[go: up one dir, main page]

JPS5946491A - Heat exchanger of silicon carbide - Google Patents

Heat exchanger of silicon carbide

Info

Publication number
JPS5946491A
JPS5946491A JP15776282A JP15776282A JPS5946491A JP S5946491 A JPS5946491 A JP S5946491A JP 15776282 A JP15776282 A JP 15776282A JP 15776282 A JP15776282 A JP 15776282A JP S5946491 A JPS5946491 A JP S5946491A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
less
heat exchanger
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15776282A
Other languages
Japanese (ja)
Other versions
JPH026998B2 (en
Inventor
Hideo Nagashima
長島 秀夫
Hideyasu Matsuo
松尾 秀逸
Hiroyuki Yoshida
博幸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP15776282A priority Critical patent/JPS5946491A/en
Publication of JPS5946491A publication Critical patent/JPS5946491A/en
Publication of JPH026998B2 publication Critical patent/JPH026998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide a heat exchanger which stands for long use up to the heat- resistant temperature which silicon carbide originally has, by using a molded silicon carbide body, of which pores are packed with silicon, and of which content of Fe, Al and Na converted into the metallic condition is less than the specified value. CONSTITUTION:Pores of a molded body made of recrystallized silicon carbide are filled with silicon. Material of high purity, silicon-made of silicon carbide, of which impurity is less than 500ppm in regard to Fe, less than 1,000ppm in regard to Al, and less than 100ppm in regard to Na, is to be used for the filler. The molded body of recrystallized silicon carbide has a gas permeability because its porosity is high, so that silicon is filled up with the pores to turn it into a gas impermeable body. On the other hand, if impurity such as Fe2O3, Al2O3 and the like is contained much in the body, an SiO2 film formed on the surface of silicon carbide is converted into composition which is thermally unstable, and it causes the SiO2 film to come off.

Description

【発明の詳細な説明】 本発明は炭化珪素からなる熱交換器の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in heat exchangers made of silicon carbide.

通常熱交換器は高熱伝導性を有するものとして銅、銅合
金等が低温(2〜300℃)用として、又高温(1,0
00℃以下)用としてインコネル、ハステロイ等の金属
材料が使用されている。又特にi、ooo℃以上の高温
用としては金属では耐熱限界を越えることから、コージ
ライト、炭化珪素等のセラミック材料が知られている。
Usually, heat exchangers are made of copper, copper alloy, etc., which have high thermal conductivity, and are used for low temperatures (2 to 300 degrees Celsius) or for high temperatures (1,0 degrees Celsius).
Metal materials such as Inconel and Hastelloy are used for temperatures below 00°C. In particular, ceramic materials such as cordierite and silicon carbide are known as they exceed the heat resistance limit of metals for use at high temperatures of i,00° C. or higher.

セラミック材料は一般に耐熱耐蝕性にすぐれているが特
に溶接が困難な点等加工性に難点があり、複雑な形状に
は適さない。
Ceramic materials generally have excellent heat and corrosion resistance, but they have difficulties in workability, particularly in that they are difficult to weld, and are not suitable for complex shapes.

又、熱交換器は高度の信頼性が要求され、しかも長寿命
のものである必要があり、これらの点で従来のセラミッ
ク材料では満足すべきものは得られていなかった。例え
ば、コージライト質のものは耐熱、耐スポーリング性は
満足できるにしても、複合成分素地から作られるため均
質性に乏しく実用に耐えるものは得られていない。又、
炭化珪素質のものは熱伝導性は良好ヤあるが、粘土等で
焼結したものであるため熱間荷重に弱く、特に通気性に
問題が残っていた。
In addition, heat exchangers are required to have a high degree of reliability and to have a long life, and conventional ceramic materials have not been satisfactory in these respects. For example, cordierite materials may have satisfactory heat resistance and spalling resistance, but because they are made from a composite material, they lack homogeneity and cannot be of practical use. or,
Those made of silicon carbide have good thermal conductivity, but because they are sintered with clay or the like, they are vulnerable to hot loads, and there remain problems, especially in air permeability.

更に高温における耐酸化性に難点があり、SiO2の形
成と共に表面及び内部との応力の差が次第に拡大し1、
ついには破壊に至る等持てる特性を充分に発揮し得ない
状態であった。
Furthermore, there is a problem with oxidation resistance at high temperatures, and as SiO2 forms, the difference in stress between the surface and the inside gradually increases1.
In the end, it was in a state where it could not fully demonstrate its characteristics, leading to destruction.

本発明は炭化珪素の持つ特性を充分生かすべくその欠点
を究明し、これを改善することによって従来に見られな
い熱交換器を開発したもので再結晶炭化珪素成形体の気
孔をシリコンによって充填し、しかもその不純物をF8
500 ppm以下、AL 1000 pPm以下、N
a100 ppm以下の炭化珪素−シリコンからなる高
純度の材料としだものである。
In order to make full use of the characteristics of silicon carbide, the present invention has investigated the shortcomings of silicon carbide, and by improving these, we have developed a heat exchanger that has never been seen before.The pores of a recrystallized silicon carbide molded body are filled with silicon. , and the impurities are F8
500 ppm or less, AL 1000 pPm or less, N
It is made of a high purity material made of silicon carbide-silicon with an a content of 100 ppm or less.

即ち、炭化珪素の酸化は炭化珪素自体が酸化されその表
面に5in2  の被膜が形成され、この5in2 の
被膜が剥離すると新だに露出しだ炭化珪素か酸化を受け
るというような過程で進行する。この場合生成した5i
02被膜が剥離することなく存在すれば炭化珪素の7p
化は停止するが、この5i02  被17/+はFe 
20s、へ7203等の不純物が存在すると熱的に不安
定な組成に転化しS i 02被膜の剥離に連がるとい
うことが明らかとなった。
That is, the oxidation of silicon carbide proceeds in such a way that the silicon carbide itself is oxidized, a 5 in 2 film is formed on its surface, and when this 5 in 2 film is peeled off, the newly exposed silicon carbide is oxidized. In this case, the generated 5i
02 If the film exists without peeling, 7p of silicon carbide
The conversion stops, but this 5i02 17/+ is Fe
It has become clear that the presence of impurities such as 20s and He7203 transforms the composition into a thermally unstable composition, leading to peeling of the Si02 film.

従って本発明のものにおいでは高純度の炭化珪素を使用
し、金属に換算してF’P500 ppm以下、At 
1000 ppm以下、NA100 ppm以下とする
ことにより、かつ形成した炭化珪素成形体の気孔を高純
度のシリコンによって充填することによって炭化珪素が
本来持っている耐熱温度1で長時間の使用に耐え、従来
のセラミックス材料では得られなかった熱交換器を提供
するものである。
Therefore, in the product of the present invention, high purity silicon carbide is used, and F'P is 500 ppm or less in terms of metal, At
By setting the NA to 1000 ppm or less and the NA to 100 ppm or less, and by filling the pores of the formed silicon carbide molded body with high-purity silicon, it can withstand long-term use at the heat-resistant temperature 1 that silicon carbide originally has, and is This provides a heat exchanger that cannot be obtained using ceramic materials.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず常法により再結晶炭化珪素成形体を得で試片とした
First, a recrystallized silicon carbide molded body was obtained by a conventional method to prepare a specimen.

即ち、炭化珪素粉及び炭素粉をフェノールレジンを使用
してパイプ状に成形し、これを炭化焼成した後これを二
分し、一方を、HCl  ガスによって純化処理し、他
方をそのま\でいずれにも超高純度シリコンを含浸させ
た。
That is, silicon carbide powder and carbon powder are formed into a pipe shape using phenol resin, carbonized and fired, and then divided into two parts. One part is purified with HCl gas, and the other part is left as is. Also impregnated with ultra-high purity silicon.

これらの密度はいずれも3.1o±0.05’/ccで
あり、室温における曲げ強度は500〜550MPfL
の範囲内にあって、相互の純度と曲げ強度の関係の相関
関係は明確てd:ながった。これらを1350″Gに一
加熱し、パイプ内部に空気及び2係の802ガスを含む
重油燃#、廃ガスを流して1000時間熱処理した。
The density of these is 3.1o±0.05'/cc, and the bending strength at room temperature is 500-550MPfL.
Within the range of d:, the correlation between purity and bending strength was clear. These were heated to 1,350″G, and heat-treated for 1,000 hours by flowing air, heavy oil fuel containing 802 gas from the second stage, and waste gas into the pipe.

その重量増加(減少)及び曲げ強度を測定した結果を表
1に示す。又純化処理したものの自然空気対流下で13
50℃に熱処理した場合の経時変化を表2に示す。
Table 1 shows the results of measuring the weight increase (decrease) and bending strength. Also, after purification treatment, under natural air convection, 13
Table 2 shows changes over time when heat treated at 50°C.

表1において、実施例1及び参考例1〜3は空気酸化さ
せた場合、実施例2及び参考例4〜6は2チS02含有
の重油燃焼廃ガスによって処理した場合を示している。
In Table 1, Example 1 and Reference Examples 1 to 3 show cases in which air oxidation was performed, and Example 2 and Reference Examples 4 to 6 show cases in which treatment was performed with heavy oil combustion waste gas containing 20% S02.

表−2 その結果、実施例1及び2のものケ:を明らかに酸化増
π及び強ハ[変化かり1とんど認と)られす、又不純物
含有量の多いものけ明らかに強度が低下している。尚、
実施例2及び参考例4〜6のものは酸化増量がマイナス
を示しているが、これは詳細な理由は明らかで超−ない
が、おそらく生成した5i02質被膜が802ガスと何
らかの反応を起し、これが揮散することによって減量し
たものと思われる。少なくとも5in2  買被j摸の
形成され易いもの程酸化減量が多くなっており、強度の
低下は特に著しい。
Table 2 As a result, the samples of Examples 1 and 2 had a clear oxidation increase in π and the strength [change was almost 1 perceptible], and the samples with a large impurity content had a clear decrease in strength. are doing. still,
The oxidation weight gain of Example 2 and Reference Examples 4 to 6 is negative, and although the detailed reason for this is not clear, it is probably because the formed 5i02 film undergoes some kind of reaction with the 802 gas. , it is thought that the weight was reduced by volatilization. The easier the formation of at least 5 in 2 particles, the greater the oxidation loss, and the decrease in strength is particularly significant.

本発明においてシリコンを充填させ、:) 、14 ト
l]←1゜再結晶炭化珪素成形体は気孔率が高い/ヒト
)ガス透過性があり、このオまでは隔壁を通じて高温流
体と低温流体の混合か起り熱交換器として適さない。従
って、これをガス不透過性とするためにシリコンを含浸
するものである。その徂:Cよ成形体の全ての気孔に充
填されるもの75(好ましいが、含浸後の気孔率が3チ
以下り)場合にはりS用−F何等不都合i1.l:ない
In the present invention, the recrystallized silicon carbide molded body is filled with silicon and has a high porosity/human) gas permeability, and up to this point, high-temperature fluid and low-temperature fluid can pass through the partition wall. Not suitable as a mixing or originating heat exchanger. Therefore, it is impregnated with silicon to make it gas impermeable. The following: If all pores of the molded body are filled with C (preferably, but the porosity after impregnation is less than 3 inches), then -F for beam S is inconvenient i1. l:No.

この場合、再結晶炭化珪素成形体の気孔率によってシリ
コン含有量は変化する。熱交換器(とし7て機能するだ
めの強度に影響を力えない範囲で炭化珪素成形体の気孔
率を求めなけizばならないが、そのfi4: lI’
、 6.5〜35%が適当でJ)す、従って充填さjし
るシリコンのチ、)も6.5〜35重量%となることに
なる。(このj、[%合、炭イし珪素とシリコンの比重
の差が小さいだめその換f′P−は無視した。) 実施例においては炭化珪素成形体は再結晶炭化珪素とし
たが、−吹成形体に直接シリコンを含浸させたものでよ
い。更にシリコンを充填した高純度炭化珪素成形体にC
VD法によって炭化珪素を被覆させたものは、この被膜
自体が緻密であり、これ自身が耐酸化耐蝕性に富んだも
のであるため、より一層すぐれた機能を発揮させること
ができる。
In this case, the silicon content changes depending on the porosity of the recrystallized silicon carbide molded body. The porosity of the silicon carbide molded body must be determined within a range that does not affect the strength of the vessel that functions as a heat exchanger (fi4: lI'
, 6.5 to 35% by weight is suitable. Therefore, the amount of silicon to be filled is also 6.5 to 35% by weight. (Because the difference in specific gravity between silicon carbide and silicon is small, j, [% ratio, and f'P- are ignored.) In the examples, the silicon carbide molded body was recrystallized silicon carbide, but - A blow-molded body directly impregnated with silicone may be used. Furthermore, C is added to the high-purity silicon carbide molded body filled with silicon.
A product coated with silicon carbide by the VD method has a dense film itself and is highly resistant to oxidation and corrosion, so it can exhibit even better functionality.

本発明によって期待できる効果は形状の単純な二重管式
のみ寿らず、一般に知られている多管式のものでもよく
、又自動車用等のガスタービンエンジンの蓄熱式、伝熱
式の形式にとられれることもなく応用が可能であシ、更
に熱交換器全部に適用する場合だけでなく、必要最小限
の部分のみに適用することも可能である。
The effects that can be expected from the present invention are not limited to the simple double-tube type, but also the commonly known multi-tube type, and the heat storage type and heat transfer type of gas turbine engines for automobiles etc. Furthermore, it can be applied not only to the entire heat exchanger, but also to only the minimum necessary part.

Claims (4)

【特許請求の範囲】[Claims] (1)高温流体によって隔壁を介して低温流体を加熱す
る方式の熱交換器において、該隔壁の少なくとも一部が
、気孔中にシリコンが充填された再結晶炭化珪素成形体
から成り、かつ不純物含有割合が金属状態に換算してF
Fe500pp以下、Al 1000 ppm以下、N
a100 ppm以下であることを特徴とする炭化珪素
質熱交換器0
(1) In a heat exchanger of a type in which a low-temperature fluid is heated by a high-temperature fluid through a partition wall, at least a part of the partition wall is made of a recrystallized silicon carbide compact whose pores are filled with silicon, and contains impurities. The ratio is F when converted to metal state.
Fe 500ppm or less, Al 1000ppm or less, N
Silicon carbide heat exchanger 0 characterized by having a content of 100 ppm or less
(2)気孔中に充填されたシリコン含有割合が6.5〜
35重量%であることを特徴とする特許請求の範囲第1
項記載の熱交換器。
(2) The silicon content ratio filled in the pores is 6.5~
Claim 1 characterized in that the amount is 35% by weight.
Heat exchanger as described in section.
(3)気孔中にシリコンが充填された再結晶炭化珪素成
形体の気孔率が3チ以下であることを特徴とする特許請
求の範囲第1項及び第2項記載の熱交換器。
(3) The heat exchanger according to claims 1 and 2, wherein the recrystallized silicon carbide molded body whose pores are filled with silicon has a porosity of 3 or less.
(4)少なくとも表面の一部にCVD法による炭化珪素
膜が被色されていることをqt(、、徴とする特許請求
の範囲第1項乃至第3項記載の熱交換器。
(4) The heat exchanger according to any one of claims 1 to 3, characterized in that at least a part of the surface of the silicon carbide film is colored by a CVD method.
JP15776282A 1982-09-10 1982-09-10 Heat exchanger of silicon carbide Granted JPS5946491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15776282A JPS5946491A (en) 1982-09-10 1982-09-10 Heat exchanger of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15776282A JPS5946491A (en) 1982-09-10 1982-09-10 Heat exchanger of silicon carbide

Publications (2)

Publication Number Publication Date
JPS5946491A true JPS5946491A (en) 1984-03-15
JPH026998B2 JPH026998B2 (en) 1990-02-14

Family

ID=15656757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15776282A Granted JPS5946491A (en) 1982-09-10 1982-09-10 Heat exchanger of silicon carbide

Country Status (1)

Country Link
JP (1) JPS5946491A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB928683A (en) * 1958-10-23 1963-06-12 Siemens Ag A method of producing highly purified silicon carbide
US3951587A (en) * 1974-12-06 1976-04-20 Norton Company Silicon carbide diffusion furnace components
JPS52145419A (en) * 1976-05-29 1977-12-03 Toshiba Ceramics Co Manufacture of silicon carbide articles for semiconductor production
US4070197A (en) * 1975-06-25 1978-01-24 Norton Company Gas tight silicon carbide body
JPS5410825A (en) * 1977-06-24 1979-01-26 Kawasaki Heavy Ind Ltd Prefiring preventing arrangement for two cycle engine
JPS555852A (en) * 1978-06-28 1980-01-17 Toyo Boseki Evaporated polyester film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB928683A (en) * 1958-10-23 1963-06-12 Siemens Ag A method of producing highly purified silicon carbide
US3951587A (en) * 1974-12-06 1976-04-20 Norton Company Silicon carbide diffusion furnace components
US4070197A (en) * 1975-06-25 1978-01-24 Norton Company Gas tight silicon carbide body
JPS52145419A (en) * 1976-05-29 1977-12-03 Toshiba Ceramics Co Manufacture of silicon carbide articles for semiconductor production
JPS5410825A (en) * 1977-06-24 1979-01-26 Kawasaki Heavy Ind Ltd Prefiring preventing arrangement for two cycle engine
JPS555852A (en) * 1978-06-28 1980-01-17 Toyo Boseki Evaporated polyester film

Also Published As

Publication number Publication date
JPH026998B2 (en) 1990-02-14

Similar Documents

Publication Publication Date Title
Lee et al. Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics
Gu et al. Low-temperature preparation of porous SiC ceramics using phosphoric acid as a pore-forming agent and a binder
WO1990011981A1 (en) Carbonaceous ceramic composite for use in contact whth molten nonferrous metal
USH301H (en) Oxidation resistant filler metals for direct brazing of structural ceramics
Riley Reaction bonded silicon nitride
JPS5946491A (en) Heat exchanger of silicon carbide
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
Leipold et al. Materials of construction for silicon crystal growth
CN115650757B (en) Electrothermal ceramic with high thermal stability and preparation process thereof
CN1350598A (en) Resistance-heating element
JPS5946492A (en) Heat exchanger of silicon carbide
JP4117377B2 (en) Non-oxide ceramic structure having high-temperature corrosion-resistant layer and manufacturing method thereof
JPH027000B2 (en)
JPH026999B2 (en)
KR880003861A (en) Self-supporting ceramic composite structure and its manufacturing method
US5851318A (en) High temperature forgeable alloy
JPH01258715A (en) Silicon carbide honeycomb filter and its production
JPS5946496A (en) Heat exchanger of silicon carbide
JPH01194916A (en) Production of silicon carbide honeycomb filter
Park et al. Effect of silica surface dopants on the formation of alumina/aluminum composites by the directed metal oxidation of an aluminum alloy
Nickel et al. High-temperature oxidation and corrosion of engineering ceramics
Greenhouse et al. A New Carbide‐Base Cermet Containing Tic, TiB2, and CoSi
CN112083036B (en) A dimensionless ablation and thermal protection performance evaluation method for materials based on standard reference
SU601267A1 (en) Charge for making heat insulating material
Federer et al. Corrosion of SiC and oxide-composite ceramics by a simulated steam-reformer atmosphere