[go: up one dir, main page]

JPS5945997A - Vapor growth of semiconductor - Google Patents

Vapor growth of semiconductor

Info

Publication number
JPS5945997A
JPS5945997A JP15377082A JP15377082A JPS5945997A JP S5945997 A JPS5945997 A JP S5945997A JP 15377082 A JP15377082 A JP 15377082A JP 15377082 A JP15377082 A JP 15377082A JP S5945997 A JPS5945997 A JP S5945997A
Authority
JP
Japan
Prior art keywords
film
single crystal
silicon
polysilicon
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15377082A
Other languages
Japanese (ja)
Inventor
Akihiko Ishitani
石谷 明彦
Nobuhiro Endo
遠藤 伸裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15377082A priority Critical patent/JPS5945997A/en
Publication of JPS5945997A publication Critical patent/JPS5945997A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To process a polysilicon film into a single crystal, and to obtain a single crystal zone having large area, by filling an opening with a silicon single crystal film, piling simultaneously the polysilicon film on an insulating film and a single crystal film on the single crystal film by a vapor growth method, depositing the single crystal silicon film. CONSTITUTION:The SiO2 film ( insulating film) 2 having an opening is formed on the substrate 1 of silicon single crystal, the opening is filled with the silicon single film 3 by selective epitaxial growth, the polysilicon film 4 is piled on the insulating film 2 and the single crystal silicon film 5 is deposited on the silicon single crystal film 3 simultaneously by a vapor method, the single crystal silicon film is piled at least on the silicon single crystal film 5 and the polysilicon film 4 around it by the vapor growth method, and the polysilicon film 4 under the single crystal silicon film in the pile s processed into single crystal. Silicon on an insulator is obtained by a process only by the enlargement of single crystal zone in the width direction even for a thick insulating film 2.

Description

【発明の詳細な説明】 本発明は、表面に絶縁膜のパターンを有する単結晶シリ
コン基板上に、シリコンエピタキシャル膜を気相で成長
させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing a silicon epitaxial film in a vapor phase on a single crystal silicon substrate having an insulating film pattern on its surface.

絶縁基板上の単結晶半導体膜を能動層として用いた集積
回路は、素子間の分離が容易であり、また寄生容量を低
減することができることから高密度化・高速化に適して
いる。絶縁基板上に単結晶半導体膜を形成する方法とし
ては、シリコン・オン・サファイアやシリコン・オン・
スピネルうに単結晶絶縁基板上に単結晶半導体膜を成長
する方法、非晶質絶縁基板上に多結晶あるいは非晶質の
シリコンを堆積しレーザ等のビーム・アニールを用いて
再結晶化する方法、非晶質絶縁基板上   □に多結晶
あるいは非晶質のシリコンを堆積しヒーターで溶かして
再結晶化する方法などがある。これらのうち、単結晶絶
縁基板あるいは単結晶絶縁膜上にシリコンをエピタキシ
ャル成長させるヘテロエピタキシャル法の場合は基本的
には一層のSt膜を成長させるだめの方法でありシリコ
ンオンインシュレーターの大きな狙いであるデバイスの
上に更にデバイ゛スを積み重ねるいわゆるデバイスの三
次元化を図る場合には問題である。また、前述の方法の
うち、n結晶を利用する方法では、シードを用いる方法
にしてもシードを用いない方法にしても単結晶域の大き
さは大きくても数ミクロンから数十ミクロンであり、そ
れ以上の大きな単結晶膜を得るのは非常に困難であるの
が現状である。
An integrated circuit using a single crystal semiconductor film on an insulating substrate as an active layer is suitable for higher density and higher speed because elements can be easily separated and parasitic capacitance can be reduced. Silicon on sapphire and silicon on sapphire are methods for forming single crystal semiconductor films on insulating substrates.
A method of growing a single crystal semiconductor film on a spinel monocrystalline insulating substrate, a method of depositing polycrystalline or amorphous silicon on an amorphous insulating substrate and recrystallizing it using beam annealing such as a laser, There is a method of depositing polycrystalline or amorphous silicon on an amorphous insulating substrate and melting it with a heater to recrystallize it. Among these, the heteroepitaxial method, in which silicon is epitaxially grown on a single crystal insulating substrate or single crystal insulating film, is basically a method of growing a single layer of St film, and is the main aim of silicon-on-insulator devices. This is a problem when trying to make so-called three-dimensional devices by stacking devices on top of them. Furthermore, among the above-mentioned methods, in the method using n-crystal, the size of the single crystal region is from several microns to several tens of microns at most, regardless of whether the method uses a seed or the method does not use a seed. At present, it is extremely difficult to obtain a larger single crystal film.

−75$−ドを用いることができる場合に制限されるが
シリコン気相成長法によってもシードより大きな単結晶
域を得ることが可能である。この方法ハビームアニール
法にくらべ、シリコンオンサファイアやシリコンオンス
ピネルのようにバッチ処理が可能であること、及びビー
ムアニール法のように積層構造にすることが容易である
等両者の利点を兼ね備えている。しかしながら、この方
法では1通常のエピタキシャル条件で成長させればシー
ド部分とほとんど同程度の大きさの単結晶領域しか得ら
れない。また表面に5iO61147のパターンを備え
た昨結晶シリコン基板を用いて、Sin。
It is also possible to obtain a single crystal region larger than that of a seed by silicon vapor phase epitaxy, although this is limited to the case where -75$-dos can be used. Compared to the beam annealing method, this method combines the advantages of both, such as batch processing is possible like silicon on sapphire and silicon on spinel, and it is easy to form a laminated structure like the beam annealing method. There is. However, with this method, if grown under normal epitaxial conditions, only a single crystal region of almost the same size as the seed portion can be obtained. In addition, using a crystalline silicon substrate with a 5iO61147 pattern on the surface, a Sin.

膜上にはStを堆積させず、シード部分uIIち基板の
露出部分からシリコン単結晶膜が横方向即ちSin、膜
上べ拡大していくという成長方法を利用すると、必要な
寸法(横方向)の単結晶領域を得るのにはその2/3位
のエビ厚さを必要としていた。この理由は5i02と単
結晶シリコンの接、′1虫角が大きく、伸びようとする
シリコン単結晶に対し5i02がそれを防げる働きをす
るためである。このような現象を解決するためにS i
 O,膜の上にポリシリコン膜を薄くコーチ、イノグし
てから単結晶シリコン膜を成長させることが有効である
。このポリシリコン膜の存在によって晴方向のエビ単結
晶の拡大速度が早められると共に、ポリシリコン膜がエ
ビ成長時に単、結晶化するために、実効的にシード部分
が大きくなった効果や、単結晶化したポリシリコン膜が
結晶欠陥に対するバッファの役割を果しエビタギシャル
シリコン単結晶膜の結晶性が改善される。
By using a growth method in which St is not deposited on the film and the silicon single crystal film is expanded laterally from the seed portion uII, that is, the exposed part of the substrate, the required dimensions (lateral direction) are To obtain a single-crystal region of 100 mL, a thickness of about 2/3 of that was required. The reason for this is that the contact point between 5i02 and single crystal silicon, the '1 insect angle, is large, and 5i02 acts to prevent the silicon single crystal from elongating. In order to solve this phenomenon, S i
It is effective to coach and inject a thin polysilicon film on the O2 film and then grow the single crystal silicon film. The presence of this polysilicon film accelerates the expansion speed of the shrimp single crystal in the positive direction, and since the polysilicon film crystallizes as a single crystal during shrimp growth, the effect of effectively enlarging the seed area and the single crystal The converted polysilicon film acts as a buffer against crystal defects, and the crystallinity of the epitaxial silicon single crystal film is improved.

以上のような気相成長によるラテラルエピノ発展によっ
て、ビームアニール等の再結晶によるラテラルエビと同
程度以上の絶縁膜の上の単結晶領域が得られるようにな
った。しかしながら、このよ゛う、な方法によつ−(充
浮遊容量を低減するために絶′緑層の厚さ番厚くすると
、薄い絶縁層の場合より小さな単結晶領域しか得られな
くなるという欠点があった。これは、絶縁膜を厚ぐする
と単結晶領域の拡大は基板シリコンから側壁を通り絶縁
膜の上へと進行しなければならず、それだけ横方向の単
結晶領域の拡大は遅くなるためであった。
By the above-mentioned lateral epitaxial development by vapor phase growth, it has become possible to obtain a single crystal region on an insulating film that is equivalent to or higher than lateral epitaxial growth by recrystallization such as beam annealing. However, such a method has the disadvantage that if the thickness of the insulating layer is increased to reduce the stray capacitance, only a smaller single crystal area can be obtained than in the case of a thin insulating layer. This is because when the insulating film is made thicker, the expansion of the single crystal region must proceed from the substrate silicon through the sidewalls and onto the insulating film, which slows down the expansion of the single crystal region in the lateral direction. Met.

本発明の目的はこのような欠点を解決し厚い絶縁膜でも
横方向の単結晶領域の拡大のみのプロセスでシリコンオ
ンノfンシェレーターが得られる方法を提供するもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for overcoming these drawbacks and obtaining a silicon onion chelator even with a thick insulating film by a process that involves only expanding the single crystal region in the lateral direction.

本発明によればシリコン単結晶基板上に開口部を有する
絶縁膜を形成し、次いで選択的にエピタキシャル成長す
ることによって前記開口部をシリコン単結晶膜で埋め、
次いで気相成長法に−よって前記絶縁膜上にはポリシリ
コン膜を、前記シリコン単結晶膜上には単結晶シリコン
膜を同時に堆積し、次いで気相成長法によって少なくと
も前記シリコン単結晶膜上及びその周囲の前記絶縁膜上
に単結晶シリコン膜を堆積し、該堆積中に該単結晶シリ
コン股の下の前記ポリシリコン膜を単結晶化することを
特徴とする半導体の気相成長方法が得られる。
According to the present invention, an insulating film having an opening is formed on a silicon single crystal substrate, and then the opening is filled with a silicon single crystal film by selective epitaxial growth.
Next, a polysilicon film is deposited on the insulating film and a single crystal silicon film is simultaneously deposited on the silicon single crystal film by a vapor phase growth method, and then a polysilicon film is deposited on at least the silicon single crystal film and a single crystal silicon film is deposited on the silicon single crystal film by a vapor phase growth method. A method for vapor phase growth of a semiconductor is provided, characterized in that a single crystal silicon film is deposited on the insulating film around the insulating film, and during the deposition, the polysilicon film under the single crystal silicon film is made into a single crystal. It will be done.

以下に本発明を実施例に従って詳細に説明する。The present invention will be explained in detail below according to examples.

第1〜第3図は本発明の実施例を示す図で、シードとな
るシリコン単結晶基板からSiO□膜上に単結晶シリコ
ン膜を成長させるときの主な工程における模式的断面を
順次示す図である。
1 to 3 are diagrams illustrating embodiments of the present invention, and are diagrams sequentially showing schematic cross-sections in the main steps when growing a single-crystal silicon film on a SiO□ film from a silicon single-crystal substrate serving as a seed. It is.

実施例 pH0010Zsiウエ /’  1の表面をWe を
酸化し厚さ約50OAの酸化膜を形成した。この5in
2膜上に0VT)法により更に厚さ2.45μmのSi
O2膜2を堆積さぜ、SiO□膜の合計厚さを2.5μ
mとしだ。次に通常のフォトリソグラフィーの技術によ
ってウェーハー全面に直径10μmφ縦横のピッチ10
0μn1で基板シリコンを露出させた。このときシリコ
ンの露出面積はhエバ面積全体に対して3.14%であ
った。次に、赤外線加熱減圧エピタキシャル成長装置に
ローディングし、この開口部にだけ選択的に単結晶シリ
コン膜3をエビ、タキシャル成長させ、かつエピタキシ
ャルシリコン厚さを25μmとしてウェーハー全面を平
坦にした。選択エピタキシャル成長の条件は圧力50T
ORR,H,キャリアーガス流量85 l /min。
EXAMPLE The surface of a pH0010Zsi wafer/'1 was oxidized with We to form an oxide film with a thickness of about 50 OA. This 5in
Further, a 2.45 μm thick layer of Si is deposited on the two films using the 0VT method.
Deposit O2 film 2 to make the total thickness of SiO□ film 2.5μ
m and toshida. Next, using normal photolithography technology, the entire surface of the wafer was coated with a diameter of 10 μmφ and a pitch of 10 in the vertical and horizontal directions.
The substrate silicon was exposed at 0 μn1. At this time, the exposed area of silicon was 3.14% of the entire h-evaporation area. Next, the wafer was loaded into an infrared heating and reduced pressure epitaxial growth apparatus, and a single crystal silicon film 3 was selectively taxially grown only in this opening, and the epitaxial silicon thickness was set to 25 μm to flatten the entire surface of the wafer. The conditions for selective epitaxial growth are a pressure of 50T.
ORR, H, carrier gas flow rate 85 l/min.

HOIガス1.351 / min 、  S 1II
z OA’2ソースガス560 cc/1nin 、成
長温度1000℃、成長時間は約17分であった。この
成長条件下では5iOzl&の上にはシリコンは堆積せ
ず111口部にのみシリコンがエピタキシャル成長する
。このとき、エピシリコンとSiO2膜の界面には第2
図のように、用いる基板の面方位によってはファセット
が形成される場合もあるが、本発明には大きな影響は与
えない。エピシリコン膜3と5i02膜2との界面にお
けるエピシリコン厚さが第3図のようにS i OH膜
厚さに一致したときに選択エビ成長を止める。
HOI gas 1.351/min, S 1II
The OA'2 source gas was 560 cc/1 nin, the growth temperature was 1000° C., and the growth time was about 17 minutes. Under these growth conditions, silicon is not deposited on 5iOzl&, but silicon is epitaxially grown only on the 111 opening. At this time, there is a second layer at the interface between the episilicon and the SiO2 film.
As shown in the figure, facets may be formed depending on the surface orientation of the substrate used, but this does not have a major effect on the present invention. Selective growth is stopped when the episilicon thickness at the interface between the episilicon film 3 and the 5i02 film 2 matches the S i OH film thickness as shown in FIG.

次に成長条件を圧力50 ’L!0RIL、 H,キャ
リアーガス流量50 l/min 、 8 iHt O
A’2ソースガス流量600 cc/min 、  基
板温度825℃に設定してシリコンを堆積させた。この
ときSiO2膜上にはポリシリコンHj4が堆積するが
、シード部分のシリコン基板上には単結晶膜が堆積する
。単結晶膜の部分で測定して堆積厚さを約500Xとし
た後堆積を中止し、成長条件を圧力50 TOR’R、
fftキャリアーガス流f[t85 l/+nin、 
Si’f5.O1tソースガス流量5 G Occ/r
nin 、 JIOJ流”40.7 n/rut 11
 。
Next, the growth conditions were set to a pressure of 50'L! 0RIL, H, carrier gas flow rate 50 l/min, 8 iHtO
Silicon was deposited by setting the A'2 source gas flow rate to 600 cc/min and the substrate temperature to 825°C. At this time, polysilicon Hj4 is deposited on the SiO2 film, but a single crystal film is deposited on the silicon substrate of the seed portion. After the deposition thickness was determined to be approximately 500X by measuring the single crystal film, the deposition was stopped, and the growth conditions were changed to a pressure of 50 TOR'R,
fft carrier gas flow f[t85 l/+nin,
Si'f5. O1t Source gas flow rate 5 G Occ/r
nin, JIOJ style” 40.7 n/rut 11
.

基板温度950℃に変更した。仁の成長条件での単結晶
シリコンの成長速度は006μm/minであった。こ
のとき% t7i10部から単結晶領域が横方向に拡大
する速1度は約0.31−0.35μm/+11inで
あった。成長時間30分の後開口端から9.3〜10.
5μm横方向に伸びた単結晶領域が得られた。
The substrate temperature was changed to 950°C. The growth rate of single crystal silicon under the grain growth conditions was 0.06 μm/min. At this time, the rate at which the single crystal region expanded in the lateral direction from the %t7i10 portion was about 0.31-0.35 μm/+11 inch. 9.3 to 10 from the open end after 30 minutes of growth time.
A single crystal region extending laterally by 5 μm was obtained.

本実施例では絶縁層Sin、膜厚さを2.5μmとした
が、選択エビによってシード部分のシリコン高さを絶縁
層膜と同じにするかぎシ、同じ横方向の単結晶領域の拡
大速度が18られる。しかし、選択エビによって開口部
をエピシリコンで埋めないと、得られる単結晶領域0.
絶縁膜厚さが厚くなるにしたがって小さくなる。減少割
合いeよ絶縁膜厚さが厚くなる(Jど激しくなる。これ
はfi11j壁部分での単結晶領域の拡大速度と膜面部
分での単結晶領域Ω拡大速度が異ることによるものであ
る。本実施例では出発基板としてシリコン基板と開口部
を有するSin、膜のみの構造のものを用いだが、第2
図に示したようにこの構造によってもたらされるファセ
ットによって、開口部の表面に少し凸部ができる。この
凸部は、出発基板として5io2絶縁膜の側壁部分にの
み第4図のようKあらかじめポリシリコン膜をっけてお
けば、ファセットけ発達せず平坦な表面が得られる。本
発明におけるポリシリコン膜は透過電子顕微鏡観察によ
って晰結晶化していることか確められている。しが[7
ながら、エピシリコン膜な堆積させずに同一の熱覆歴を
経ただけでは単結晶化しない。すなわち、本発明におけ
るポリシリコン膜は、エピシリコンの成長条件とポリシ
リコン膜の形成条件によって、シード部分より伸びてく
るエピシリコン膜に助けられてポリシリコンが単結晶化
し、基板結晶としてエピシリコン膜の横方向の拡大に寄
与するものである。更に、この単結晶化したポリシリコ
ン膜は、Sin、どボリシリコンル゛への界面から多数
発生する積層欠陥を、ポリシリコン膜とエピシリコン膜
の界面で止めてし1い、エピシリコン膜中の欠陥の低減
に寄与するものである。これらのことは、従来の気相成
長法によるシリコンオンインシーレータ−の問題点であ
った絶縁膜とエピシリコンの接触角が大きいことによる
横方向の成長速度が遅いこと、絶縁膜上のエピシリコン
膜の結晶性が悪いことを解決するものである。
In this example, the insulating layer Sin was made with a film thickness of 2.5 μm, but the key to making the silicon height of the seed part the same as that of the insulating layer film was to increase the speed of expansion of the single crystal region in the same lateral direction. 18. However, if the opening is not filled with episilicon by selective shrimp, the resulting single crystal region 0.
It becomes smaller as the thickness of the insulating film becomes thicker. The rate of decrease e and the insulating film thickness become thicker (J becomes more severe. This is due to the difference between the expansion speed of the single crystal region in the fi11j wall portion and the expansion speed of the single crystal region Ω in the film surface portion. In this example, a silicon substrate with an opening and a film-only structure were used as the starting substrate, but the second
As shown in the figure, the facets provided by this structure create a slight convexity on the surface of the opening. These convex portions can be formed by forming a polysilicon film on only the side wall portions of the 5io2 insulating film as a starting substrate, as shown in FIG. 4, so that facets do not develop and a flat surface can be obtained. It has been confirmed by transmission electron microscopy that the polysilicon film in the present invention is lucidly crystallized. Shiga [7
However, single crystallization does not occur if the same thermal covering history is performed without depositing an episilicon film. That is, in the polysilicon film of the present invention, depending on the episilicon growth conditions and the polysilicon film formation conditions, the polysilicon becomes a single crystal with the help of the episilicon film extending from the seed portion, and the episilicon film is used as a substrate crystal. This contributes to the horizontal expansion of Furthermore, this single-crystal polysilicon film prevents many stacking defects that occur at the interface between the polysilicon film and the polysilicon film at the interface between the polysilicon film and the episilicon film. This contributes to the reduction of These problems are due to the slow lateral growth rate due to the large contact angle between the insulating film and episilicon, which were problems with silicon-on-insulators made using conventional vapor phase growth methods, and the slow lateral growth rate due to the large contact angle between the insulating film and the epitaxial silicon. This solves the problem of poor crystallinity of silicon films.

また、本実施例では選択エビ成長、ポリシリコン膜、単
結晶シリコン膜の形成を同時に行ったが、これらを別々
の工程で行っても同様の結果を得ることができる。まだ
、絶縁膜としてSin、を用いたが、他の絶縁膜、たと
えば5t3N4 膜を用いても同様の結果を得ることが
できる。
Further, in this example, selective growth, formation of a polysilicon film, and formation of a single crystal silicon film were performed at the same time, but similar results can be obtained even if these are performed in separate steps. Although Sin is used as the insulating film, similar results can be obtained by using other insulating films, such as a 5t3N4 film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明の詳細な説明するための模式
的断面図である。第4図は出発基板としてSiO,Hの
側壁にポリシリコン膜をコートしだウェハの模式的断面
図である。図中の番号は以下のものを示す。 1・・・・・・シリコン基板 2・・・・・・5in2膜 3.5−・・・・・シリコン単結晶膜 4.6・・・・・・ポリシリコン膜 代理人弁理± 1向 原 第1図 //℃−I 第2図 第3図 第4図 −/−一/
1 to 3 are schematic sectional views for explaining the present invention in detail. FIG. 4 is a schematic cross-sectional view of a wafer in which a polysilicon film is coated on the sidewalls of SiO, H as a starting substrate. The numbers in the figure indicate the following. 1...Silicon substrate 2...5in2 film 3.5-...Silicon single crystal film 4.6...Polysilicon film Attorney ± 1 Mukai Hara Figure 1//℃-I Figure 2 Figure 3 Figure 4-/-1/

Claims (1)

【特許請求の範囲】[Claims] シリコン単結晶基板上に開口部を有する絶縁膜を形成し
、次いで選択的にエピタキシャル成長することによって
前記開口部をシリコン単結晶膜で埋め、次いで気相成長
法によって前記絶縁膜上にはポリシリコン膜を、前記シ
リコン単結+tL Il’rρ上には単結晶シリコン膜
を同時に堆積し、次いで気相成長法によって少なくとも
前記シリコン単結晶膜上及びその両凹の前記絶縁膜上に
単結晶シリコン膜を堆積し、該堆積中に該単結晶シリコ
ン膜の下の前記ポリシリコン膜を単結晶化することを特
徴とする半導体の気相成長方法。
An insulating film having an opening is formed on a silicon single crystal substrate, and then the opening is filled with a silicon single crystal film by selective epitaxial growth, and then a polysilicon film is formed on the insulating film by vapor phase growth. A single crystal silicon film is simultaneously deposited on the silicon single crystal +tL Il'rρ, and then a single crystal silicon film is deposited on at least the silicon single crystal film and the insulating film on both sides thereof by a vapor phase growth method. A method for vapor phase growth of a semiconductor, characterized in that the polysilicon film under the single crystal silicon film is monocrystallized during the deposition.
JP15377082A 1982-09-03 1982-09-03 Vapor growth of semiconductor Pending JPS5945997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15377082A JPS5945997A (en) 1982-09-03 1982-09-03 Vapor growth of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15377082A JPS5945997A (en) 1982-09-03 1982-09-03 Vapor growth of semiconductor

Publications (1)

Publication Number Publication Date
JPS5945997A true JPS5945997A (en) 1984-03-15

Family

ID=15569753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15377082A Pending JPS5945997A (en) 1982-09-03 1982-09-03 Vapor growth of semiconductor

Country Status (1)

Country Link
JP (1) JPS5945997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710241A (en) * 1985-01-17 1987-12-01 Kabushiki Kaisha Toshiba Method of making a bipolar semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544789A (en) * 1978-09-27 1980-03-29 Nec Corp Formation of mono-crystal semiconductor layer
JPS5635412A (en) * 1979-08-31 1981-04-08 Toshiba Corp Manufacture of single crystal semiconductor film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544789A (en) * 1978-09-27 1980-03-29 Nec Corp Formation of mono-crystal semiconductor layer
JPS5635412A (en) * 1979-08-31 1981-04-08 Toshiba Corp Manufacture of single crystal semiconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710241A (en) * 1985-01-17 1987-12-01 Kabushiki Kaisha Toshiba Method of making a bipolar semiconductor device

Similar Documents

Publication Publication Date Title
JPH0449251B2 (en)
JPS6046074B2 (en) Semiconductor crystal growth method
JP2505736B2 (en) Method for manufacturing semiconductor device
JPS59161014A (en) Crystallization of semiconductor thin film
JPS5945997A (en) Vapor growth of semiconductor
JPS5893220A (en) Preparation of semiconductor single crystal film
JPS5945996A (en) Vapor growth of semiconductor
JPS6047239B2 (en) Method for manufacturing single crystal silicon thin film
JPS60193324A (en) Manufacture of semiconductor substrate
JP3060486B2 (en) Method for forming SOI substrate
JPS60234312A (en) Formation of soi film
JP3157280B2 (en) Method for manufacturing semiconductor device
JPS63239932A (en) Crystal forming method
JPS59128292A (en) Method for crystallizing thin film
JP2527016B2 (en) Method for manufacturing semiconductor film
JPH0626181B2 (en) Method for manufacturing semiconductor substrate
JP2793241B2 (en) SOI formation method
JPH01214013A (en) Method for manufacturing SOI substrate
JP2527015B2 (en) Method for manufacturing semiconductor film
JPS6060716A (en) Manufacture of semiconductor substrate
JPH0529214A (en) Manufacture of semiconductor substrate
JP2964547B2 (en) Method for forming SOI substrate
JPS6151820A (en) Manufacture of semiconductor device
JPH05335234A (en) Manufacture of semiconductor substrate
JPH0669024B2 (en) Method for manufacturing semiconductor device