JPS5948078B2 - Heavy oil pyrolysis method - Google Patents
Heavy oil pyrolysis methodInfo
- Publication number
- JPS5948078B2 JPS5948078B2 JP1412778A JP1412778A JPS5948078B2 JP S5948078 B2 JPS5948078 B2 JP S5948078B2 JP 1412778 A JP1412778 A JP 1412778A JP 1412778 A JP1412778 A JP 1412778A JP S5948078 B2 JPS5948078 B2 JP S5948078B2
- Authority
- JP
- Japan
- Prior art keywords
- molten salt
- heavy oil
- weight ratio
- reaction
- thermal decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000295 fuel oil Substances 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 19
- 238000000197 pyrolysis Methods 0.000 title description 11
- 150000003839 salts Chemical class 0.000 claims description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000003595 mist Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- 150000007514 bases Chemical class 0.000 claims description 5
- 150000001721 carbon Chemical class 0.000 claims description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- 239000011541 reaction mixture Substances 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims 1
- 229910052808 lithium carbonate Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 9
- 239000010779 crude oil Substances 0.000 description 4
- 238000002309 gasification Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000015320 potassium carbonate Nutrition 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/34—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【発明の詳細な説明】
本発明は、残留炭素分を有する重質油の熱分解方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for thermally decomposing heavy oil having residual carbon content.
本発明者らは先に特願昭51−97679号(特公昭5
7−7197号)において炭化水素の熱分解方法につき
提案した。The present inventors previously filed Japanese Patent Application No. 51-97679.
7-7197) proposed a method for thermal decomposition of hydrocarbons.
該提案は、アルカリ金属及び/又はアルカリ土類金属の
塩基性化合物を含む溶融塩のミストの存在下に、炭化水
素1重量部当り、溶融塩を0.01ないし1重量部存在
させることとし、しかる後、溶融塩のミストを含む分解
ガスを急冷器に導き、溶融塩の融点以上の温度領域内で
急冷し、次いで分解ガスと溶融塩を分離することを特徴
とする炭化水素の熱分解方法、に関するものである。The proposal states that 0.01 to 1 part by weight of the molten salt is present per 1 part by weight of the hydrocarbon in the presence of a molten salt mist containing a basic compound of an alkali metal and/or alkaline earth metal; Thereafter, the decomposed gas containing a mist of molten salt is introduced into a quencher, rapidly cooled in a temperature range equal to or higher than the melting point of the molten salt, and then the decomposed gas and the molten salt are separated. It is related to .
この方法はとくに重質油の熱分解に適した方法であって
、その特徴の主たるものとしては、該熱分解においてア
ルカリ金属及び/又はアルカリ土類金属の塩基性化合物
の溶融塩ミストを用いることおよび溶融塩量を原料炭化
水素の0.01ないし1倍量用いることの2点が挙げら
れる。This method is particularly suitable for the thermal decomposition of heavy oil, and its main feature is that a molten salt mist of a basic compound of an alkali metal and/or alkaline earth metal is used in the thermal decomposition. and using the molten salt in an amount of 0.01 to 1 times the amount of the raw material hydrocarbon.
ところが残留炭素分の多い重質油を熱分解する際、溶融
塩量が少なく、かつ溶融塩と重質油の混合時の温度が低
く、水蒸気のような不活性ガスの供給が少ない場合に、
溶融塩と残留炭素分とから形成される混合物が粘稠とな
り、熱分解反応器壁に付着し易く、場合によっては重質
油供給口近辺で閉塞することが判明した。However, when pyrolyzing heavy oil with a high residual carbon content, the amount of molten salt is small, the temperature at which the molten salt and heavy oil are mixed is low, and the supply of inert gas such as steam is small.
It has been found that the mixture formed from the molten salt and residual carbon becomes viscous and tends to adhere to the walls of the pyrolysis reactor, causing blockages near the heavy oil supply port in some cases.
工業的には熱分解に際し水蒸気の使用をできるだけ少な
くすることが望ましく、また溶融塩供給温度は装置材質
の面からあまりにも高温に上げることは望ましくなく、
さらに重質油は熱分解反応器に供給する前に熱分解を起
こさないよう一定温度以上に予熱できないという事情も
ある。Industrially, it is desirable to use as little steam as possible during thermal decomposition, and it is undesirable to raise the molten salt supply temperature too high from the viewpoint of the equipment material.
Furthermore, there is a problem in that heavy oil cannot be preheated to a certain temperature or higher to prevent thermal decomposition before being supplied to the thermal decomposition reactor.
また溶融塩は伺ら再生操作を加えることなく循環使用し
うろことが好ましい。Further, it is preferable that the molten salt be recycled and used without adding any regeneration operation.
したがってこのような条件を満足しつつ残留炭素分の多
い重質油を熱分解する際に、上記欠陥の生じないような
技術の開発が望まれた。Therefore, it has been desired to develop a technique that does not cause the above-mentioned defects when thermally decomposing heavy oil with a high residual carbon content while satisfying these conditions.
本発明はかかる要請に答えるものであってその内容とす
るところは、残留炭素分を有する重質油を溶融塩の存在
下に熱分解し、熱分解反応混合物を溶融塩が固化しない
温度に急冷し、溶融塩と分解ガスとを分解することから
なる重質油の熱分解方法において、該熱分解反応を、
(イ)該溶融塩がアルカリ金属及び/又はアルカリ土類
金属の塩基性化合物の溶融塩でありかつ水蒸気を存在さ
せること、
(B) 溶融塩の少なくとも一部はミスト化して用い
ること、
(C) 溶融塩/重質油(重量比)を1を越え10以
下のの割合とすること、
(D) 重質油中の残留炭素/溶融塩(重量比)を0
.03以下の割合とすること、および
(匂 反応温度を700ないし850’C,反応時間を
0.01ないし0.3秒、水蒸気量を水蒸気/重質油(
重量比)で0.5ないし2.0の範囲とすること、およ
び
(F′)熱分解反応後の炭素/溶融塩(重量比)を0.
002以下とすること、
を満足する条件下に行うことを特徴とする方法である。The present invention is intended to meet such demands, and its contents are to thermally decompose heavy oil with residual carbon content in the presence of molten salt, and to rapidly cool the pyrolysis reaction mixture to a temperature at which the molten salt does not solidify. In a heavy oil thermal decomposition method comprising decomposing a molten salt and cracked gas, the thermal decomposition reaction is carried out in such a way that: (a) the molten salt is a basic compound of an alkali metal and/or alkaline earth metal; (B) At least a part of the molten salt must be used as a mist; (C) The molten salt/heavy oil (weight ratio) must be more than 1 and less than 10. (D) Reduce residual carbon/molten salt (weight ratio) in heavy oil to 0.
.. The reaction temperature should be 700 to 850'C, the reaction time should be 0.01 to 0.3 seconds, and the amount of water vapor should be steam/heavy oil (odor).
(weight ratio) is in the range of 0.5 to 2.0, and (F') carbon/molten salt after thermal decomposition reaction (weight ratio) is 0.5 to 2.0.
This method is characterized in that it is carried out under conditions that satisfy the following: 002 or less.
本発明の熱分解に用いられる重質油の代表例は、原油、
重油、減圧蒸留軽油、減圧蒸留塔底油などであり、これ
らはアスファルテン、樹脂、高分子化合物など加熱によ
って炭素になる残留炭素分を含んでいる。Typical examples of heavy oil used in the pyrolysis of the present invention are crude oil,
These include heavy oil, vacuum distilled gas oil, and vacuum distilled column bottom oil, and these contain residual carbon content such as asphaltenes, resins, and polymer compounds that turn into carbon when heated.
熱分解においては溶融塩が用いられるがその使用量は、
重質油中の残留炭素(コンラドソン)/浴融塩(重量比
)が0.03以下、好ましくは0.005ないし0.0
20となるような範囲である。Molten salt is used in pyrolysis, but the amount used is
Residual carbon (Conradson)/bath molten salt (weight ratio) in heavy oil is 0.03 or less, preferably 0.005 to 0.0
The range is 20.
この比が大きすぎると前記したように壁付着が生じ易く
、またこの比が非常に小さいと溶融塩を必要以上に使用
することになり不経済である。If this ratio is too large, wall adhesion is likely to occur as described above, and if this ratio is too small, more molten salt will be used than necessary, which is uneconomical.
それ故溶融塩量は重質油に対し、■を越え10倍以下、
好ましくは5倍以下とすべきである。Therefore, the amount of molten salt is more than ■ and less than 10 times that of heavy oil,
It should preferably be 5 times or less.
溶融塩としては、熱分解反応器中で生成した炭素を水性
ガス化反応によってできるだけ減少させる働きを有する
ものでなければならない。The molten salt must have the ability to reduce as much as possible the carbon produced in the pyrolysis reactor through the water gasification reaction.
そのため本発明においてはアルカリ金属及び/又はアル
カリ土類金属の塩基性化合物が用いられる。Therefore, in the present invention, basic compounds of alkali metals and/or alkaline earth metals are used.
重質油供給口近辺での温度低下によっても粘稠とならな
いためには、溶融塩として融点450℃以下、とくに4
00℃以下のものが好ましい。In order to prevent the heavy oil from becoming viscous even when the temperature decreases near the feed port, it is necessary to use a molten salt with a melting point of 450°C or lower, especially
Preferably, the temperature is 00°C or lower.
例えばL 12cO3(mp618°C)、Na2CO
3(mp8510c)、K2CO3(mp891°C)
の混合物、とくに等モ/l/混合物(共晶点385℃)
を使用するのが好ましい。For example, L 12cO3 (mp618°C), Na2CO
3 (mp8510c), K2CO3 (mp891°C)
mixtures, especially equimo/l/mixtures (eutectic point 385°C)
It is preferable to use
これらの一部は硫化物や亜硫酸塩などに変化していても
よい。Some of these may be converted into sulfides, sulfites, etc.
熱分解反応には上記した水性ガス化反応を行わせるため
、水蒸気を共存させる。Water vapor is allowed to coexist in the thermal decomposition reaction in order to carry out the water gasification reaction described above.
水蒸気の使用量には制限がないが、多量に用いるのは経
済的でなG)。There is no limit to the amount of steam used, but it is not economical to use a large amount (G).
またあまりに少量であれば水性ガス化反応が不充分とな
る。Moreover, if the amount is too small, the water gasification reaction will be insufficient.
したがって、水蒸気/重質油(重量比)がとくに0,5
ないし2.0の範囲になるように使用するのが好ましい
。Therefore, the water vapor/heavy oil (weight ratio) is especially 0.5
It is preferable to use it so that it is in the range of 2.0 to 2.0.
溶融塩の少なくとも一部はミスト化して用いることによ
り、少量の使用でも重質油と良く接触し、水性ガス化反
応が円滑に進行する。By using at least a portion of the molten salt in the form of a mist, even if a small amount is used, it will come into good contact with the heavy oil, and the water gasification reaction will proceed smoothly.
溶融塩のミスト化は、ベンチュリーノズルを用い水蒸気
を通過させることによって容易に行い得るが、この他に
単孔ノズル、衝突噴射弁、うず巻噴射弁等を用いる圧力
噴射弁法、回転円盤、回転皿、回転噴孔などを用いる回
転法、アトマイゲングノズルを用いるような気流噴射法
、振動による方法、原料重質油や水に溶解又は懸濁させ
て分解器に供給する方法などを採ることができる。Molten salt can be easily made into a mist by passing water vapor using a venturi nozzle, but other methods include the pressure injection valve method using a single hole nozzle, impingement injection valve, spiral injection valve, etc., rotating disk, and rotating The following methods may be used: a rotation method using a dish, a rotating nozzle, etc., an air jet method using an atomizing nozzle, a vibration method, a method of dissolving or suspending the material in heavy oil or water and supplying it to the decomposer. Can be done.
これらの中では、重質油と混合する前に溶融塩の少なく
とも一部がミスト化されていることが望ましい。Among these, it is desirable that at least a part of the molten salt be made into a mist before being mixed with heavy oil.
本発明はとくに外熱式熱分解に適用する場合に効果のあ
る方法である。The present invention is a particularly effective method when applied to external thermal pyrolysis.
勿論内熱式熱分解にも適用できるが、内熱式熱分解では
多量の加温用高温ガスを使用するので、溶融塩の前述し
たような局部的冷却がある程度防げることができる。Of course, it can also be applied to internal heating type pyrolysis, but since internal heating type pyrolysis uses a large amount of high-temperature gas for heating, the above-mentioned local cooling of the molten salt can be prevented to some extent.
熱分解反応は通常好ましくは700ないし850℃、反
応時間は好ましくは0.01ないし0.3秒である。The thermal decomposition reaction is usually preferably carried out at a temperature of 700 to 850°C and a reaction time of preferably 0.01 to 0.3 seconds.
これら反応条件、すなわち水蒸気量、溶融塩量、反応温
度、反応時間を調節することにより熱分解反応器から排
出される炭素分を溶融塩量の0.002倍以下、好まし
くは0.001倍以下とする。By adjusting these reaction conditions, namely, the amount of water vapor, amount of molten salt, reaction temperature, and reaction time, the carbon content discharged from the pyrolysis reactor can be reduced to 0.002 times or less, preferably 0.001 times or less, than the amount of molten salt. shall be.
かくすることにより溶融塩は何ら再生操作を施すことな
く再使用することができる。In this way, the molten salt can be reused without any regeneration operation.
又、反応終了後に炭素分が多いと溶融塩の泡立らが生じ
、分解ガスとの分離が円滑に行えないという欠点も生ず
る。Further, if the carbon content is large after the reaction is completed, the molten salt will bubble, resulting in the disadvantage that separation from cracked gas cannot be carried out smoothly.
熱分解反応器から排出される反応混合物は生成ガスの二
次反応を防ぐため急冷するのが好ましい。The reaction mixture discharged from the pyrolysis reactor is preferably rapidly cooled to prevent secondary reactions of the product gas.
急冷の温度は溶融塩の固化しない温度で、使用する溶融
塩の種類によっても異なるが、例えば400ないし60
0℃である。The quenching temperature is the temperature at which the molten salt does not solidify, and varies depending on the type of molten salt used, but is, for example, 400 to 60°C.
It is 0°C.
急冷した後溶融塩を分離し、溶融塩は循環使用し、又分
解ガスは通常のエチレン製造設備で実施されている方法
にしたがって各成分に分離、精製することができる。After quenching, the molten salt is separated, the molten salt is recycled and used, and the cracked gas can be separated and purified into each component according to the method used in ordinary ethylene production equipment.
実施例1〜3、比較例1〜3
750℃に過熱された水蒸気を内径6.5 mmのベン
チュリースロートに導入し、このベンチュリースロート
に直角に取付けられた直径2mrILの細孔より750
℃に保たれた溶融塩(Na2CO3、K2CO3、L
iCOaの等モル混合物)を供給し、溶融塩ミストを作
った。Examples 1 to 3, Comparative Examples 1 to 3 Steam superheated to 750°C was introduced into a venturi throat with an inner diameter of 6.5 mm, and 750° C.
Molten salts (Na2CO3, K2CO3, L
an equimolar mixture of iCOa) to create a molten salt mist.
ベンチュリ−スロートの下流に位置する直径1/2イン
チ、長さl1mの外部加熱式反応管上部にミナス原油(
コンラードソン残留炭素2.5wt%)と水蒸気(全水
蒸気量のio%使用)の混合物を300℃で供給するこ
とによって熱分解反応を行った。Minas crude oil (
The thermal decomposition reaction was carried out by supplying a mixture of Conradson residual carbon (2.5 wt%) and steam (using io% of the total amount of steam) at 300°C.
反応後は500℃に急冷した後、溶融塩と分解ガスを分
離し、溶融塩は再び加熱してで再使用を試みた。After the reaction, the reactor was rapidly cooled to 500°C, the molten salt and decomposed gas were separated, and the molten salt was heated again in an attempt to reuse it.
反応条件及び反応結果を第1表に示す。The reaction conditions and reaction results are shown in Table 1.
実施例4、比較例4
実施例1において、原油供給量、溶融塩供給量、原油中
残留炭素分/溶融塩(重量比)、水蒸気量、分解温度、
反応後の溶融塩中の炭素/溶融塩(重量比)を第1表に
示したように変えた他は実施例1と同様に実施した。Example 4, Comparative Example 4 In Example 1, the amount of crude oil supplied, the amount of molten salt supplied, the residual carbon content in crude oil/molten salt (weight ratio), the amount of water vapor, the decomposition temperature,
The same procedure as in Example 1 was carried out except that the carbon/molten salt (weight ratio) in the molten salt after the reaction was changed as shown in Table 1.
Claims (1)
解し、熱分解反応混合物を溶融塩が固化しない温度に急
冷し、溶融塩と分解ガスとを分離することからなる重質
油の熱分解方法において、該熱分解反応を、 (5)該溶融塩がアルカリ金属及び/又はアルカリ土類
金属の塩基性化合物の溶融塩でありかつ水蒸気を存在さ
せること、 (B) 溶融塩の少なくとも一部はミスト化して用い
ること、 (C) 溶融塩/重質油(重量比)を1を越え10以
下の割合とすること、 (D) 重質油中の残留炭素/溶融塩(重量比)を0
.03以下の割合とすること、 (E) 反応温度を700ないし850℃、反応時間
を0.01ないし0.3秒および水蒸気量を水蒸気/重
質油(重量比)で0.5ないし2.0の範囲とすること
、および (矧 熱分解反応後の炭素/溶融塩(重量比)を0.0
2以下とすること、 を満足する条件下に行うことを特徴とする方法。 2 溶融塩が、炭酸リチウム、炭酸ナトリウムおよび炭
酸カリウムの混合物である特許請求の範囲1記載の方法
。 3 溶融塩の少なくとも一部のミスト化を、重質油との
混合前に行う特許請求の範囲1又は2記載の方法。[Claims] 1. Heavy oil with residual carbon content is thermally decomposed in the presence of molten salt, the thermal decomposition reaction mixture is rapidly cooled to a temperature at which the molten salt does not solidify, and the molten salt and cracked gas are separated. (5) the molten salt is a molten salt of a basic compound of an alkali metal and/or alkaline earth metal and water vapor is present; (B) At least a portion of the molten salt must be used in the form of a mist; (C) The molten salt/heavy oil (weight ratio) must be more than 1 and no more than 10; (D) Residue in the heavy oil Carbon/molten salt (weight ratio) is 0
.. (E) The reaction temperature is 700 to 850°C, the reaction time is 0.01 to 0.3 seconds, and the amount of steam is 0.5 to 2.0% (steam/heavy oil (weight ratio)). 0, and carbon/molten salt (weight ratio) after thermal decomposition reaction is 0.0.
2 or less, and is carried out under conditions that satisfy the following. 2. The method according to claim 1, wherein the molten salt is a mixture of lithium carbonate, sodium carbonate and potassium carbonate. 3. The method according to claim 1 or 2, wherein at least a portion of the molten salt is made into a mist before being mixed with heavy oil.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1412778A JPS5948078B2 (en) | 1978-02-13 | 1978-02-13 | Heavy oil pyrolysis method |
GB7844468A GB2016511B (en) | 1978-02-13 | 1978-11-14 | Process for cracking heavy liquid hydrocarbons |
DE19782851420 DE2851420A1 (en) | 1978-02-13 | 1978-11-28 | METHOD AND DEVICE FOR CRACKING HEAVY LIQUID HYDROCARBONS |
FR7834127A FR2416932A1 (en) | 1978-02-13 | 1978-12-04 | HEAVY LIQUID HYDROCARBON CRACKING PROCESS |
CA318,899A CA1112198A (en) | 1978-02-13 | 1978-12-29 | Process for cracking heavy liquid hydrocarbons |
US06/010,131 US4217204A (en) | 1977-08-12 | 1979-02-07 | Process for cracking hydrocarbons utilizing a mist of molten salt in the reaction zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1412778A JPS5948078B2 (en) | 1978-02-13 | 1978-02-13 | Heavy oil pyrolysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54107906A JPS54107906A (en) | 1979-08-24 |
JPS5948078B2 true JPS5948078B2 (en) | 1984-11-24 |
Family
ID=11852451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1412778A Expired JPS5948078B2 (en) | 1977-08-12 | 1978-02-13 | Heavy oil pyrolysis method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS5948078B2 (en) |
CA (1) | CA1112198A (en) |
DE (1) | DE2851420A1 (en) |
FR (1) | FR2416932A1 (en) |
GB (1) | GB2016511B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55102684A (en) | 1979-01-06 | 1980-08-06 | Mitsui Eng & Shipbuild Co Ltd | Thermal cracking of hydrocarbon and its device |
US20050145543A1 (en) | 2003-12-19 | 2005-07-07 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB447389A (en) * | 1934-08-10 | 1935-02-12 | Petrosani Societate Anonima Pe | Continual process for the transformation of liquid and solid hydrocarburets of any origin and kind into incondensable gaseous hydrocarburets without carbon deposits |
NL267291A (en) * | 1959-05-14 | 1900-01-01 | ||
US3252774A (en) * | 1962-06-11 | 1966-05-24 | Pullman Inc | Production of hydrogen-containing gases |
JPS5323302A (en) * | 1976-08-18 | 1978-03-03 | Mitsui Petrochem Ind Ltd | Thermal cracking of hydrocarbons |
-
1978
- 1978-02-13 JP JP1412778A patent/JPS5948078B2/en not_active Expired
- 1978-11-14 GB GB7844468A patent/GB2016511B/en not_active Expired
- 1978-11-28 DE DE19782851420 patent/DE2851420A1/en not_active Withdrawn
- 1978-12-04 FR FR7834127A patent/FR2416932A1/en active Granted
- 1978-12-29 CA CA318,899A patent/CA1112198A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2016511B (en) | 1982-04-07 |
DE2851420A1 (en) | 1979-08-16 |
GB2016511A (en) | 1979-09-26 |
FR2416932B1 (en) | 1982-11-12 |
CA1112198A (en) | 1981-11-10 |
FR2416932A1 (en) | 1979-09-07 |
JPS54107906A (en) | 1979-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5640707A (en) | Method of organic homologation employing organic-containing feeds | |
US5629464A (en) | Method for forming unsaturated organics from organic-containing feed by employing a Bronsted acid | |
US4276153A (en) | Process for thermal cracking of hydrocarbons and apparatus therefor | |
US3850742A (en) | Hydrocarbon cracking in a regenerable molten media | |
US4479804A (en) | Fixed sulfur petroleum coke fuel and method for its production | |
US4217204A (en) | Process for cracking hydrocarbons utilizing a mist of molten salt in the reaction zone | |
JPS5948078B2 (en) | Heavy oil pyrolysis method | |
US4784670A (en) | Partial oxidation process | |
US2903416A (en) | Transfer line chemicals coking process | |
US6258988B1 (en) | Method for reforming organics into shorter-chain unsaturated organic compounds | |
SK74393A3 (en) | Process for the preparation of cyclohexyl hydroperoxide | |
CS213393B2 (en) | Method of heat cleavage of dihydroxydiphenylalkans | |
US6235253B1 (en) | Recovering vanadium oxides from petroleum coke by melting | |
KR830001885B1 (en) | How to convert carbonaceous materials | |
US2864671A (en) | Process of hydrogen recovery | |
US6231640B1 (en) | Dissolving petroleum coke in molten iron to recover vanadium metal | |
US2792338A (en) | Spraying of an aluminum halide-hydrocarbon complex | |
GB2076012A (en) | Conversion of Shale Oil and Shale Oil Rock | |
US3373218A (en) | Production of ethylene and acetylene | |
US2556177A (en) | Process for production of carbon disulfide | |
CN1265100A (en) | Method of preparing melamine | |
JP2002523489A (en) | Method for non-oxidatively producing formaldehyde from methanol | |
JPH0782569A (en) | Method and apparatus for thermal liquefaction | |
CA1189812A (en) | Hydrocarbon, ammonia and metal value recovery from conversion of shale oil rock | |
US2708154A (en) | Process for carbon disulfide production |