[go: up one dir, main page]

JPS5947843B2 - High sensitivity pressure sensitive resistor and its manufacturing method - Google Patents

High sensitivity pressure sensitive resistor and its manufacturing method

Info

Publication number
JPS5947843B2
JPS5947843B2 JP10305576A JP10305576A JPS5947843B2 JP S5947843 B2 JPS5947843 B2 JP S5947843B2 JP 10305576 A JP10305576 A JP 10305576A JP 10305576 A JP10305576 A JP 10305576A JP S5947843 B2 JPS5947843 B2 JP S5947843B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive resistor
metal particles
diameter
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10305576A
Other languages
Japanese (ja)
Other versions
JPS5328261A (en
Inventor
聡 松本
田久二 天瀬
司臣 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP10305576A priority Critical patent/JPS5947843B2/en
Publication of JPS5328261A publication Critical patent/JPS5328261A/en
Publication of JPS5947843B2 publication Critical patent/JPS5947843B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、ゴムプラスチック等の電気絶縁性を有する弾
性体中に導電性粒子を混合せしめてなる感圧抵抗体、お
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure-sensitive resistor made by mixing conductive particles into an electrically insulating elastic material such as rubber plastic, and a method for manufacturing the same.

ことに小さな圧力で抵抗値が大幅に減少する感度のよい
感圧抵抗体、およびその製造方法に関するものである。
従来この種の感圧抵抗体の感度を高め、小さな圧力で抵
抗値を大幅に減少させる方法には、特公昭46−617
9などが知られており、また例えば金属粒子のような導
電体表面とシリコンゴムのような弾性体との界面を不完
全硬化してルーズにするかまたその表面を半導体成分で
カバーするといつた方法がとられて来た(特開昭49一
114798)。
In particular, the present invention relates to a sensitive pressure-sensitive resistor whose resistance value is significantly reduced by a small pressure, and a method for manufacturing the same.
Conventionally, a method for increasing the sensitivity of this type of pressure-sensitive resistor and significantly reducing the resistance value with a small pressure was disclosed in Japanese Patent Publication No. 46-617.
9 is known, and it is also known that, for example, the interface between the surface of a conductive material such as a metal particle and an elastic material such as silicone rubber is made loose by incompletely curing, or the surface is covered with a semiconductor component. A method has been adopted (Japanese Unexamined Patent Publication No. 49-114798).

し力化、これら従来の技術による感圧抵抗体は外部応力
が加えられた場合、圧縮エネルギーがマトリックス内部
に貯蔵され、ゴム等の弾性体の劣化を速めたり、あるい
は金属粒子がマトリックスから脱落したりするという現
象が起り、−イツチとして使用した場合、その寿命が1
万回以下のON10FFで早くも劣化するというもので
あつた。本発明の目的は、ゴム等の高分子弾性体と金属
粒子からなる系に連続気泡を含ませることによつて、所
定の発泡倍率と硬度を持つた感圧特性のよい発泡感圧抵
抗体を提供することにある。
When external stress is applied to these conventional pressure-sensitive resistors, compressive energy is stored inside the matrix, accelerating the deterioration of elastic materials such as rubber, or causing metal particles to fall out of the matrix. This phenomenon occurs, and when used as a
It was said that it would deteriorate as soon as the ON10FF was used less than 10,000 times. The object of the present invention is to produce a foamed pressure-sensitive resistor with a predetermined expansion ratio and hardness and good pressure-sensitive characteristics by incorporating open cells into a system consisting of an elastic polymer such as rubber and metal particles. It is about providing.

本発明者らは発泡感圧抵抗体について種々検討の結果、
金属粒子の径と気泡の径の関係が感圧抵抗体の性質に大
きな影響を及ぼすことを見出した。
As a result of various studies on foamed pressure-sensitive resistors, the present inventors found that
It has been found that the relationship between the diameter of metal particles and the diameter of bubbles has a large effect on the properties of pressure-sensitive resistors.

すなわち、金属粒子の径が気泡の径と比較して著しく小
さい(その10分の1程度以下)場合には、ゴム1と金
属粒子2のつくるマトリックスは第1図のように未発泡
物と比較して大差なく、気泡3の存在は単に材料の密度
を小さくする効果としてしか働かないことがわかつた。
一方気泡3の短径を金属粒子2の径と同程度乃至その1
0分の1程度以上の連続気泡にすると、第2図ク)よう
に金属粒子2の周囲に気泡3が凝縮する形となり、金属
粒子相互の接触が非常に小さな圧力で可能となることが
わかつた。またマトリックスが連続気泡を含むために単
泡のマトリックスに比して容易に体積が変化するため、
マトリツクス内部に貯蔵される圧縮エネルギーを最小に
することが可能となる。その結果、ゴム等の高分子弾性
体の劣化が起らないばかりでなく、マトリツクス内部へ
の負荷が低減されるため、金属粒子の脱落もほとんど見
られず、1万回以上の0N/0FFでも充分使用出来る
ものが得られた。このように金属粒子の径に対して発泡
の径、発泡倍率を適度に調節することによつて所望の感
圧特性を示す感圧抵抗体が得られる。
In other words, when the diameter of the metal particles is significantly smaller than the diameter of the bubbles (approximately 1/10 or less), the matrix formed by the rubber 1 and the metal particles 2 will be smaller than that of the unfoamed material as shown in Figure 1. It was found that the presence of the bubbles 3 only had the effect of reducing the density of the material, without much difference.
On the other hand, the short diameter of the bubble 3 is about the same as the diameter of the metal particle 2, or
It was found that when the open bubbles are made to be about 1/0 or more, the bubbles 3 condense around the metal particles 2, as shown in Figure 2 (h), and it becomes possible for the metal particles to come into contact with each other with a very small pressure. Ta. In addition, since the matrix contains open cells, its volume changes more easily than a single cell matrix.
It is possible to minimize the compressive energy stored inside the matrix. As a result, not only does the deterioration of the polymeric elastic material such as rubber not occur, but the load on the inside of the matrix is reduced, so there is almost no dropout of metal particles, even after 10,000 times or more of 0N/0FF. A product that was sufficiently usable was obtained. In this manner, by appropriately adjusting the foam diameter and foaming ratio with respect to the diameter of the metal particles, a pressure-sensitive resistor exhibiting desired pressure-sensitive characteristics can be obtained.

しかしながら導電性金属粒子の径が大きいと通電パスが
粒子径の小さいものに比べて非常に少くなり、マトリツ
クスの耐電圧、耐電流が小さくなるという欠点があり、
耐電圧、耐電流を要求される場合、粒径の小さなものを
使用する必要がある。しかし従来の技術では1μm程度
の微細な連続気泡を作製することは不可能であつた。そ
こで発明者らは複合材料の性質について種々検討した結
果1μm程度の微細な連続気泡を有した発泡体の製造を
可能にした。
5一般にバインダーと顔料を混合する場合、顔料
濃度を次第に増して行くと、ある濃度に至ると急激に界
面現象として物理的性質が変化することが知られている
。この濃度が限界顔料濃度(CriticalPigm
entVOlumeCOncentratiOn.}以
下CPVCという。
However, if the diameter of the conductive metal particles is large, the number of current-carrying paths will be much smaller than if the diameter of the conductive metal particles is small, which has the disadvantage that the withstand voltage and current of the matrix will be small.
If high withstand voltage or current is required, it is necessary to use particles with small particle size. However, with conventional techniques, it has been impossible to produce fine open cells of about 1 μm. Therefore, the inventors conducted various studies on the properties of composite materials, and as a result, they were able to manufacture a foam having fine open cells of about 1 μm.
5 Generally, when a binder and a pigment are mixed, it is known that when the concentration of the pigment is gradually increased, when a certain concentration is reached, the physical properties suddenly change as an interfacial phenomenon. This concentration is the critical pigment concentration (Critical Pigm
entVOlumeCOcentratiOn. }Hereinafter referred to as CPVC.

)と定義されている。本発明において高分子弾性体を発
泡させて連続気泡体とする方法としては、通常の発泡剤
を使用することもできるが、より好適な方法としては、
導電性金属粒子と高分子弾性体とから主としてな3る混
合物に不溶な塩(ただし塩の粒径は金属粒子の径と同程
度またはより小さいもの)をそのCPVC以上に加えた
のち、混合物を架橋し、その後塩を架橋物の貧溶媒でか
つ塩の良溶媒に溶解させることにより所望の発泡倍率、
泡径、圧力感5度を持つ感圧抵抗体を、発泡剤などを使
用する場合に比べ非常に精度よく且広い範囲で製造でき
る。特に気泡の大きさが非常に小さい連続気泡体を作製
する場合に適している。上記導電性金属粒子には公知の
ように、鉄、銅、4クロム、チタン、タングステン、白
金、スズ、ステンレススチール、黄銅、銀、金、ニツケ
ル、コバルト、アルミ、亜鉛などを挙げられるが、経済
性と性能の面から鉄、銅、ステンレススチール、ニツケ
ル、アルミ、スズなどが好ましい。
) is defined as In the present invention, a normal foaming agent can be used to foam the elastic polymer to form an open cell, but a more suitable method is to
After adding an insoluble salt (however, the particle size of the salt is the same as or smaller than the diameter of the metal particles) to a mixture mainly consisting of conductive metal particles and an elastomer polymer, the mixture is By crosslinking and then dissolving the salt in a poor solvent for the crosslinked product and a good solvent for the salt, the desired foaming ratio can be achieved.
Pressure-sensitive resistors with a bubble diameter and a pressure sensitivity of 5 degrees can be manufactured with much higher precision and in a wider range than when using foaming agents or the like. It is particularly suitable for producing open-cell bodies with very small bubbles. As is known, the conductive metal particles mentioned above include iron, copper, tetrachromium, titanium, tungsten, platinum, tin, stainless steel, brass, silver, gold, nickel, cobalt, aluminum, zinc, etc. In terms of durability and performance, iron, copper, stainless steel, nickel, aluminum, tin, etc. are preferable.

特に本発明の方法によると耐酸化性などが増すので、鉄
、銅、アルミ、ニツケル等比較的安価な導電性金属を有
効に用いうる。本発明1(使用される金属粒子の径は1
μm〜200μmであるものが好ましい。
In particular, according to the method of the present invention, oxidation resistance is increased, so relatively inexpensive conductive metals such as iron, copper, aluminum, and nickel can be used effectively. Invention 1 (The diameter of the metal particles used is 1
Preferably, the diameter is from μm to 200 μm.

1μmより小さい場合、気泡をそれ以上小さくする必要
があり製造が著しく困難である。
If it is smaller than 1 μm, it is necessary to make the bubbles even smaller, making manufacturing extremely difficult.

粒径が200μmより大きい場合には比較的発泡体は作
りやすいが粒子径が大きくなるに従つて金属粒子のマト
リツクスからの脱落が起りやすくなり好ましくない。ま
た、本発明に用いる導電性金属粒子の混合量は10ない
し50体積分率(%)が好ましい。その体積分率が10
%より小さい場合は通常感圧抵抗体とならず、絶縁体又
は半導体になりやすく、一方50(F6より多い場合は
導電体になりやすく、加工法の容易さからその体積分率
が10ないし50%が好ましい。本発明に用いられる高
分子弾性体はそれ自身は高抵抗体であり、例えばポリブ
タジエン、天然ゴム、ポリイソプレン、SBR,NBR
、ネオプレンのようなジエン系ゴム、EPDM,EPM
、ウレタ′ゴム、ポリエステル系ゴム、エピクロルヒド
リンゴム、シリコンゴムなどを用いることができる。
When the particle size is larger than 200 μm, it is relatively easy to form a foam, but as the particle size increases, the metal particles tend to fall off from the matrix, which is not preferable. Further, the mixed amount of the conductive metal particles used in the present invention is preferably 10 to 50 volume fraction (%). Its volume fraction is 10
If it is smaller than 50%, it usually does not become a pressure sensitive resistor and tends to become an insulator or semiconductor, while if it is larger than 50%, it tends to become a conductor, and the volume fraction is 10 to 50% due to the ease of processing. % is preferable.The polymeric elastic material used in the present invention itself is a high resistance material, such as polybutadiene, natural rubber, polyisoprene, SBR, NBR.
, diene rubber such as neoprene, EPDM, EPM
, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, etc. can be used.

特に耐熱性、耐候性を要求する場合にはシリコンゴムが
好ましい結果を与える。本発明の発泡方法の1つに用い
られる塩としては、金属または陽性の塩基性基(NH4
+など)と陰性の酸基からなる通常の塩または有機塩基
と酸の付加化合物であつて導電性金属粒子と高分子弾性
体とから主としてなる混合物に不溶な塩であり、かつこ
の混合物と化学的に反応を起さないものであれば良い。
Especially when heat resistance and weather resistance are required, silicone rubber gives preferable results. The salt used in one of the foaming methods of the present invention may include a metal or a positive basic group (NH4
+, etc.) and a negative acid group, or an addition compound of an organic base and an acid, which is insoluble in a mixture mainly consisting of conductive metal particles and an elastomer polymer, and is chemically compatible with this mixture. It is fine as long as it does not cause any reaction.

特に塩化ナトリウム、臭化カリウム、ヨウ化チタン、硫
酸ナトリウム、炭酸カルシウムなどの無機酸の金属塩が
好適である。また上記の塩を溶出するのに用いられる高
分子弾性体の貧溶媒は、使用する塩の種類に応じて適宜
選択されるが、例えば溶解度パラメーター(Inter
sciencePublishersl967年刊、P
OlymerHandbOOk−341ページ参照;以
下SP値という。)が10.0以上、特に13.0以上
の溶媒が好適に使用される。例えばメタノール(SP値
14.5)、エチレングリコール(SP値14.6)、
メチルホルムアミド(SP値16.1)、水(SP値2
3.4)などが好適である。以下に本発明を実施例でも
つて説明するが、本発明の要旨を越えない限り、本実施
例に限定されるものではない。
Particularly suitable are metal salts of inorganic acids such as sodium chloride, potassium bromide, titanium iodide, sodium sulfate, and calcium carbonate. Furthermore, the poor solvent for the polymeric elastomer used to elute the above-mentioned salt is appropriately selected depending on the type of salt used, but for example, the solubility parameter (Inter
Science Publishersl967, P
See page 341 of OlymerHandbOOk; hereinafter referred to as SP value. ) is 10.0 or more, particularly 13.0 or more is preferably used. For example, methanol (SP value 14.5), ethylene glycol (SP value 14.6),
Methylformamide (SP value 16.1), water (SP value 2
3.4) etc. are suitable. The present invention will be explained below using Examples, but the present invention is not limited to the Examples unless it goes beyond the gist of the present invention.

実施例 1 粒径1〜3μmのカルボニル・ニツケルの33.3体積
分率%とポリブタジエンゴム(日本合成ゴム製JSRB
ROI)66.7体積分率%をあらかじめニーダ一で1
0分間混練し、これにジクミールパーオキサイドをゴム
100部に対し2部混合し、これにボールミルで粉砕し
た粒径1〜2μmの臭化カリウム(KBr)を徐々に添
加しながらニーダ一のトルクを観察したところ、もとの
混合物の体積100に対してKBrを体積66.7加え
た所で急激にニーダ一のトルクが上昇し、この時点がC
PVCであることを確認した。
Example 1 33.3% by volume of carbonyl nickel with a particle size of 1 to 3 μm and polybutadiene rubber (JSRB manufactured by Japan Synthetic Rubber Co., Ltd.)
ROI) 66.7 volume fraction % was prepared in advance in a kneader.
After kneading for 0 minutes, 2 parts of dicumyl peroxide was mixed to 100 parts of rubber, and potassium bromide (KBr) with a particle size of 1 to 2 μm, which had been ground in a ball mill, was gradually added thereto while kneading at the highest torque in a kneader. When 66.7 volumes of KBr were added to the original mixture volume of 100, the torque of the kneader suddenly increased, and at this point it became C.
I confirmed that it was PVC.

この後5分間混練し、取り出し1TrrrrL厚にシー
ト出しを行い、加硫プレスにて160℃で30分架橋を
行つた。架橋物の感圧特性を測定したが絶縁物であつた
。この架橋物の5cm角を取り出し水1ιで1時間煮沸
したところ、KBrはその全量が溶出したが、ニツケル
粒子の脱落は見られなかつた。この小片を脱水後、充分
乾燥し、その後感圧特性を測定した所、無加圧時12M
Ωあつたものが3kv/Cdの加圧によつて5Ωまで抵
抗値が減少し、良好な感圧特性を示した。比較例 1 実施例1の臭化カリウムを除いた系を実施例1と同一条
件で架橋した。
Thereafter, the mixture was kneaded for 5 minutes, taken out and formed into a sheet with a thickness of 1 TrrrrL, and crosslinked at 160° C. for 30 minutes using a vulcanization press. The pressure sensitive properties of the crosslinked product were measured and it was found to be an insulator. When a 5 cm square piece of this crosslinked material was taken out and boiled in 1ι of water for 1 hour, the entire amount of KBr was eluted, but no nickel particles were observed to fall off. After dehydrating this small piece and thoroughly drying it, the pressure sensitive property was measured.
The resistance value of the resistor, which was heated to Ω, decreased to 5Ω by applying a pressure of 3 kV/Cd, and exhibited good pressure-sensitive characteristics. Comparative Example 1 The system of Example 1 except for potassium bromide was crosslinked under the same conditions as Example 1.

架橋物の感圧特性を測定したところ、無加圧時5MΩあ
つたものが10h/CrA加圧しても980KΩと抵抗
値は若干減少したものの実施例1のような抵抗値の大幅
な変化は見られなかつた。実施例 2 粒径約40μmのガス噴霧法による銅粉40体積分率%
とシリコンゴム(信越化学製KEl3OORTV)60
体積分率%(所定量の触媒を加えたもの)を前もつてニ
ーダ一で15分間混練後、これに粒径10ttmの塩化
ナトリウム(NaCl)を徐々に添加して行つた。
When the pressure sensitive properties of the cross-linked material were measured, the resistance value slightly decreased from 5 MΩ when no pressure was applied to 980 KΩ even when CrA was applied for 10 hours, but no significant change in resistance value was observed as in Example 1. I couldn't help it. Example 2 Copper powder 40% by volume by gas atomization method with a particle size of about 40 μm
and silicone rubber (KEL3OORTV manufactured by Shin-Etsu Chemical) 60
A volume fraction of % (plus a predetermined amount of catalyst) was prepared and kneaded for 15 minutes in a kneader, and then sodium chloride (NaCl) having a particle size of 10 ttm was gradually added thereto.

実施例2と同様にニーダ一のトルクを観察したところ、
もとの混合物の体積100に対してNaCtの体積33
.3加えた所で急激にニーダ一のトルクが上昇し、この
時点がCPVCであることを確認した。この後5分間混
練後取り出し、1Tm厚にシート出しを行い、1日室温
で架橋した後130℃で1時間熱処理を行つた。この架
橋物の5cm×5cmを取り出し、水1tで1時間煮沸
したところ、NaCtのほぼ全1が溶出したが銅粉の脱
落は見られなかつた。この小片を脱水後充分乾燥させた
後、感圧特性を測定した。その結果無加圧時5MΩあつ
たものが3k9/CwL−:!)加圧によつて0.5Ω
まで抵抗値が減少し良好な感圧特性を示した。比較例
2 実施例2の塩化ナトリウムを除いた系を、実施例2と同
一条件で架橋した。
When the torque of the kneader was observed in the same manner as in Example 2,
33 volumes of NaCt per 100 volumes of the original mixture
.. The torque of the kneader 1 suddenly increased when 3 was added, and it was confirmed that CPVC was present at this point. After kneading for 5 minutes, the mixture was taken out, formed into a sheet with a thickness of 1 Tm, crosslinked at room temperature for 1 day, and then heat-treated at 130° C. for 1 hour. When a 5 cm x 5 cm piece of this crosslinked material was taken out and boiled in 1 ton of water for 1 hour, almost all of the NaCt was eluted, but no copper powder was observed to fall off. After this small piece was dehydrated and sufficiently dried, its pressure sensitive properties were measured. As a result, the temperature of 5MΩ when no pressure was applied was 3k9/CwL-:! ) 0.5Ω by pressurization
The resistance value decreased to 100%, and good pressure-sensitive characteristics were exhibited. Comparative example
2 The system of Example 2 except for sodium chloride was crosslinked under the same conditions as Example 2.

架橋物の感圧特性を測定したところ無加圧時300Ωあ
つたものが3h/Cdの加圧によつて0.1Ωとなり、
抵抗値は若干減少したが、大幅な抵抗値の変化は認めら
れず、初期の抵抗値から見て導電ゴムの領域であつた。
以上実施例1,2および比較例1,2で作成したサンプ
ルを3k9/Cdの力で圧縮繰り返しテストを行つた。
5万回の繰り返しを行つた結果は下記の如くなつた。
When we measured the pressure sensitive properties of the crosslinked material, it was 300Ω when no pressure was applied, but it became 0.1Ω when pressure was applied for 3 h/Cd.
Although the resistance value decreased slightly, no significant change in resistance value was observed, and the resistance value was in the range of conductive rubber compared to the initial resistance value.
The samples prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to repeated compression tests with a force of 3k9/Cd.
The results after 50,000 repetitions were as follows.

以上のように実施例1,2については初期の抵抗値と大
差なく、良好な感圧特性を示したが、未発泡の比較例1
,2は次第に抵抗値が上昇することが明らかとなつた。
As mentioned above, Examples 1 and 2 showed good pressure-sensitive characteristics without much difference from the initial resistance value, but unfoamed Comparative Example 1
, 2, it became clear that the resistance value gradually increased.

このようにして得られた高感度感圧抵抗体は、発泡体で
あるため硬度が低く、軟かいことによりタツチ・スイツ
チ、キーボード・スイツチ、マイクロスイツチなどの0
N/0FFの感触がよく、且ストロークがある程度コン
トロールできるため良好なスイツチ感触が得られ、しか
も繰り返し特性のすぐれたスイツチとして工業的に有用
なものであることがわかつた。
The high-sensitivity pressure-sensitive resistor obtained in this way has low hardness because it is a foam, and is soft enough to be used in touch switches, keyboard switches, micro switches, etc.
It was found that the N/OFF switch has a good feel and the stroke can be controlled to some extent, giving a good switch feel, and is industrially useful as a switch with excellent repeatability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の感圧抵抗体の気泡と金属粒子の配置を示
す顕微鏡的拡大図、第2図は本発明による高感度感圧抵
抗体の第1図と同様の図である。 1 ・・・弾性体、2・・・金属粒子、3・・・気泡。
FIG. 1 is a microscopic enlarged view showing the arrangement of bubbles and metal particles in a known pressure-sensitive resistor, and FIG. 2 is a similar view to FIG. 1 of a high-sensitivity pressure-sensitive resistor according to the present invention. 1... Elastic body, 2... Metal particles, 3... Air bubbles.

Claims (1)

【特許請求の範囲】 1 導電性金属粒子と高分子弾性体とから主としてなり
、高分子弾性体内に気泡を有し、該気泡はその短径が金
属粒子の径と同程度乃至はその1/10程度以上の連続
気泡であることを特徴とする高感度感圧抵抗体。 2 上記金属粒子はその径が1μm〜200μmである
ことを特徴とする特許請求の範囲1に記載の高感度感圧
抵抗体。 3 上記高分子弾性体がシリコンゴムであることを特徴
とする特許請求の範囲1に記載の高感度感圧抵抗体。 4 導電性金属粒子と高分子弾性体とから主としてなる
混合物に、該混合物に不溶な塩をその限界顔料濃度以上
に加えたのち、混合物を架橋し、ついで塩を架橋物の貧
溶媒に溶解させることを特徴とする高感度感圧抵抗体の
製造方法。
[Scope of Claims] 1. Mainly composed of conductive metal particles and an elastic polymer, and has air bubbles within the elastic polymer, and the short diameter of the air bubble is about the same as or 1/2 the diameter of the metal particle. A highly sensitive pressure-sensitive resistor characterized by having approximately 10 or more open cells. 2. The high-sensitivity pressure-sensitive resistor according to claim 1, wherein the metal particles have a diameter of 1 μm to 200 μm. 3. The high-sensitivity pressure-sensitive resistor according to claim 1, wherein the polymer elastic body is silicone rubber. 4. Adding an insoluble salt to the mixture mainly consisting of conductive metal particles and an elastomer polymer in an amount equal to or higher than its limit pigment concentration, crosslinking the mixture, and then dissolving the salt in a poor solvent for the crosslinked product. A method for manufacturing a high-sensitivity pressure-sensitive resistor, characterized by:
JP10305576A 1976-08-28 1976-08-28 High sensitivity pressure sensitive resistor and its manufacturing method Expired JPS5947843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10305576A JPS5947843B2 (en) 1976-08-28 1976-08-28 High sensitivity pressure sensitive resistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10305576A JPS5947843B2 (en) 1976-08-28 1976-08-28 High sensitivity pressure sensitive resistor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5328261A JPS5328261A (en) 1978-03-16
JPS5947843B2 true JPS5947843B2 (en) 1984-11-21

Family

ID=14343976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10305576A Expired JPS5947843B2 (en) 1976-08-28 1976-08-28 High sensitivity pressure sensitive resistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5947843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313038A (en) * 1991-04-08 1992-11-05 Mitsubishi Electric Corp Apparatus for detecting amount of leaking gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545926A (en) * 1980-04-21 1985-10-08 Raychem Corporation Conductive polymer compositions and devices
US5378407A (en) * 1992-06-05 1995-01-03 Raychem Corporation Conductive polymer composition
JP3500493B2 (en) * 1997-10-31 2004-02-23 潤二 伊藤 Porous electrode and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313038A (en) * 1991-04-08 1992-11-05 Mitsubishi Electric Corp Apparatus for detecting amount of leaking gas

Also Published As

Publication number Publication date
JPS5328261A (en) 1978-03-16

Similar Documents

Publication Publication Date Title
EP1050054B1 (en) Polymer composition
JP2908024B2 (en) Pressure-sensitive composite material and method of using same
US2808352A (en) Electrically conductive adhesive tape
JPS5824921B2 (en) pressure sensitive resistance element
US5843342A (en) Polymer compositions containing chlorided conductive particles
KR960017923A (en) Solid electrolytic capacitor having two solid electrolytic layers and manufacturing method thereof
US5328756A (en) Temperature sensitive circuit breaking element
JPS5947843B2 (en) High sensitivity pressure sensitive resistor and its manufacturing method
AU645020B2 (en) An electrically conductive ink
JPH0753813A (en) Electrically conductive plastic composition
EP0210002A1 (en) Pressure responsive electrically conductive materials
JPS62112641A (en) Pressure-sensitive, electrically conductive elastomer composition
US7161103B1 (en) Moveable contact assembly, method of manufacturing the same, and switch using the same
US3102990A (en) Variable resistor contact
JPH0654603B2 (en) Pressure-sensitive conductive elastomer
JPH0588857B2 (en)
JPS5911343A (en) Pressure-sensitive, electrically conductive rubber
JPH04253109A (en) Deformable conductive elastomer
CN113651994A (en) Porous elastic conductive composite film and preparation method thereof
JPH04349301A (en) Deformable conductive elastomer
CN100480318C (en) Composite material with negative temperature coefficient, preparation process and application thereof
JPS60723B2 (en) Manufacturing method of foamed pressure-sensitive resistor
JPS58209810A (en) Pressure sensitive conductive elastomer sheet and method of producing same
JPH0119625B2 (en)
JPH04304266A (en) Variable-resistance rubber