[go: up one dir, main page]

JPS5946074A - Semiconductor thin film light emitting device - Google Patents

Semiconductor thin film light emitting device

Info

Publication number
JPS5946074A
JPS5946074A JP57156112A JP15611282A JPS5946074A JP S5946074 A JPS5946074 A JP S5946074A JP 57156112 A JP57156112 A JP 57156112A JP 15611282 A JP15611282 A JP 15611282A JP S5946074 A JPS5946074 A JP S5946074A
Authority
JP
Japan
Prior art keywords
layer
active layer
light emitting
thin film
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57156112A
Other languages
Japanese (ja)
Other versions
JPS6328512B2 (en
Inventor
Hiroshi Fujiyasu
洋 藤安
Masaru Kaneko
勝 金子
Kazutoshi Yoshida
和敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP57156112A priority Critical patent/JPS5946074A/en
Publication of JPS5946074A publication Critical patent/JPS5946074A/en
Publication of JPS6328512B2 publication Critical patent/JPS6328512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/823Materials of the light-emitting regions comprising only Group II-VI materials, e.g. ZnO

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the desired light emitting colors by a method wherein the impurities forming the intermediate energy level are added in the layers with large Eg holding the active layer with small forbidden band width Eg. CONSTITUTION:A transparent electrode 2, a ZnS layer 3 doped with the impurities forming the preferable intermediate energy order, a ZnSe active layer 4, another doped ZnS layer 5 and a backside electrode 6 are laminated on a glass plate 1. At this time, a quantum well QW is formed enclosing electrons and holes in the active layer 4 with small Eg facilitating light emission and recoupling improving the driving voltage. Moreover the quantity of the excited electrons is increased due to the intermediate energy order formed further improving the light emitting efficiency. Besides assuming the thickness of the active layer to be L and the effective mass of the electrons and holes to be me, mh, the substantial Eg equals to the value as follows i.e. Eg=Eg(ZnSe)+h<2>/2me.(pi/L)<2>+ h<2>/2mh.(pi/L)<2>. Thus, all of the intermediate colors of the proper light emitting colors may be produced by means of changing L into Eg (ZnSe)<Eg<Eg(ZnS).

Description

【発明の詳細な説明】 産業−1−の利用分野 本発明は新規な゛1′°導体薄膜発光素rに関し、特に
、好みの発光色をfllられ、階J−1j JV小装置
゛1′・1′のう11光、48了−トL テ11 a 
テアルni Ml it ’F−;A f* ?’t+
 nQ R: X 、’4、j′を提供しようとするも
のである。
Detailed Description of the Invention Field of Application of Industry-1 The present invention relates to a novel conductor thin film light emitting element r, and in particular, it is capable of emitting light of any desired color, and is suitable for use in JV small devices.・1' no 11 light, 48 ryo-to L te 11 a
Thealni Mlit 'F-;A f*? 't+
It is intended to provide nQ R: X, '4, j'.

発明の概要 本発明半導体薄膜発光素子は、禁制912幅のリ一なる
2種の半導体の薄膜層を用いた発光素r、1111ち禁
制帯幅の小さな力の半導体薄119層を活+1層とし禁
制帯幅の大きな方の半導体薄膜層によって1夛持した形
に積層し、かつ、禁制帯幅の大きな力の1′・導体から
成る半導体薄膜層には該半導体の禁制イ1?の中間にエ
ネルキーベn位を形成する不純物を添加して成ることを
特徴とする。これによって、活性層の層厚を適宜に変化
yせることによって〃rみの発光色で発光する発光素子
を摺ることかてさ、また、禁制帯幅か大きい方の>1’
−導体のツ;(制イ11の中間にエネルキー準位を形成
する不純物を添加したことによって、電子が励起され易
くなり、発光効−イ・〈がきわめて向上する。
Summary of the Invention The semiconductor thin film light emitting device of the present invention is a light emitting device using thin film layers of two types of semiconductors with a forbidden band width of 912 and a semiconductor thin film layer of 1111 and a small power semiconductor with a forbidden band width of 119 as an active +1 layer. The semiconductor thin film layer is laminated in a stacked manner by a semiconductor thin film layer with a larger forbidden band width, and is made of a conductor with a large force of the forbidden band width. It is characterized by adding an impurity that forms the n-position of energy between the two. By changing the thickness of the active layer appropriately, it is possible to create a light-emitting element that emits light with a different color, and also to increase the forbidden band width to >1', whichever is larger.
- Conductor (by adding an impurity that forms an energy level in the middle of the conductor 11, electrons are easily excited, and the light emitting efficiency is greatly improved.

実施例 以下に、本発明半導体薄膜発光素子の訂細を図示実施例
に従って説明する。
EXAMPLES Below, details of the semiconductor thin film light emitting device of the present invention will be explained according to illustrated examples.

1は透明基板であり、カラス板又はシリコン(St)、
ガリウノー1−砒素(G a A S ) ’、<ノ中
結晶ノみ板から成る。
1 is a transparent substrate, which is a glass plate or silicon (St);
Galiuno 1-Arsenic (G a AS )', <consisting of a crystalline plate.

2は透明上極てあり1例えはインシラノ、−すずの醇化
物の一1/膜から成り、「ii+記透明ノ^板Iの一方
の面に被A形成される。
Reference numeral 2 denotes a transparent upper plate 1, which is made of a film of tin infusion, for example insilano, and is formed on one side of the transparent plate I.

3は″I7:導体p511Qで、例几ば硫化1U1n(
ZnS)の100〜1000オングストローム(人) 
IV′tの薄11りである。そして、この1′″導体薄
11g層にはその旧tlである1“導体の禁制帯の中間
にエネルギーJ(+(イ1′tを形成する不純物が添加
されている。
3 is "I7: conductor p511Q, for example sulfide 1U1n (
ZnS) 100 to 1000 angstroms (person)
It is 11th thick of IV't. This 1'' conductor thin 11g layer is doped with an impurity that forms energy J(+(I1't) in the middle of the forbidden band of the 1'' conductor, which is the old tl.

4は活性層で、+iii記゛1′:導体薄IIう13の
゛1′導体材才゛1より禁制412幅の小さな゛1′導
体材才゛1から成る薄;1φて、+N7記゛IL4体?
’# IIA 3とはヘテOta合されテ(、する。ぞ
しで、このy、ri性層4の下−導体材木lは前記゛1
′。
4 is an active layer; 4 ILs?
'# IIA 3 is assembled together with the Ota.
'.

導体薄11/j 3の1へ導体材料より禁制4W幅か小
さなもので、例えば前述のように″1′導体薄膜3の半
導体材料を硫化亜i(7′3(: Z nS )とした
場合は、セレン化1F鉛(Z n S e)又はZn5
xSe(1−X)の41〜品が考えられる。そして2.
二の活性層4の1!1ン厚は10〜2QOオンゲストロ
ート る。
Conductor thin 11/j 3 to 1 of 3 The width of the conductor is 4W or smaller than the conductor material.For example, as mentioned above, if the semiconductor material of the ``1'' conductor thin film 3 is subsulfide (7'3 (: Z nS )) is 1F lead selenide (ZnS e) or Zn5
41~ items of xSe(1-X) are considered. And 2.
The thickness of the second active layer 4 is 10 to 2 QO ongest.

5は前記半導体薄膜3の半導体材料と同様のt導体材料
(前記例ではZnS)から成るjパ導体薄膜であり、活
性層4とへテロ接合され、その層厚は50〜500オン
グストローム(人)でアル。
Reference numeral 5 denotes a conductor thin film made of a t-conductor material (ZnS in the above example) similar to the semiconductor material of the semiconductor thin film 3, which is heterojunctioned with the active layer 4, and has a layer thickness of 50 to 500 angstroms. De Al.

この1F >Q体l吟膜層5にもその材料たる゛1′導
体の禁制帯の中間にエネルギー!(r:位を形成する不
純物が添加されている。
Even in this 1F>Q body I membrane layer 5, there is energy in the middle of the forbidden band of the 1' conductor which is its material! (An impurity forming the r: position is added.

6は半導体薄膜5の背面に接して設けられた背面電極で
ある。この背面電極6は、透明、半透明、無彩色、イ〕
彩色等適宜のもので良い。
Reference numeral 6 denotes a back electrode provided in contact with the back surface of the semiconductor thin film 5. This back electrode 6 can be transparent, translucent, achromatic, or
It may be colored or whatever is appropriate.

第2図(A)は上記半導体薄膜3、5と活性層4とから
成る積層体7を厚み方向に薄くスライスして乃\す断面
図であり,同図(B)は(A)に対応して各層における
二オルキー準位の分布を示すものである。
FIG. 2(A) is a cross-sectional view of the laminated body 7 consisting of the semiconductor thin films 3, 5 and the active layer 4, sliced thinly in the thickness direction, and FIG. 2(B) corresponds to (A). This shows the distribution of the two-orchie level in each layer.

第2図からもわかるように、禁制化:幅の小さな半導体
材料から成る薄膜をそれより禁制帯幅の大きな半導体材
料から成る薄膜によって挟んだ層構造とすると、量子井
戸QWが形成され,禁制帯幅のより小さな31′−導体
落石の層に電r−及び11孔が閑し込められ、ここで発
光再結合をするため、所ガ−“の波長の発光がtIIら
れる。また、1.記のような吊j′″井戸構造によると
、電子及び11孔が活性層4に閉じ込められ、発光再結
合をし易くなるため,発光効率か増大し、従って、駆動
IL圧を1・げることかできる。
As can be seen from Figure 2, forbidden: When a thin film made of a semiconductor material with a small width is sandwiched between thin films made of a semiconductor material with a larger forbidden band width, a quantum well QW is formed, and the forbidden band Electron r- and 11 holes are inserted into the layer of the smaller width 31'-conductor falling rock, and in order to perform luminous recombination here, the light emission with a wavelength of 31' is tII. According to the hanging J''' well structure, electrons and 11 holes are confined in the active layer 4 and are easily recombined by light emission, so that the luminous efficiency increases and, therefore, the driving IL pressure can be increased by 1. I can do it.

また、ε63図に示すように、禁;fyl帯幅の大きな
力の半導体いり膜層に添加された不純物が禁制帯の中間
にエネルギーIG++位を形成するため、励起される゛
「1了の数が増加し、発光効率が一層向−1.する。
In addition, as shown in the ε63 diagram, the impurity added to the semiconductor film layer with a large force in the forbidden band forms an energy IG++ level in the middle of the forbidden band, so it is excited. increases, and the luminous efficiency further increases by -1.

即ち、不純物を添加しない場合は、価゛IIif−・計
から伝導帯への励起は矢印(a)で示すようなll’i
接励、1ぷだけであり、少なくとも禁制帯幅に相当する
エネルギーを゛市場によってグえてやらなければならな
い。ところが、不純物を添加して禁制帯内に工オルギー
準位を形成してやれは、そのへ11位を踏み右にして価
′屯r−帯から伝導イf2に111.了が励起される。
That is, when no impurity is added, the excitation from the valence II to the conduction band is ll'i as shown by the arrow (a).
There is only one pump, and at least the energy equivalent to the forbidden band width must be obtained by the market. However, if an impurity is added to form a metal level in the forbidden band, the 11th level is stepped to the right and the conduction level from the valence r-band to f2 is 111. Excitement is encouraged.

そして、その励起過程は矢印(b+)、(b2)で示す
もののlilil力で1過程であり、各々の過程(b 
+)、(b2)は埜1すj帯幅Egより小さなエネルギ
ー△El、△E2を′電子にりーえてやれは起こる。従
って、回し大きさのエネルギーをりえてやれば、不純物
を添加しない場合に比して、励起される電子の数が増加
することになる。そして、価電子帯から伝導帯へ」−げ
られたili (はiii, −f。
The excitation process is one process with the lilil force shown by arrows (b+) and (b2), and each process (b
+), (b2) occur when the energies △El and △E2, which are smaller than the band width Eg, are transferred to electrons. Therefore, if the rotational energy is changed, the number of excited electrons will increase compared to the case where no impurity is added. Then, from the valence band to the conduction band, ili (iii, -f.

井戸QWに閉し込められ、そこで発光出結合をする。It is confined in the well QW, where light is emitted and coupled out.

更に、本発明の半導体薄膜発光素rによれば、活性層4
のJ9さしを変えることにより発光色を変えることがi
11能となり、2つの構成材料、即ち、半導体?1v膜
層3、5に使用される禁制帯幅の大きい方の半導体材料
と活性層4に使用されるN−j制帯幅の小さな力の半導
体材料の固有発光の中間色をすべて出すことができる。
Furthermore, according to the semiconductor thin film light emitting device r of the present invention, the active layer 4
You can change the emitting color by changing the J9 sill.
11 functions, and two constituent materials, namely semiconductors? It is possible to emit all the neutral colors of the characteristic light emission of the semiconductor material with the larger forbidden band width used for the 1v film layers 3 and 5 and the semiconductor material with the smaller Nj bandgap width used for the active layer 4. .

即ち、前にも記載したように、ン1)2図(A)に示す
ように禁制帯幅の異なる21′導体、例えばZnSとZ
nSeとをJt′L層すると同図(B)に示すように量
子井戸QWがJ形成される。第2図(B)に示すように
一力向に井戸をもち、残りの2次元方向が自由である平
r・井戸におい−(゛電子ガ・持っ工オルキーEeは、 ・・・1) n=1.2.3.19 と、1):る。ここで、L1オ禁制−”F幅の小さな゛
1′塀体層ノJ’i’ 3 (1!IIら 、IiB了
・月戸Q W ’7) 申/Z ) 、  nは1い4
数、Kx 、Kyは波数ベクトルのX、y成分である。
That is, as described above, as shown in Figure 1)2 (A), 21' conductors with different forbidden band widths, such as ZnS and Z
When nSe is formed into a Jt'L layer, a quantum well QW is formed as shown in FIG. As shown in Figure 2 (B), in a flat well that has a well in one direction and the remaining two-dimensional directions are free, =1.2.3.19 and 1):ru. Here, L1 is prohibited - "F small width"1' wall layer No.
The numbers Kx and Ky are the X and y components of the wave number vector.

回しように、価′111子、li′fl−イ゛J111
QW内における11一孔の持つエネルギーEhは、 ・・・ (2) n′=1.2.3.1− となる。
Let's turn it around, li'fl-i゛J111
The energy Eh of one hole in the QW is as follows: (2) n'=1.2.3.1-.

尚、1−記(J、)、(2)式でi : h /′2π
で、hはブランク定数、me、mhは電子、11:孔の
実効賀与である。
In addition, in 1-(J,) and equation (2), i: h/'2π
where h is a blank constant, me and mh are electrons, and 11 is the effective charge of the hole.

Kx、KyはO<Kx、Ky、(Kx ′、Ky′)<
■の値をとるので(Kx、Ky、Kx ′、Ky′〜0
、n、n′=1とおいて)、伝導帯で電子が取り得る最
小のエネルギーはf12 (π/L)2/2me、価電
子帯で’+F孔が取り得る最小エネルギーは++2 (
g/L) 2/2mhとなり、実質上の禁制91?幅E
gは、 ′T12   π E g = E g CZn5e) + −() 2m
eL h2 、?+′ +−−(−)2 mhT− となる。従って、Lを変化させることにより一!1−制
帯幅Egを Eg (ZnSe)<Eg<Eg (ZnS)の範囲で
変えることができる。
Kx, Ky are O<Kx, Ky, (Kx', Ky')<
Since it takes the value of (Kx, Ky, Kx', Ky'~0
, n, n' = 1), the minimum energy that an electron can take in the conduction band is f12 (π/L)2/2me, and the minimum energy that a '+F hole can take in the valence band is ++2 (
g/L) 2/2mh, which is practically prohibited at 91? Width E
g is 'T12 π E g = E g CZn5e) + -() 2m
eL h2,? +′ +−−(−)2 mhT−. Therefore, by changing L, one! 1-The band width Eg can be changed within the range of Eg (ZnSe)<Eg<Eg (ZnS).

従って、−11記例(ZnSeとZnSとの積層体)で
Zn5e層の幅を変えることにより、禁制帯幅の小さな
゛1′−導体(この場合、7. n S e )の伝i
Q帯−価電子−帯間光光の波長(4640人)からガ腎
1ノ1帯幅の大きな゛1′導体(このJJi’、合、Z
n5)の伝導イ1)−価゛電子帯間発光の波長(339
0人)までの範囲の発光色が(11られる。
Therefore, by changing the width of the Zn5e layer in the -11 example (laminated body of ZnSe and ZnS), the transmission i of a 1'-conductor with a small forbidden band width (7.n S e in this case) can be improved.
From the Q band-valence electron-interband light wavelength (4640 people), a large 1' conductor (this JJi', combined with Z
n5) conduction i1) - wavelength of emission between valence band (339
The luminescent colors range from 0 to 11.

本発明゛1′導体薄膜光光素了における積層体に用いら
れる゛1パ導体材料の組み合わせは、ジ(末的には禁制
帯幅のカーいに異なるものであればどんな組み合わせで
も良い。他のへテロ接合素子において性能を左右する9
)Pとなる異才φ材料量における格r不整合は1本発明
゛1′−導体薄11り発光喜子の積層体においては、各
層がきわめて薄いため他のへテロ接合素子におけるほど
には大きな!影響は生じない。そのため、従来、ペテロ
接合に用いられている組み合わせはもとより、より広い
祈;囲の181tみ合わせについて適用がN(能である
。例えは、6色系の発光がfIIられる前西のZnS−
Zn5eの絹み合わせ、緑色系の発光がfIIられるG
aA1.P−GaPの組み合わせ、赤色系の発光がfJ
IられるGaP−GaAsPの組み合わせ、赤外の発光
か(1LられるGaA LAs−GaAsの組み合わせ
等が挙げられる。この外にも、2−2元、1.−2元、
3−2元、4−2元化合物の組み合わせも考えられ、そ
の適用範囲はきわめて広いものである・別表に、いくつ
かの半導体の組み合わせを、4制帯幅、格子定数、バン
ド間発光波長と〕((こ示す。
The combination of conductor materials used in the laminate in the conductor thin film photonic element of the present invention may be any combination as long as the material differs in the forbidden band width. 9 that influences the performance of heterojunction devices.
) The case r mismatch in the amount of material φ that becomes P is as large as in other heterojunction devices because each layer is extremely thin in the laminate of the present invention. No impact will occur. Therefore, it is applicable not only to the combinations conventionally used for Peter junctions, but also to a wider range of 181t combinations. For example, ZnS-
Zn5e silk combination, green luminescence fII G
aA1. P-GaP combination, red light emission is fJ
Examples include the combination of GaP-GaAsP, which can emit infrared light, and the combination of GaA and LAs-GaAs, which can emit infrared light.
Combinations of 3-binary and 4-binary compounds are also possible, and the scope of their application is extremely wide.In the attached table, some semiconductor combinations are shown in terms of quadratic band width, lattice constant, and interband emission wavelength. ]((This is shown.

また、各y導体層3.4.5の製法は適宜の方法によっ
て良く、例えば、゛lL子ビーム式、抵抗加熱式等によ
る真空!み着法、ホット・ラオールエピタキシャル法(
RWE)、分子線エピタキシャル法(MB E) 、 
C’V D7,14、MOCVD法、Ij;Cr一層重
1ピビJヤシャルノ人′tが請7えられる。
Further, each y-conductor layer 3.4.5 may be manufactured by an appropriate method, such as a vacuum method such as a laser beam method or a resistance heating method. hot laol epitaxial method (
RWE), molecular beam epitaxial method (MBE),
C'V D7,14, MOCVD method, Ij;

第4図は本発明゛1′、導体t’!j tlζ1発光素
r−の第2の゛」ピ絶倒を示すものである。
FIG. 4 shows the present invention ``1'', conductor t'! This shows the collapse of the second "p" of the j tlζ1 luminescent element r-.

この実施例における16層体7aは外側に埜id、ll
帯1幅の大きい力の゛1′導体の層3.3(、Ji’i
厚く100〜101) OA)が配;[vlさし、f(
1)間Bコ、IF、重帯’lll1! 17)小さい方
の1′19体の層(1’1″:10〜20イ)人)、即
ち活性層4と、質請帯幅の大きい力のl’H、rx体の
層5o’iさ50〜500人)か父lIに積層されてI
J12るものである。
In this embodiment, the 16-layer body 7a is
Layer 3.3 (, Ji'i
thick 100~101) OA) is arranged; [vl insert, f(
1) Between B-co, IF, heavy belt 'llll1! 17) The smaller 1'19 body layer (1'1'': 10 to 20 people), that is, the active layer 4, and the l'H and rx body layers 5o'i of the large force band width 50 to 500 people) or stacked on top of the father I
J12.

このように多層に構成することによってより強力な発光
がi+1られる。
With this multi-layer structure, more intense light emission (i+1) can be achieved.

第5図は本発明144体−?i Itり発光素■′の第
2の、(絶倒の変形例を小]〜ものである。
Figure 5 shows 144 bodies of the present invention. This is the second (extremely small variation) of the light-emitting element.

この変形例において積層体7bの活性層4は、透明電極
2側に位置されるもの410層厚力曽痺く、背面電極6
側に位置されるもの40の層厚が厚くされ、この間で活
性層4の層Jゾが背面’f[を極6に近いものほど厚く
されていることを’l’l−徴とする。
In this modification, the active layer 4 of the laminate 7b has a thickness of 410 layers located on the transparent electrode 2 side, and the back electrode 6
The layer thickness of the layer 40 located on the side is increased, and the fact that the layer J of the active layer 4 is thicker as the back surface 'f [ is closer to the pole 6] is defined as 'l'l-characteristic.

このように構成することによって、活性層11の層厚が
薄いところでは実質」−の禁制41?幅Egが広がり 
(Eg  (1)>Eg (2)  ・争・>E4(n
))、より短波長の発光が得られる。従って、各活性層
41.42.43・・・4nにおける発光色が異なるこ
とになり、本素子においては、これら各活性層41.4
2.43、・・・4nの発光色の合成色による発光が?
4.1られる。尚、この変形例の場合、透明電極2から
遠去かるほど長波長の光を発するようにする心間があり
、従って、活性層4の層厚は、背面電極6に近いものほ
ど厚くされる必要かあ・る。
With this configuration, where the active layer 11 is thin, the prohibition of "-41?" is effectively achieved. Width Eg expands
(Eg (1)>Eg (2) ・Conflict・>E4(n
)), emission of shorter wavelength can be obtained. Therefore, the emitted light color in each active layer 41.42.43...4n is different, and in this device, each of these active layers 41.4n
2. What is the light emission due to the composite color of the light emission color of 43,...4n?
4.1. In the case of this modification, there is a center gap that allows light to be emitted with a longer wavelength as the distance from the transparent electrode 2 increases, and therefore, the layer thickness of the active layer 4 needs to be increased as it is closer to the back electrode 6. Kaa・ru.

尚、J1記第4図、第5図に示すものにおいて、半導体
薄膜層3.5に材料半導体の禁制帯の中間にエネルギー
IQ−位を形成する不純物を添加することは勿論である
In the case of J1 shown in FIGS. 4 and 5, it goes without saying that an impurity is added to the semiconductor thin film layer 3.5 to form an energy IQ- level in the middle of the forbidden band of the material semiconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明半導体薄膜発光素r−の第1の実力1p
例を示す模型的側面図、第2図は本発明1′、4体f:
V I模発光素rにおける積層体の各層とエネルギ−1
(+4位の分1’(i状態との関係を示し、(A)は積
層体を厚み方向に薄くスライスして示す断面図、CB)
は(A)に対jもして各層におけるエネルギ−Q+3も
′tの分布を示す図、第3図は本発明゛1′導体4Y1
・IIQ発光、、F’ rの作用をt;a明するだめの
エネルギー7(1位の分〆11図、第4図は本発明゛1
′導体薄nり発光素r−の第2の実施例を栓型的に小ず
…11面図、第5図はf:rr、 3図のものの変I[
コ例を模型的に71りず側面図である。 く、1壮の説明 2・・◆透明゛11.ξ極、  3・・・竺制惜幅の友
きな力の゛1′心体:i、j、+ IIり、 4・・・
活+1層、  5・・・4;(側帯1唱の大きな方の゛
1′導体薄膜、  6・・・背面’IU、 J4j、 
 7.7a、’;’ l)” ” ”積層体オ丘図 、4=2図 )・3図 、電J O王ε了乙 4・4図 凋・5図 ら
Figure 1 shows the first performance 1p of the semiconductor thin film light emitting device r- of the present invention.
A schematic side view showing an example, FIG. 2 is the present invention 1', 4 bodies f:
VI Each layer of the laminate in the simulated light emitting element r and energy 1
(+4th place 1' (shows the relationship with the i state, (A) is a cross-sectional view showing the laminate sliced thinly in the thickness direction, CB)
is a diagram showing the distribution of energy -Q+3 in each layer as well as 't' for (A), and FIG.
・IIQ light emission, energy 7 to explain the action of F'r (1st division Figure 11, Figure 4 is the present invention
'The second embodiment of the thin conductor light-emitting element r- is shaped like a plug...
FIG. 7 is a schematic side view of the example. 1. Explanation 2...◆Transparent゛11. ξ Pole, 3... The 1' mind body of the infinitely friendly power: i, j, + II, 4...
Active+1 layer, 5...4; (Larger side band 1' conductor thin film, 6...Back 'IU, J4j,
7.7a, ';'l)'' ``Laminated body diagram, Figure 4 = Figure 2), Figure 3, Figure 4, Figure 4, Figure 5, etc.

Claims (1)

【特許請求の範囲】[Claims] (,1)づ15制(j;・幅の異なる2種の1′)9体
の薄llI′、′1層を用いl−発光素子、l!pち禁
制(11・幅の小さな力の1′導体薄膜層を活性層とし
禁制、ii′f幅の大きな゛1′稗体薄1トで層によっ
て挟+5’ した11毛に積層し、かつ、5q ’l)
1イ1シ弊(の大きな方の!導体薄膜層には該IL:Q
休の禁、’1.I+、;ii;の中間にエネルギーQl
i 4S/をノー成する不純物をン・f加して成ること
を41徴とする丁導体薄11ぐ発光、(1’
(,1)Using 15 system (j;・2 types of 1' with different widths) 9 thin llI','1 layers, l-light-emitting element, l! (11) A conductor thin film layer with a small width and a small force is used as an active layer, and ii'f is laminated on a 11 layer sandwiched between +5' and 1' layers with a large width. , 5q'l)
1. The larger one of 1.1 and 1. The conductor thin film layer is
No rest, '1. There is an energy Ql between I+, ;ii;
i 4S/N/f impurities are added to emit light from a thin conductor (1').
JP57156112A 1982-09-08 1982-09-08 Semiconductor thin film light emitting device Granted JPS5946074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57156112A JPS5946074A (en) 1982-09-08 1982-09-08 Semiconductor thin film light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57156112A JPS5946074A (en) 1982-09-08 1982-09-08 Semiconductor thin film light emitting device

Publications (2)

Publication Number Publication Date
JPS5946074A true JPS5946074A (en) 1984-03-15
JPS6328512B2 JPS6328512B2 (en) 1988-06-08

Family

ID=15620567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156112A Granted JPS5946074A (en) 1982-09-08 1982-09-08 Semiconductor thin film light emitting device

Country Status (1)

Country Link
JP (1) JPS5946074A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962524B2 (en) 2000-02-17 2005-11-08 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US7137879B2 (en) 2001-04-24 2006-11-21 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US7344432B2 (en) 2001-04-24 2008-03-18 Applied Materials, Inc. Conductive pad with ion exchange membrane for electrochemical mechanical polishing

Also Published As

Publication number Publication date
JPS6328512B2 (en) 1988-06-08

Similar Documents

Publication Publication Date Title
Burrows et al. Achieving full-color organic light-emitting devices for lightweight, flat-panel displays
JP5035248B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE AND DISPLAY DEVICE EQUIPPED WITH THE SAME
TWI376046B (en) Broadband light tandem oled display
JP4116260B2 (en) Semiconductor light emitting device
CN106784392B (en) Composite quantum dot light-emitting diode device and preparation method thereof
TWI281274B (en) Monolithic multi-color, multi-quantum well semiconductor LED
US6987288B2 (en) Electroluminescent device with light extractor
KR102738348B1 (en) Nano-objects for purcell enhancement, out-coupling and engineering radiation pattern
JPS5946074A (en) Semiconductor thin film light emitting device
Nizamoglu et al. Nanocrystal-based hybrid white light generation with tunable colour parameters
US5872023A (en) Method of fabricating of light emitting device with controlled lattice mismatch
JPH03230583A (en) Organic-film light emitting element
JP2006269294A (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH SAME
US20080199669A1 (en) Zinc oxide nanoparticle-containing organic-inorganic composite film, fabrication method for the same and electroluminescent element implemented by the same
JPH0750795B2 (en) Light emitting element
JP4851648B2 (en) Semiconductor components that generate mixed color electromagnetic radiation
JPS5946071A (en) Semiconductor thin film light emitting element
JP3228208B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS5946073A (en) Semiconductor thin film light emitting element
JPH03261182A (en) Multicolor organic light emitting element
KR100631968B1 (en) Wavelength Converting Light Emitting Device
US20250024696A1 (en) Organic electroluminescent devices
JP2545212B2 (en) Blue light emitting element
JPS62230067A (en) Manufacturing method of semiconductor light emitting device
JPH0160916B2 (en)