が生し1
.第1の酵素膜の外側に第2の酵素膜が形成される。第
3番目以降の酵素膜も同様にして形成させることができ
る。種類の異なる酵素同士をイオン結合させたあと、架
橋剤等の試薬を用い、両者を架橋あるいは共有結合によ
り固定するようにしてもよい。このようにすると、酵素
が脱離する恐れが少なくなる。The immobilized enzyme according to the present invention is produced, for example, as follows. After one of the enzymes in the complex is bound ionically and physically, the enzyme and the carrier are immobilized by crosslinking or covalent bonding using a reagent such as a crosslinking agent on the surface of the carrier to form an enzyme membrane. Next, the immobilized enzyme and other enzymes are ionically bonded to form a rough enzyme membrane on the outside of the enzyme membrane. In this way, an immobilized composite enzyme having two layers of enzyme membranes can be obtained. If enzyme membranes are sequentially formed in the same manner, an immobilized composite enzyme having three or more layers of enzyme membranes can be obtained. As carrier, sieve-berliLe
Platinum coated with IRA-94 or aminated polyvinyl alcohol is used, and as a composite enzyme, for example,
Introduction of glucose isomerase and inherutase,
Alternatively, a combination of glucose oxidase and invertase is used. When using a crosslinking agent, glucuraldehyde or the like is used. When ionically bonding one of the complex enzymes, it is preferable to perform the following procedure, focusing on the isoelectric point of the enzyme, for example. When a carrier and this enzyme are mixed in a solution with a pI different from the isoelectric point pI of an enzyme, an ionic bond is formed between the two due to the difference in hydrogen index (ionic index) between pH and pI. It can be done in the same way when another enzyme is ionically bound to the previously immobilized enzyme.In other words, it can be done at a pH different from the isoelectric point p2 of the other enzyme.
An enzyme solution is prepared by dissolving the enzyme in a solution of When the carrier on which the first enzyme membrane is formed is immersed in this enzyme solution, ionic bonds are formed between the previously immobilized enzyme and other enzymes.
.. A second enzyme membrane is formed outside the first enzyme membrane. The third and subsequent enzyme membranes can be formed in the same manner. After ionically bonding enzymes of different types, they may be fixed by crosslinking or covalent bonding using a reagent such as a crosslinking agent. This reduces the possibility that the enzyme will be desorbed.
この発明にかかる固定化複合酵素は、このように構成さ
れるものであって、複数の酵素のうちのある酵素が担体
表面に膜状に固定され、その上に他の酵素が順次膜状に
積層固定されてなるので、ごれを酵素反応に用いると反
応速度が速くなり、センサに用いると応答速度が速くな
る。また、製造された固定化複合酵素が複合酵素として
の活性を示さないというようなことはほとんど起こらな
い。The immobilized complex enzyme according to the present invention is constructed as described above, in which a certain enzyme among a plurality of enzymes is immobilized on the surface of a carrier in the form of a film, and other enzymes are sequentially placed on top of it in the form of a film. Since the dirt is laminated and fixed, the reaction speed becomes faster when the dirt is used in an enzyme reaction, and the response speed becomes faster when used in a sensor. In addition, it almost never happens that the produced immobilized complex enzyme does not exhibit activity as a complex enzyme.
つぎに、実施例および比較例について説明する。Next, Examples and Comparative Examples will be described.
〔実施例1〕
つぎのようにして、担体表面上に2Nの酵素膜が形成さ
れてなる固定化複合酵素をつくった。ただし、複合酵素
としてグルコースイソメラーゼとインへルターゼの組合
せを使用し、担体として静−berlite I R
A 94を使用した。[Example 1] An immobilized composite enzyme having a 2N enzyme film formed on the surface of a carrier was prepared in the following manner. However, a combination of glucose isomerase and inherutase was used as the complex enzyme, and static berlite I R was used as the carrier.
A94 was used.
グルコースイソメラーゼ30■をp H5,0,0,O
IMの酢酸緩f!j l夜20m lに熔解させて酵素
/8/&をつくった。Amberlite l RA
−94を充分に洗浄したあと乾燥させ、得られた乾燥物
5gを5℃において先につくった酵素/g液液中分岐し
た。つぎに、酵素ン容液を5°Cに維持した状態で15
時間回転攪拌を行い、グルコースイソメラーゼがイオン
的にAmbe−rlite IRA 94に固定さ
れてなる第1の固定化標品を得た。固定化されなかった
残余酵素を濾過により除いたあと、第1の固定化標品を
p H5,0゜0、OIMの酢酸緩衝液で充分に洗浄し
た。このあと、第1の固定化標品を1%の冷グルタルア
ルデヒド水溶液中液中に30分間浸した後、5℃を保っ
た状態で風乾して、グルコースイソメラーゼと担体がイ
オン的に結合されるとともに架橋された第2の固定化標
品を得た。つぎにインへルターゼ35■をpH5,5,
O,OIMの酢酸緩衝液20n+1に熔解して酵素溶液
をつくった。この酵素/g液に第2の固定化標品を浸し
、5°Cで12時間インへルターゼの固定化処理を行な
って、インへルターゼがグルコースイソメラーゼにイオ
ン的に結合した第3の固定化標品を得た。この第3の固
定化標品を1%の冷グルタルアルデヒド水溶液中に30
分間浸した後、風乾して固定化複合酵素を得た。Glucose isomerase 30μ pH5,0,0,O
IM's acetic acid f! Enzyme/8/& was prepared by dissolving it in 20ml overnight. Amberlite l RA
-94 was thoroughly washed and dried, and 5 g of the obtained dried product was branched into the previously prepared enzyme/g liquid at 5°C. Next, while maintaining the enzyme solution at 5°C,
A first immobilized preparation in which glucose isomerase was ionically immobilized on Ambe-rlite IRA 94 was obtained by performing rotational stirring for a period of time. After removing unimmobilized residual enzyme by filtration, the first immobilized preparation was thoroughly washed with OIM acetate buffer, pH 5.0.0. After this, the first immobilized specimen is immersed in a cold 1% glutaraldehyde aqueous solution for 30 minutes, and then air-dried at 5°C, so that the glucose isomerase and the carrier are ionically bonded. A second immobilized specimen was obtained which was cross-linked with the same. Next, add inherutase 35■ to pH 5.5,
An enzyme solution was prepared by dissolving the enzyme in 20n+1 of O, OIM acetate buffer. The second immobilized specimen was immersed in this enzyme/g solution, and inherutase was immobilized at 5°C for 12 hours, resulting in a third immobilization in which inherutase was ionically bound to glucose isomerase. I got a specimen. This third immobilized preparation was added to a cold 1% aqueous glutaraldehyde solution for 30 min.
After soaking for a minute, it was air-dried to obtain an immobilized complex enzyme.
(9)
実施例1の固定化複合酵素に含まれるのと同量のグルコ
ースイソメラーゼおよびインベルターゼをポリアクリル
アミドゲルで包括して比較例1の固定化複合酵素をつく
った。(9) An immobilized composite enzyme of Comparative Example 1 was prepared by enclosing the same amount of glucose isomerase and invertase as contained in the immobilized composite enzyme of Example 1 in a polyacrylamide gel.
実施例1および比較例1の固定化複合酵素を1σ3Mの
ショ糖−p H5,5,0,01M#酸緩衝液に加えて
酵素反応を行い、酵素活性(反応活性)の経時変化を測
定した。ただし、酵素活性は、固定化複合酵素に固定さ
れたのと同量の酵素の活性を100とする比活性であら
れした。測定結果を第1表に示す。The immobilized complex enzymes of Example 1 and Comparative Example 1 were added to 1σ3M sucrose-pH5,5,0,01M #acid buffer, an enzyme reaction was performed, and changes in enzyme activity (reaction activity) over time were measured. . However, the enzyme activity was expressed as a specific activity, where the activity of the same amount of enzyme immobilized on the immobilized complex enzyme was taken as 100. The measurement results are shown in Table 1.
第1表
第1表より、実施例1の固定化複合酵素は比較例1のも
のに比べ、酵素活性が高くなっていると(10)
ともに安定していることがわかる。From Table 1, it can be seen that the immobilized complex enzyme of Example 1 has a higher enzyme activity (10) than that of Comparative Example 1 and is stable.
〔実施例2〕
つぎのようにして、担体表面上に2層の酵素膜が形成さ
れてなる固定化複合酵素をつくった。ただし、複合酵素
としてグルコースオキシダーゼとインへルターゼの組合
せを使用し、担体としてアミノ化ポリビニルアルコール
で被覆された白金板を使用した。[Example 2] An immobilized composite enzyme having two layers of enzyme membranes formed on the surface of a carrier was prepared in the following manner. However, a combination of glucose oxidase and inherutase was used as the composite enzyme, and a platinum plate coated with aminated polyvinyl alcohol was used as the carrier.
グルコースオキシダーゼ40■をp H5,0,0,0
1Mの酢酸縁fi液2Qmj!に溶解して酵素溶液をつ
くった。この酵素溶液中にアミノ化ポリビニルアルコー
ルで被覆された白金板(縦5m、横5in、厚み70μ
m)を浸し、5℃に保ちながら10時間回転攪拌を行っ
た。前記のような処理を行った白金板表面上に2%アル
ブミン水溶液5μp、1%グルタルアルデヒド水溶液1
0μlをそれぞれ塗布し、このあと風乾を行った。イン
ベルターゼ50mgをpH5,2,0,01Mの酢酸緩
衝液20m1中に溶解した。Glucose oxidase 40■ pH 5,0,0,0
1M acetic acid rim fi liquid 2Qmj! An enzyme solution was prepared by dissolving the enzyme in A platinum plate (5 m long, 5 inches wide, 70 μm thick) coated with aminated polyvinyl alcohol was placed in this enzyme solution.
m) and rotary stirring was performed for 10 hours while maintaining the temperature at 5°C. 5 μp of a 2% albumin aqueous solution and 1 µp of a 1% glutaraldehyde aqueous solution were placed on the surface of the platinum plate treated as described above.
0 μl of each was applied and then air-dried. 50 mg of invertase was dissolved in 20 ml of acetate buffer at pH 5,2,0,01M.
このインへルターゼ溶液中に風乾した白金板を浸し、5
℃に課った状態で12時間回転攪拌を行った。An air-dried platinum plate was immersed in this inherutase solution, and
Rotary stirring was carried out for 12 hours while the temperature was maintained at .degree.
(11)
得られた酵素固定化物(固定化標品)を再び1%の冷グ
ルタルアルデヒド溶液中に約20分間浸し、つぎに、5
℃に保った状態で風乾を行って固定化複合酵素を得た。(11) The obtained enzyme immobilized product (immobilized sample) was immersed again in a 1% cold glutaraldehyde solution for about 20 minutes, and then
The immobilized complex enzyme was obtained by air-drying it while keeping it at ℃.
得られた固定化複合酵素をセンサに用いてショ糖溶液(
反応溶液)の濃度の定量を行った。比較例2はグルコー
スオキシダーゼをグルタルアルデヒドを用いて白金板に
固定した固定化酵素と固定化されていないインベルター
ゼの組合せとし、これをセンサに用い、インへルターゼ
をシヨ糖1gWM中に溶解させた状態でショ糖溶液の濃
度の定量を行った。実施例2および比較例2をそれぞれ
センサに用いて定量を行ったときの、シヨ糖濃度10−
3M、 10 M、 10 M、における応答速度
(秒)および出力電流値(μA)を第2表に示す。The obtained immobilized complex enzyme was used as a sensor and a sucrose solution (
The concentration of the reaction solution) was determined. Comparative Example 2 is a combination of an immobilized enzyme in which glucose oxidase is immobilized on a platinum plate using glutaraldehyde and invertase that is not immobilized, and this is used as a sensor, and invertase is dissolved in 1 g WM of sucrose. The concentration of the sucrose solution was determined. The sucrose concentration was 10-
Table 2 shows the response speed (seconds) and output current value (μA) at 3M, 10M, and 10M.
(以下余白)
(12)
第2表
第2表より、実施例2を使用した場合は比較例2を使用
した場合に比べ、いずれの濃度においても応答速度が速
く、しかも、出力電流値が高いことがわかる。したがっ
て、実施例2の固定化複合酵素をセンサに用いるように
すると、感度の高いものが得られる。(Margin below) (12) Table 2 From Table 2, when Example 2 is used, the response speed is faster at all concentrations and the output current value is higher than when Comparative Example 2 is used. I understand that. Therefore, when the immobilized complex enzyme of Example 2 is used in a sensor, a sensor with high sensitivity can be obtained.
代理人 弁理士 松 本 武 彦 (13)Agent: Patent Attorney Takehiko Matsumoto (13)
Claims (3)
酵素であって、前記複数の酵素がいずれも膜状となって
担体表面に積層固定されていることを特徴とする固定化
複合酵素。(1) An immobilized composite enzyme in which a plurality of enzymes are immobilized in a complex manner, wherein all of the plurality of enzymes are layered and immobilized on the surface of a carrier in the form of a membrane. enzyme.
てなされている特許請求の範囲第1項記載の固定化複合
酵素。(2) The immobilized complex enzyme according to claim 1, wherein the enzyme is immobilized in the form of a membrane through ionic bonding.
架橋結合の併用によってなされている特許請求の範囲第
1項記載の固定化複合酵素。(3) The immobilized complex enzyme according to claim 1, wherein the enzyme is immobilized in the form of a membrane through a combination of ionic bonding and cross-linking.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15988082A JPS5948080A (en) | 1982-09-14 | 1982-09-14 | Immobilized composite enzyme |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15988082A JPS5948080A (en) | 1982-09-14 | 1982-09-14 | Immobilized composite enzyme |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5948080A true JPS5948080A (en) | 1984-03-19 |
Family
ID=15703210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15988082A Pending JPS5948080A (en) | 1982-09-14 | 1982-09-14 | Immobilized composite enzyme |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5948080A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254468A (en) * | 1991-10-31 | 1993-10-19 | The University Of Toledo | Bilayer pellet containing immobilized xylose isomerase and urease for the simultaneous isomerization and fermentation of xylose to ethanol |
US5397700A (en) * | 1991-10-31 | 1995-03-14 | University Of Toledo | Method of producing products with a bilayer pellet containing a coimmobilized enzyme system that maintains a ph difference |
JP2005253436A (en) * | 2004-03-15 | 2005-09-22 | Nara Institute Of Science & Technology | Protease activity measurement method using polymer membrane |
-
1982
- 1982-09-14 JP JP15988082A patent/JPS5948080A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254468A (en) * | 1991-10-31 | 1993-10-19 | The University Of Toledo | Bilayer pellet containing immobilized xylose isomerase and urease for the simultaneous isomerization and fermentation of xylose to ethanol |
US5397700A (en) * | 1991-10-31 | 1995-03-14 | University Of Toledo | Method of producing products with a bilayer pellet containing a coimmobilized enzyme system that maintains a ph difference |
JP2005253436A (en) * | 2004-03-15 | 2005-09-22 | Nara Institute Of Science & Technology | Protease activity measurement method using polymer membrane |
JP4505630B2 (en) * | 2004-03-15 | 2010-07-21 | 国立大学法人 奈良先端科学技術大学院大学 | Protease activity measurement method using polymer membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2909959B2 (en) | Method for producing ultra-thin protein immobilized reactor and chemical reaction using obtained ultra-thin protein immobilized reactor | |
JP3981163B2 (en) | Enzyme immobilization method, immobilization substance obtained by the method, and biosensor using the immobilization substance | |
Ulbricht et al. | Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding | |
JP2000065791A (en) | Micro-application system for perfectly microfabricated biosensor | |
US4975375A (en) | Biocatalyst immobilization with a reversibly swelling and shrinking polymer | |
JPS6283885A (en) | Immobilized enzyme membrane and production thereof | |
GB2209836A (en) | Multilayer enzyme electrode membrane and method of making same | |
EP0562371A2 (en) | Immobilisation of biochemical substances | |
EP0562373A2 (en) | Immobilisation of biochemical substances | |
JPS5948080A (en) | Immobilized composite enzyme | |
JPS5835679B2 (en) | Kosohannouno Jitsushihouhou | |
JPS59164953A (en) | Immobilized enzyme film and manufacture thereof | |
JP2648361B2 (en) | Permselective membrane and electrode using the same | |
JPS5948078A (en) | Preparation of immobilized enzyme | |
US5283186A (en) | Preparation of a compressed membrane containing immobilized biologically acting material | |
JPH0550272B2 (en) | ||
JPS626682A (en) | Immobilized carrier | |
JPS6344885A (en) | Enzyme immobilized dynamic membrane | |
JPS61187792A (en) | Production of immobilized living body catalyst | |
JPS5911184A (en) | Preparation of immoblized enzyme | |
JPS61145448A (en) | Immobilized enzyme membrane | |
JPH0348462B2 (en) | ||
JPS59109174A (en) | Preparation of immobilized biocatalyst | |
JPS6051484B2 (en) | Method for manufacturing carrier for enzyme immobilization | |
JP2003270198A (en) | Biosensor |