JPS5947405B2 - conductive rubber - Google Patents
conductive rubberInfo
- Publication number
- JPS5947405B2 JPS5947405B2 JP4749676A JP4749676A JPS5947405B2 JP S5947405 B2 JPS5947405 B2 JP S5947405B2 JP 4749676 A JP4749676 A JP 4749676A JP 4749676 A JP4749676 A JP 4749676A JP S5947405 B2 JPS5947405 B2 JP S5947405B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive rubber
- rubber
- conductive
- present
- mixing ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Non-Insulated Conductors (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Description
【発明の詳細な説明】
本発明は、導電性ゴムに関し、特に厚さ方向には導電性
を有し、面方向には絶縁性を有する導電異方性を有する
導電ゴムに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive rubber, and particularly to a conductive rubber having conductivity anisotropy, having conductivity in the thickness direction and insulation in the plane direction.
従来から知られている導電性ゴムは、大別してあらゆる
方向に均一な導電性を有する導電等方性の導電性ゴムと
、薄いシート状に成形され厚さ方向には導電性を有し面
方向には絶縁性を有する導電異方性を有する導電異方性
ゴムの二種がある。Conventionally known conductive rubber can be roughly divided into isotropic conductive rubber, which has uniform conductivity in all directions, and conductive rubber, which is formed into a thin sheet and has conductivity in the thickness direction, and conductivity in the surface direction. There are two types of conductive anisotropic rubbers that have insulating properties and conductive anisotropy.
しかし、等方性導電ゴムは製法も簡単で信頼性も高いが
、多数の接点を接続する場合、非常に面倒であるし、逆
に異方性導電ゴムは多数の接点を接続する場合でも非常
に簡単であるが、製法が微妙で長期信頼性に欠けるもの
であつた。本発明は、かかる欠点を改良し、異方性導電
ゴムであわながら製法が簡単でしかも長期的にも信頼度
の高い安手な導電ゴムを提供するものである。However, although isotropic conductive rubber is easy to manufacture and has high reliability, it is extremely troublesome when connecting a large number of contacts, and conversely, anisotropic conductive rubber is extremely troublesome even when connecting a large number of contacts. However, the manufacturing method is delicate and lacks long-term reliability. The present invention improves these drawbacks and provides an inexpensive conductive rubber that is easy to manufacture and highly reliable over the long term, even though it is an anisotropic conductive rubber.
第1図は、従来の導電性ゴムシートの断面図を示したも
ので、導電性ゴム1は、一般にはゴムに銀、銅、ニッケ
ル等の導電性を有する微粉末を混入して作られ、その混
合比とゴムの導電性の関係は第2図の如くになる。従つ
て、金属粉をある一定以上の混合比で混入すれば導電性
が得られ、この様な場合、ゴムは導電等方性のゴムにな
D、第1図でaΘb、cΘd、aΘc、bΘd等あらゆ
る方向に導電性を有する。又、導電性が急激に変化する
混合比、即ち第2図のAで示した混合比で薄いシート状
に成形した場合、導電異方性のゴムが得られ、aΘb、
cΘd等厚み方向には導電性を有するが、aΘc、bΘ
d等面方向には絶縁性を有する様になる。この性質は実
際には微小区間ぱ導電性を有し、それ以上は不導通にな
るものでシートの厚さをこの微小区間以下に成形するこ
とにより上述の性質が得られる。フ ところで、等方性
の導電ゴムは、金属粉をある一定以上混入すれば作るこ
とができ、比較的容易に製造することができる。FIG. 1 shows a cross-sectional view of a conventional conductive rubber sheet. Conductive rubber 1 is generally made by mixing rubber with conductive fine powder such as silver, copper, nickel, etc. The relationship between the mixing ratio and the conductivity of the rubber is as shown in FIG. Therefore, conductivity can be obtained by mixing metal powder at a mixing ratio above a certain level, and in such a case, the rubber becomes conductive isotropic rubber. etc. It has conductivity in all directions. Furthermore, when molded into a thin sheet at a mixing ratio at which the conductivity changes rapidly, that is, the mixing ratio shown by A in Figure 2, a conductive anisotropic rubber is obtained, and aΘb,
It has conductivity in the thickness direction such as cΘd, but aΘc, bΘ
It becomes insulating in the d isoplane direction. This property is actually conductive in a minute section and non-conductive beyond that point, and the above-mentioned properties can be obtained by forming the sheet with a thickness equal to or less than this minute section. By the way, isotropic conductive rubber can be made by mixing metal powder in a certain amount or more, and can be manufactured relatively easily.
しかし、多数の接点を接続する場合は、夫々の接点に各
々にゴムを配置する必要があり、非常に面倒で又コスト
も高いも・ のになる。又、異方性の導電ゴムは、第2
図で説明した様に金属粉の混合比をほぼ一定値にコント
ロールしなければならず、製造上むずかしい面がある。
多数の接点を接続する場合、接点の間にゴムシートを挿
入すれば良く等方性導電ゴムにないフ利点を有するが、
実際に接点の導通をとるにはゴムを押圧することにな力
、混合が若干不均一な場合には面方向にも幾分導通する
ことがあり、信頼性の面でも問題があつた。本発明は、
この様な諸欠点を考慮し、異方性導; 電ゴムでありな
がら、混合比をある程度ラフにし製法が簡単でしかも面
方向のリークや長期的な安定性の向上を計つたもので、
以下実施例に基づき詳説する。However, when connecting a large number of contacts, it is necessary to place rubber on each contact, which is extremely troublesome and costly. In addition, the anisotropic conductive rubber
As explained in the figure, the mixing ratio of metal powder must be controlled to a nearly constant value, which is difficult in terms of manufacturing.
When connecting a large number of contacts, it is sufficient to insert a rubber sheet between the contacts, and it has an advantage that isotropic conductive rubber does not have.
In order to actually make the contacts conductive, it is necessary to press the rubber, and if the mixture is slightly uneven, some conductivity may occur in the planar direction, which also poses problems in terms of reliability. The present invention
Taking these drawbacks into consideration, we created an anisotropic conductive rubber with a rough mixing ratio to a certain extent, making it easier to manufacture and reducing leakage in the plane direction and improving long-term stability.
A detailed explanation will be given below based on examples.
第3図は、本発明の一実施例を示す異方性導電ゴムの外
観図である。FIG. 3 is an external view of an anisotropic conductive rubber showing one embodiment of the present invention.
この導電ゴム2は、図から明らかな様に従来の導電ゴム
と異なv凸部3、凹部4があるのが大きな特徴である。
第4図は、この導電ゴム2の側面図であるが、この様な
形状の導電ゴムを接点間に挟み押圧すると凸部3には圧
縮力が作用するが凹部にはこれが殆ど作用しないのは明
らかであろう。しかるに、この導電ゴム2の金属粉の混
合比は、従来の金属粉の混合比より若干少なくなつてい
る。即ち、従来の導電ゴムはこの表面に接触すれば電気
的な接続が得られるように混合比を高くしていたのに対
し、本実施例の導電ゴムは押圧圧縮して始めて電気的接
続がとれる様に構成したものである。又、従来の等方性
の導電ゴムは、極微粉末の金属粉が混入されていたが、
本実施例はこれよシやや大きい粉末を使用し、ゴムが圧
縮されたとき、この金属粉が移動して相互に接触して始
めて電気的導通が得られたものである。従つて、第4図
矢印の様に導電ゴム2を圧縮すると凸部であるa++B
.cedは導通がとれるが、a++cはもちろんb++
dは導通がとれない。この導電ゴムを用いた電気接続装
置を第5図に示す。第5図aは組立図、bはその断面図
である。同図において、7、11は基板で、8、10は
夫夫この基板7、11に施された配線パターンであシ、
これらの配線パターン8、10を導電ゴム9を介して接
続をはかつたものである。導電ゴムの凸部にはこれら配
線パターン8、10と一致させて2枚の基板7、11間
に挟まれ押圧固定される。:従つて、凸部12が圧縮さ
れこの凸部12に対応する配線パターン8、10が相互
に接続される。ところで、第6図はこの本発明の導電ゴ
ムの導電機構を説明する図でaは、圧力をかけない自由
な状態、bは凸部に圧力を加えた圧縮された状態5を模
型的に示したものである。5がゴム部で6が金属粒子で
ある。As is clear from the figure, the major feature of this conductive rubber 2 is that it has a v-convex portion 3 and a concave portion 4, which are different from conventional conductive rubber.
FIG. 4 is a side view of the conductive rubber 2. When the conductive rubber having such a shape is sandwiched between the contacts and pressed, compressive force acts on the convex portions 3, but this hardly acts on the concave portions. It should be obvious. However, the mixing ratio of metal powder in this conductive rubber 2 is slightly lower than the mixing ratio of conventional metal powder. In other words, while conventional conductive rubber has a high mixing ratio so that an electrical connection can be established upon contact with this surface, the conductive rubber of this embodiment can establish an electrical connection only after being pressed and compressed. It is structured like this. In addition, conventional isotropic conductive rubber contains ultrafine metal powder mixed in, but
In this embodiment, a slightly larger powder was used, and when the rubber was compressed, the metal powder moved and came into contact with each other, and electrical continuity was obtained only when the metal powder moved and came into contact with each other. Therefore, when the conductive rubber 2 is compressed as shown by the arrow in FIG.
.. ced has continuity, but a++c as well as b++
d is not conductive. An electrical connection device using this conductive rubber is shown in FIG. FIG. 5a is an assembled view, and FIG. 5b is a sectional view thereof. In the figure, 7 and 11 are circuit boards, and 8 and 10 are wiring patterns applied to the circuit boards 7 and 11.
These wiring patterns 8 and 10 are connected via conductive rubber 9. The convex portions of the conductive rubber are sandwiched between the two substrates 7 and 11 and pressed and fixed in alignment with the wiring patterns 8 and 10. : Therefore, the convex portion 12 is compressed and the wiring patterns 8 and 10 corresponding to this convex portion 12 are connected to each other. By the way, FIG. 6 is a diagram illustrating the conductive mechanism of the conductive rubber of the present invention, where a shows a free state with no pressure applied, and b schematically shows a compressed state 5 with pressure applied to the convex portion. It is something that 5 is a rubber part and 6 is a metal particle.
実際の金属粒子は、もつと細かなものであるが、理解し
やすくするため模型的に大きく示したものである。この
導電ゴムは、前述のように金属粉の混合比を少なくして
いるのでA4の状態では、金属粒子6間にゴム5が介在
している。従つて、このゴムに接触するだけでは、どの
方向にも電気的な導通は得られない。ところがbは凸部
を圧縮した状態であるが、この状態では凸部にある金属
粒子6は凸部が圧縮されているため互に接触する。従つ
て、この凸部の厚み方向は、電気的な導通がとれるが凹
部は圧縮力が作用しないのでaの状態と変らないため、
凸部と凸部間との絶縁は保たれるので連続した導電ゴム
であシながら凸部のみ導通が得られる電気的異方性の導
電ゴムが得られた。このように本発明の導電ゴムは、前
述のように金属粉の混合比が少ないため、ゴムとしての
性質、即ち弾性が非常によいのが大きな特徴で、しかも
これが長期に持続するので信頼性の点で大きな向上がは
かれた。Actual metal particles are quite small, but they are shown in a larger scale to make them easier to understand. Since this conductive rubber has a low mixing ratio of metal powder as described above, in the A4 state, the rubber 5 is interposed between the metal particles 6. Therefore, electrical continuity cannot be obtained in any direction simply by contacting this rubber. However, in b, the convex portion is in a compressed state, and in this state, the metal particles 6 on the convex portion come into contact with each other because the convex portion is compressed. Therefore, electrical continuity can be established in the thickness direction of this convex part, but no compressive force is applied to the concave part, so the state remains the same as in a.
Since the insulation between the protrusions was maintained, an electrically anisotropic conductive rubber was obtained in which conduction could be obtained only in the protrusions, even though the conductive rubber was continuous. As mentioned above, the conductive rubber of the present invention has a low mixing ratio of metal powder, so its main characteristic is that it has very good rubber properties, that is, it has very good elasticity.Moreover, this property lasts for a long time, so it has a high reliability. A big improvement was made in this respect.
又、製法上混合比の許容誤差は、従来の異方性導電ゴム
に比しラフでよく大量生産に適している。又、凹凸をつ
けて製造するには、第7図、第8図、第9図に示す様に
シート状に型又はローラーで成形して適当に切断するこ
とによシ非常に簡略である。本発明は、第7図に示すよ
うに、凸部13が矩形であつてもよいし、第8図の凸部
14の如く円形であつても、第9図の凸部15の如く円
柱形であつてもよく、その他さまざまな形状を採ること
が可能である。In addition, the tolerance of the mixing ratio due to the manufacturing process is rougher than that of conventional anisotropic conductive rubber, making it suitable for mass production. In addition, manufacturing with unevenness is very simple, as shown in FIGS. 7, 8, and 9, by forming the sheet into a sheet with a die or roller and cutting it appropriately. In the present invention, the convex portion 13 may be rectangular as shown in FIG. 7, circular as the convex portion 14 in FIG. 8, or cylindrical as the convex portion 15 in FIG. It is also possible to take various other shapes.
なお、第10図は本導電ゴムの他の使用例を示したもの
で、2枚の基板16、19のそれぞれの配線パターン1
7、20を相互に接続するに、これらの配線パターン1
7、20のピツチよシ+分細かなピツチの凹凸を有する
導電ゴム18を用いたもので、第5図の実施例の如く配
線パターン1T、20と導電ゴム18の凸部21とを対
応させる必要がなく、組立上有利となる。In addition, FIG. 10 shows another example of the use of the present conductive rubber, in which the wiring pattern 1 of each of the two substrates 16 and 19 is
7 and 20, these wiring patterns 1
A conductive rubber 18 having irregularities with a pitch of 7 and 20 plus a fine pitch is used, and the wiring patterns 1T and 20 are made to correspond to the convex portions 21 of the conductive rubber 18 as in the embodiment shown in FIG. This is not necessary and is advantageous for assembly.
さらに第11図は、本発明の導電ゴムの他の実施例を示
したもので、前述の実施例では片面に凸部を構成したも
のを示したが、本例は図の如く両面に凸部22、23を
設けたもので、より高い信頼性を要求される接続装置に
適した導電ゴムといえる。Furthermore, FIG. 11 shows another embodiment of the conductive rubber of the present invention. In the previous embodiment, a convex portion was formed on one side, but in this example, convex portions were formed on both sides as shown in the figure. 22 and 23, and can be said to be a conductive rubber suitable for connection devices that require higher reliability.
以上本発明をその実施例につき詳説したが、本発明の導
電ゴムは導電異方性を有しながら簡単に量産ができ、安
定度、長期信頼性の高いもので、その応用範囲としては
あらゆる電気接続装置に用いることができ、その工業上
の価値は高い。The present invention has been described above in detail with reference to its embodiments, but the conductive rubber of the present invention has conductive anisotropy, can be easily mass-produced, and has high stability and long-term reliability. It can be used for connection devices and has high industrial value.
ところで、本発明は上述の実施例に限定されるものでは
なく、突起の形状、金属粉の量、大きさゴムの材質等に
ついては各種のものが考えられる。By the way, the present invention is not limited to the above-described embodiments, and various shapes of the protrusions, amount of metal powder, size, material of the rubber, etc. can be considered.
第1図は、従来の導電ゴムの断面図である。
第2図は、導電ゴムの混合比と導電性を示す図である。
第3図は、本発明の一実施例を示す導電ゴムを示す。第
4図は、本発明の一実施例である導電ゴムの説明図であ
る。第5図は、本発明の導電ゴムを用いた電気接続装置
を示す。第6図は、本発明の導電ゴムの導電機構を説明
する図である。第T図〜第9図は、本発明の導電ゴムの
他の実施例を示す図である。第10図は、本発明の導電
ゴムを用いた電気接続装置の他の実施例を示す。第11
図は、本発明の導電ゴムの他の実施例を示す。1 ・・
・・・・導電ゴム、2・・・・・・導電ゴム、3・・・
・・・凸部、4・・・・・・凹部、5・・・・・・ゴム
部、6・・・・・・金属粒子、T・・・・・・基板、8
・・・・・・配線パターン、9・・・・・・導電ゴム、
10・・・・・・配線パターン、11・・・・・・基板
、12・・・・・・凸部。FIG. 1 is a sectional view of a conventional conductive rubber. FIG. 2 is a diagram showing the mixing ratio and conductivity of conductive rubber.
FIG. 3 shows a conductive rubber showing one embodiment of the present invention. FIG. 4 is an explanatory diagram of a conductive rubber that is an embodiment of the present invention. FIG. 5 shows an electrical connection device using the conductive rubber of the present invention. FIG. 6 is a diagram illustrating the conductive mechanism of the conductive rubber of the present invention. FIG. T to FIG. 9 are diagrams showing other embodiments of the conductive rubber of the present invention. FIG. 10 shows another embodiment of the electrical connection device using the conductive rubber of the present invention. 11th
The figure shows another embodiment of the conductive rubber of the present invention. 1...
...Conductive rubber, 2...Conductive rubber, 3...
...Convex portion, 4...Concave portion, 5...Rubber portion, 6...Metal particle, T...Substrate, 8
...Wiring pattern, 9...Conductive rubber,
10...Wiring pattern, 11...Substrate, 12...Protrusion.
Claims (1)
散させたゴム又はゴムと同等の弾性と絶縁性を有する物
質を凹凸を有するように成形し、凸部を電気接続部、凹
部を非電気接続部としたことを特徴とする導電性ゴム。1. Rubber or a substance with elasticity and insulating properties equivalent to rubber, mixed and dispersed with an appropriate amount of conductive particles such as nickel powder or copper powder, is molded to have unevenness, and the convex parts are electrical connection parts and the concave parts are non-electrical connection parts. A conductive rubber characterized by being used as a connecting part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4749676A JPS5947405B2 (en) | 1976-04-26 | 1976-04-26 | conductive rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4749676A JPS5947405B2 (en) | 1976-04-26 | 1976-04-26 | conductive rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52131154A JPS52131154A (en) | 1977-11-02 |
JPS5947405B2 true JPS5947405B2 (en) | 1984-11-19 |
Family
ID=12776713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4749676A Expired JPS5947405B2 (en) | 1976-04-26 | 1976-04-26 | conductive rubber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5947405B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54148859U (en) * | 1978-04-07 | 1979-10-16 | ||
JPS61271706A (en) * | 1985-05-27 | 1986-12-02 | 藤倉ゴム工業株式会社 | Pressure sensing conductive rubber |
JP2002075063A (en) * | 2000-08-23 | 2002-03-15 | Jsr Corp | Anisotropic conductive sheet |
JP2018040776A (en) * | 2016-09-09 | 2018-03-15 | 株式会社NejiLaw | Sensor structure and component having the same |
CN108102562B (en) * | 2017-12-12 | 2020-06-30 | 武汉华星光电半导体显示技术有限公司 | Anisotropic conductive film |
-
1976
- 1976-04-26 JP JP4749676A patent/JPS5947405B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS52131154A (en) | 1977-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4144648A (en) | Connector | |
US4209481A (en) | Process for producing an anisotropically electroconductive sheet | |
US3680037A (en) | Electrical interconnector | |
US4593961A (en) | Electrical compression connector | |
US4125310A (en) | Electrical connector assembly utilizing wafers for connecting electrical cables | |
US3982320A (en) | Method of making electrically conductive connector | |
US4453795A (en) | Cable-to-cable/component electrical pressure wafer connector assembly | |
US5717248A (en) | Cooling and screening device having contact pins for an integrated circuit | |
JPS6032285B2 (en) | Method for manufacturing pressurized conductive elastomer | |
US4993957A (en) | Contact pin | |
US4344662A (en) | Retainer for elastomeric electrical connector | |
US4257661A (en) | Retainer for elastomeric electrical connector | |
US6117539A (en) | Conductive elastomer for grafting to an elastic substrate | |
JPS5947405B2 (en) | conductive rubber | |
JPH09259988A (en) | Terminal for electric connector | |
JP4236367B2 (en) | Semiconductor socket and manufacturing method thereof | |
US5131874A (en) | Female contact in a connector | |
US3875541A (en) | Arrangement for mounting a microwave component with a solderless ground connection | |
JPH0574512A (en) | Connector for electrical connection | |
JPH02853Y2 (en) | ||
JPS623911Y2 (en) | ||
US4555152A (en) | Leadless integrated circuit connector | |
CA1303167C (en) | Electrical connector | |
JP3340294B2 (en) | Connectors for electronic components | |
JPS5916252B2 (en) | doden connector |