[go: up one dir, main page]

JPS594455B2 - Friction material with excellent wear resistance and its manufacturing method - Google Patents

Friction material with excellent wear resistance and its manufacturing method

Info

Publication number
JPS594455B2
JPS594455B2 JP7727078A JP7727078A JPS594455B2 JP S594455 B2 JPS594455 B2 JP S594455B2 JP 7727078 A JP7727078 A JP 7727078A JP 7727078 A JP7727078 A JP 7727078A JP S594455 B2 JPS594455 B2 JP S594455B2
Authority
JP
Japan
Prior art keywords
friction
carbon fiber
phenolic resin
weight
friction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7727078A
Other languages
Japanese (ja)
Other versions
JPS555907A (en
Inventor
洋人 藤巻
富美雄 小玉
謙介 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP7727078A priority Critical patent/JPS594455B2/en
Publication of JPS555907A publication Critical patent/JPS555907A/en
Publication of JPS594455B2 publication Critical patent/JPS594455B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は炭素繊維を基材とし、フェノール樹脂を結合材
とする摩擦材料に関し、特に高温領域に5 おいて、摩
擦係数が安定しかつ耐摩耗性に優れる摩擦材料を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a friction material made of carbon fiber as a base material and a phenolic resin as a binder. This is what we provide.

本発明の摩擦材料とは自動車のブレーキ、クラッチ等、
鉄道車両の制輪子、スリ板等および各種産業機械等に用
いられる有機系摩擦材料をさすも10のである。
The friction material of the present invention is used for automobile brakes, clutches, etc.
It is one of the top 10 organic friction materials used in brake shoes, slide plates, etc. of railway vehicles, and various industrial machines.

従来有機系摩擦材料は一般にアスベストを基材としフェ
ノール樹脂を結合材とし各種の摩擦調整剤が添加された
系より成つている。
Conventional organic friction materials generally consist of asbestos as a base material, phenolic resin as a binder, and various friction modifiers added.

しかしながらアスベストはその優れた種々の特15性を
有するものの、1972年の国際ガン研究機構主催の医
学シンポジウムでアスベストの発ガン性が問題となつた
のを契機に、世界的にアスベストの取扱いに関する規制
が強化されることとなつた。
However, although asbestos has various excellent properties, in 1972, at a medical symposium sponsored by the International Agency for Research on Cancer, the carcinogenicity of asbestos became an issue, and as a result, regulations regarding the handling of asbestos became worldwide. has been strengthened.

また一方アスベストは天然物であることより20資源保
護の立場からもその使用が思うままにならなくなつてき
ている。以上アスベストの使用に関してはいわゆる環境
問題、資源問題が関わり、今後はアスベストを使用しな
い方向で種々のアスベスト代替材料を開発していくこと
が急務となつて25きている。このため有機系摩擦材料
においてもアスベスト代替品としてガラス繊維、スチー
ル繊維、各種セラミック繊維および炭素繊維等が検討さ
れてきている。
On the other hand, since asbestos is a natural product, it is becoming increasingly difficult to use it as desired from the standpoint of resource conservation. As mentioned above, the use of asbestos involves so-called environmental and resource issues, and there is an urgent need to develop various asbestos substitute materials in the future without the use of asbestos. For this reason, among organic friction materials, glass fibers, steel fibers, various ceramic fibers, carbon fibers, and the like are being considered as substitutes for asbestos.

30本発明の炭素繊維有機摩擦材料の開発の目的は、上
記アスベストの規制に対処することは勿論であるが、ア
スベスト系有機摩擦材料が従来有していた欠点を改良し
、優れた性能を具備した摩擦材料を提供することにある
30 The purpose of developing the carbon fiber organic friction material of the present invention is not only to meet the above-mentioned asbestos regulations, but also to improve the drawbacks that asbestos-based organic friction materials have conventionally had and to provide excellent performance. The objective is to provide a friction material with improved properties.

35既に炭素繊維の摩擦材料への応用については何件か
の先行技術が公知となつている。
35 Several prior art techniques are already known regarding the application of carbon fibers to friction materials.

たとえば特公昭38−26574号、特公昭48−15
127号、特開昭48−33272号(米国特許第40
19912号)、特開昭52−132269号、特開昭
51−133351号、特開昭48一14801号、特
開昭49−128049号等である。特公昭38−26
574号は炭素繊維と樹脂系結合剤の系から成るブレー
キライニングを開示しているが、その製造方法および特
性等については何ら開示されていない。特公昭48一1
5127号は補強合成ブレーキ片について炭素繊維、充
填剤および結合材の配合組成を開示したものである。
For example, Special Publication No. 38-26574, Special Publication No. 48-15
No. 127, JP-A No. 48-33272 (U.S. Patent No. 40)
19912), JP-A-52-132269, JP-A-51-133351, JP-A-48-14801, JP-A-49-128049, etc. Special Public Service 1973-26
No. 574 discloses a brake lining made of a system of carbon fibers and a resin binder, but does not disclose anything about its manufacturing method or characteristics. Special Public Service 1973
No. 5127 discloses a carbon fiber, filler and binder composition for a reinforced synthetic brake shoe.

特開48−33272号は炭素繊維と溶融ガラス、粘土
等の無機結合材から構成される繊維補強摩擦材を開示し
ている。特開昭52一132269号では炭素繊維系有
機摩擦材料は一般に低摩擦係数の材料であることを指摘
し、その改善策として使用する炭素繊維に予め無機微粉
末を含有せしめることを開示している。特開昭51−1
33351号は炭素繊維系有機摩擦材料における結合材
としてポリオキシフエニルメタンフエノキシシロキサン
が有効であることを開示している。特開昭48−148
01号は油中用摩擦材料をパルプ、アスベストおよび炭
素繊維等を抄紙しこれに樹脂を含浸した後成形して得る
ことを開示している0特開昭49−128049号は従
来のアスベストーフエノール樹脂系複合材料に炭素繊維
を添加することにより摺動特性にすぐれた複合材料組成
物を得ることを開示している。以上先行技術はそれぞれ
炭素繊維を摩擦材料に応用展開したものであるが、いま
だ炭素繊維のすぐれた特性を充分に発揮した技術に到達
したものとは言い難い。
JP-A No. 48-33272 discloses a fiber-reinforced friction material composed of carbon fiber and an inorganic binder such as molten glass or clay. JP-A-52-132269 points out that carbon fiber-based organic friction materials generally have a low coefficient of friction, and discloses that as a measure to improve this, the carbon fibers used include inorganic fine powder in advance. . JP-A-51-1
No. 33351 discloses that polyoxyphenylmethane phenoxysiloxane is effective as a binder in carbon fiber-based organic friction materials. Japanese Unexamined Patent Publication 1973-148
No. 01 discloses that a friction material for use in oil is obtained by making paper from pulp, asbestos, carbon fiber, etc., impregnating it with resin, and then molding it.0 JP-A-49-128049 discloses that a friction material for use in oil is obtained by making paper from pulp, asbestos, carbon fiber, etc., impregnating it with resin, and then molding it. It is disclosed that a composite material composition with excellent sliding properties can be obtained by adding carbon fiber to a resin-based composite material. Although each of the above-mentioned prior art techniques has developed the application of carbon fibers to friction materials, it is difficult to say that they have yet reached a technology that fully utilizes the excellent characteristics of carbon fibers.

本発明者らは炭素繊維の有するすぐれた摩擦摩耗特性、
耐熱性、力学特性等を摩擦材料として充分発現さすべく
鋭意検討した結果本発明に到達したものである。
The present inventors have discovered the excellent friction and wear properties of carbon fiber,
The present invention was arrived at as a result of intensive studies aimed at fully exhibiting heat resistance, mechanical properties, etc. as a friction material.

すなわち従来の摩擦材料は一般に各種素材の配合秤量→
混合(乾式混合)→予熱、予備成形→熱加圧成形→後硬
化の工程により製造されているものであるが、本発明の
要点は炭素繊維とフエノール樹脂および摩擦調整剤より
構成される摩擦材料の製造に際し新規なる前熱処理の工
程を導入し、この前熱処理工程において70〜140℃
の温度にて機械的に加圧せん断混練を実施し上記組成の
混合物を得、ついで該混合物を熱加圧成形し、炭素繊維
の有する諸特性を充分発揮せしめた摩擦材料を得る点に
ある。
In other words, conventional friction materials generally have a combination weight of various materials →
Although it is manufactured through the process of mixing (dry mixing) → preheating, preforming → hot press molding → post-curing, the main point of the present invention is a friction material composed of carbon fiber, phenolic resin, and friction modifier. Introducing a new pre-heat treatment process during the production of
A mixture having the above composition is obtained by mechanically pressurizing and shearing kneading at a temperature of 100 mL, and then the mixture is hot-press molded to obtain a friction material that fully exhibits the various properties of carbon fibers.

本発明において使用する炭素繊維が長繊維であつても機
械的な加圧せん断混練工程を経ることにより炭素繊維の
長さを平均繊維長で0.4wn以下にまで切断すること
が不可欠の要件となる。平均繊維長か0.4m以上であ
ると加圧せん断混練の効果が不充分であり、また成形品
中の炭素繊維の分散状態が不良でかつ気孔率が15%以
上になり緻密な成形品が得られなくなり、以下に述べる
本発明の特徴であるすぐれた摩擦、摩耗特性および力学
特性が発現されなくなる。
Even if the carbon fibers used in the present invention are long fibers, it is an essential requirement to cut the length of the carbon fibers to an average fiber length of 0.4wn or less through a mechanical pressure-shear kneading process. Become. If the average fiber length is 0.4 m or more, the effect of pressurized shear kneading will be insufficient, and the dispersion state of carbon fibers in the molded product will be poor, and the porosity will be 15% or more, resulting in a dense molded product. Therefore, the excellent friction, wear characteristics, and mechanical properties that are the characteristics of the present invention described below are no longer exhibited.

本発明により得られる成形品は、従来の成形法により得
られる成形品すなわち機械的な加圧せん断混練工程を含
まない成形法により得られる成形品に比較して驚くべき
優れた摩擦摩耗特性を発現した。
The molded product obtained by the present invention exhibits surprisingly superior friction and wear characteristics compared to molded products obtained by conventional molding methods, that is, molded products obtained by molding methods that do not include a mechanical pressure-shearing and kneading process. did.

すなわち耐摩耗性に関しては低温領域(100〜200
℃)では勿論であるが、高温領域(250〜350℃)
においても著しく摩耗率が小さく、従来の成形法により
得られる炭素繊維系成形品やアスベスト系摩擦材料に対
しても全く予期されない程のすぐれた耐摩耗性を示した
In other words, the wear resistance is in the low temperature range (100 to 200
℃), but also in the high temperature range (250 to 350℃)
The abrasion rate was extremely low, and it showed an unexpectedly excellent abrasion resistance even for carbon fiber-based molded products and asbestos-based friction materials obtained by conventional molding methods.

また摩擦係数においても従来のアスベスト系摩擦材料は
高温領域(250〜350スC)において摩擦係数の低
下が顕著である(いわゆるフエード現象)のに対し、本
発明により得られる成形品はこの現象が全く観察されず
、高温領域においても摩擦係数の安定が見られた。一方
力学特性に関しても従来の成形法より得られる成形品に
対してよりすぐれた曲げ強度、衝撃強度の値を示した。
以上のごとく炭素繊維系有機摩擦材料において本発明の
要点である成形工程に新規なる前処理工程すなわち機械
的な加圧せん断混練工程を導入することにより従来の成
形法により得られる炭素繊維系成形品やアスベスト系摩
擦材料に比較して著しく改善された摩擦、摩耗特性およ
び力学特性を発現せしめることが可能となつた。
In addition, with regard to the friction coefficient, conventional asbestos-based friction materials exhibit a remarkable decrease in the friction coefficient in the high temperature range (250 to 350 C) (so-called fade phenomenon), whereas the molded product obtained by the present invention does not exhibit this phenomenon. This was not observed at all, and the coefficient of friction remained stable even in the high temperature range. On the other hand, regarding mechanical properties, the molded products showed superior bending strength and impact strength values compared to molded products obtained by conventional molding methods.
As described above, a carbon fiber-based molded product can be obtained using a conventional molding method by introducing a new pre-treatment process, that is, a mechanical pressure shearing and kneading process, into the molding process, which is the key point of the present invention, for carbon fiber-based organic friction materials. It has become possible to exhibit significantly improved friction, wear characteristics, and mechanical properties compared to asbestos-based friction materials.

前熱処理工程すなわち機械的な加圧せん断混練工程を経
ずに従来の成形法によつて得られた複合材料は全く本発
明のごとき摩擦,摩耗特性を有しない。このような効果
の差異についての理論的解明はいまだ定かではないが、
前熱処理工程において炭素繊維が加圧せん断混練のため
切断されると同時に溶融した結合材樹脂、充填剤および
繊維が充分混練され樹脂との親和性が著るしく向上し、
その結果として緻密な成形品が得られるためと考えられ
る。
Composite materials obtained by conventional molding methods without a pre-heat treatment step, ie, a mechanical pressure-shear kneading step, do not have the friction and wear characteristics of the present invention. Although the theoretical explanation for this difference in effects is still unclear,
In the pre-heat treatment step, the carbon fibers are cut due to pressure shear kneading, and at the same time, the molten binder resin, filler and fibers are thoroughly kneaded and the affinity with the resin is significantly improved.
This is thought to be because a dense molded product is obtained as a result.

以上の如く本発明は摩擦材料としてすぐれた特性を有す
るものであるが、更に本発明による前熱処理工程の導入
は作業環境の改善に大きく寄与するものである。
As described above, the present invention has excellent properties as a friction material, and the introduction of the preheat treatment step according to the present invention greatly contributes to improving the working environment.

前熱処理すなわち機械的な加圧せん断混練はバンバリ型
ミキサー、連続式ミキサー、ロール、ニーダ一、スクリ
ユ一型押出し機等により実施される。
The preheat treatment, that is, the mechanical pressurized shear kneading is carried out using a Banbury type mixer, a continuous mixer, a roll, a kneader, a screw type extruder, or the like.

混練される際の温度は70〜140℃が好ましく、外部
からの加熱もしくは混練により発生する摩擦熱を利用し
てもよい。70℃以下の場合はフエノール樹脂が充分に
溶融せず、また140℃以上ではフエノール樹脂の硬化
が進行して不都合である。
The temperature during kneading is preferably 70 to 140°C, and external heating or frictional heat generated by kneading may be used. If the temperature is below 70°C, the phenolic resin will not melt sufficiently, and if it is above 140°C, the curing of the phenolic resin will progress, which is disadvantageous.

本発明の摩擦材料の組成は炭素繊維、フエノール樹脂お
よび摩擦調整剤がそれぞれ炭素繊維が5〜60重量%、
好ましくは20〜50重量%、フエノール樹脂が10〜
30重量%、好ましくは15〜25重量%および摩擦調
整剤が残部を構成するO炭素繊維はポリアクリルニトリ
ル、レイヨン、ピツチ等を原料とするものいずれでも良
いが、工業的な経済性からピツチを原料とする炭素繊維
が好ましい。
The composition of the friction material of the present invention is as follows: carbon fiber, phenolic resin, and friction modifier each contain 5 to 60% by weight of carbon fiber;
Preferably 20-50% by weight, 10-50% by weight of phenolic resin
O-carbon fibers of which 30% by weight, preferably 15 to 25% by weight and the remainder are friction modifiers, may be made from polyacrylonitrile, rayon, pitch, etc., but pitch is preferred from the viewpoint of industrial economy. Carbon fiber used as a raw material is preferable.

使用する炭素繊維の長さは特に限定されるものではない
が、混合の容易さから150Tt1n以下のものが好ま
しい。フエノール樹脂は一般に市販されている摩擦材料
用のフエノール樹脂すなわちストレート樹脂およびカシ
ユ一変成、エポキシ変成、エラストマー変成等の変成樹
脂が用いられる〇摩擦調整剤とは従来より公知のもので
あり、硫酸バリウム、カシユーダストレジン、ラバーダ
スト、銅、鉄等の金属粉およびパルプ、合成繊維、無機
繊維等の繊維物質である。
The length of the carbon fibers used is not particularly limited, but from the viewpoint of ease of mixing, carbon fibers of 150 Tt1n or less are preferred. As the phenolic resin, commercially available phenolic resins for friction materials, that is, straight resins, and modified resins such as Kashi-modified, epoxy-modified, and elastomer-modified resins are used. 〇Friction modifiers are conventionally known ones, such as barium sulfate. , cashew dust resin, rubber dust, metal powders such as copper and iron, and fiber materials such as pulp, synthetic fibers, and inorganic fibers.

本発明においてはこれらのうち一種以上を添加するもの
であるが特にその種類は限定されない。以下実施例およ
び比較例により本発明をさらに詳細に説明する。
In the present invention, one or more of these is added, but the type is not particularly limited. The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例 1 平均繊維長6mのピツチ系炭素繊維(クレハカーボンフ
アイバ一C−106t8、太洋化研株式会社製)30重
量%、フエノール樹脂(BP−7008、群栄化学製)
20重量%、硫酸バリウム50重量%をペンシェル混合
機により30秒間混合した。
Example 1 Pitch carbon fiber (Kureha Carbon Fiber C-106t8, manufactured by Taiyo Kaken Co., Ltd.) with an average fiber length of 6 m, 30% by weight, phenolic resin (BP-7008, manufactured by Gunei Chemical Co., Ltd.)
20% by weight and 50% by weight of barium sulfate were mixed for 30 seconds using a pen shell mixer.

該混合物をコニーダ一(PR−46[F]、ブス社製連
続式二ーダ一)により加圧せん断混練した0この時混練
物質の温度は約100℃にコントロールした。得られた
混練物質中の炭素繊維の長さは第1図に示された写真の
ごとく長いもので0.5TWL程度あり、平均繊維長と
しては0.25m程度であることが観察された。該第1
図写真は混練物質を空気中にて450℃、30分間熱処
理することによりフエノール樹脂を焼失せしめることに
より炭素繊維を回収し、その回収物質を顕微鏡により観
察し写真撮影したものである。
The mixture was kneaded under pressure and shear using a Konidader 1 (PR-46 [F], a continuous kneader manufactured by Busu Co., Ltd.), at which time the temperature of the kneaded material was controlled at about 100°C. It was observed that the length of the carbon fibers in the obtained kneaded material was about 0.5 TWL as shown in the photograph shown in FIG. 1, and the average fiber length was about 0.25 m. The first
The photograph shows the carbon fibers recovered by heat-treating the kneaded material in air at 450° C. for 30 minutes to burn out the phenol resin, and the recovered material was observed under a microscope and photographed.

ついで該混練物質を成形用金型を用いて160℃、20
0kg/Cr!iの条件で15分間圧縮形成にて成形し
た。
Then, the kneaded material was heated at 160°C and 20°C using a mold.
0kg/Cr! It was molded by compression molding for 15 minutes under the conditions of i.

更に該成形物を180℃にて15時間後硬化処理した。
得られた成形品のカサ密度の測定により気孔率を算出し
たところ8.9(F6であつた。気孔率の算出はをもつ
てする。
Further, the molded product was post-cured at 180° C. for 15 hours.
The porosity of the obtained molded article was calculated by measuring the bulk density and was found to be 8.9 (F6).The porosity was calculated as follows.

ついで得られた成形物は以下の物性評価に供された。The obtained molded product was then subjected to the following physical property evaluation.

該成形板より25Trm角、5wn厚さの試験片を2枚
切り出しJISD−4411に準拠した定速式摩擦試験
により摩擦摩耗特性を評価した。
Two test pieces of 25 Trm square and 5 wn thick were cut out from the molded plate, and their friction and wear characteristics were evaluated by a constant speed friction test in accordance with JISD-4411.

その結果を第1表に示す〇また該成形板より幅12.5
wm、長さ100tfrm、厚さ3.5Wr1rLの試
験片を切り出し曲げ試験および衝撃試験を行なつた〇曲
げ試験はASTM.D−970、衝撃試験はASTM.
D−256に準拠して行なつた。
The results are shown in Table 1. Also, the width is 12.5 mm from the molded plate.
A test piece with a length of 100 tfrm and a thickness of 3.5Wr1rL was cut out and subjected to a bending test and an impact test. The bending test was conducted according to ASTM. D-970, impact test ASTM.
It was conducted in accordance with D-256.

その結果を表2に示す。実施例 2 平均繊維長0.77mのピツチ系炭素繊維(クレハカー
ボンフアイバ一M−107t[F]、太洋化研株式会社
製)40重量%、フエノール樹脂(カシユ一株式会社製
カシユ一変成樹脂)20重量%、硫酸バリウム40重量
%を二ーダ一にそれぞれ投入し加圧せん断混練した。
The results are shown in Table 2. Example 2 40% by weight of pitch-based carbon fiber (Kureha Carbon Fiber M-107t [F], manufactured by Taiyo Kaken Co., Ltd.) with an average fiber length of 0.77 m, phenol resin (Kashiyu-ichi modified resin manufactured by Kashiyu-ichi Co., Ltd.) ) and 40% by weight of barium sulfate were respectively charged into a second cylinder and kneaded by pressurization and shearing.

このとき混練物質の温度は115℃にコントロールした
0得られた混練物質中の繊維の長さは平均繊維長で0,
2Tm程度であることが観察された。ついで該混練物質
を成形用金型を用いて160℃、200Kf/iの条件
で15分間圧縮成形にて成形した。
At this time, the temperature of the kneaded material was controlled at 115°C.The length of the fibers in the obtained kneaded material was 0, the average fiber length.
It was observed that the temperature was about 2 Tm. The kneaded material was then compression molded using a mold for 15 minutes at 160° C. and 200 Kf/i.

更に該成形物を180℃にて15時間後硬化処理した。
成形品のカサ密度の測定より気孔率は7.1%であつた
。得られた成形品は実施例1と同様に摩擦試験、曲げ試
験、衝撃試験に供された。
Further, the molded product was post-cured at 180° C. for 15 hours.
The porosity of the molded product was found to be 7.1% by measuring the bulk density. The obtained molded product was subjected to a friction test, a bending test, and an impact test in the same manner as in Example 1.

結果はそれぞれ表1、表2に示す〇 比較例 1 平均繊維長0.7mのピツチ系炭素繊維(クレハカーボ
ンフアイバ一M−107t[F]、太洋化研株式会社製
)40重量%、フエノール樹脂(カシユ一株式会社製カ
シユ一変成樹脂)20重量%、硫酸バリウム40重量%
をペンシェル混合機により30秒間混合した。
The results are shown in Tables 1 and 2, respectively. Comparative Example 1 Pitch carbon fiber with an average fiber length of 0.7 m (Kureha Carbon Fiber M-107t [F], manufactured by Taiyo Kaken Co., Ltd.) 40% by weight, phenol Resin (Kashiyu-ichi modified resin manufactured by Kashiyu-ichi Co., Ltd.) 20% by weight, barium sulfate 40% by weight
were mixed for 30 seconds using a pen shell mixer.

該混合物における炭素繊維の長さは出発繊維長である0
.7Trr1n程度であり特に切断されていないことが
認められた。ついで該混合物を成形用金型を用いて実施
例1と同様に成形した。
The length of the carbon fibers in the mixture is the starting fiber length 0
.. It was found that it was approximately 7Trr1n and was not particularly cleaved. The mixture was then molded in the same manner as in Example 1 using a mold.

得られた成形品の気孔率は17%であつた〇〉 x成形品の摩擦試験および力学特性の評価結果はそれぞ
れ表1、表2に示す。
The porosity of the obtained molded product was 17%. The results of the friction test and mechanical property evaluation of the molded product are shown in Tables 1 and 2, respectively.

比較例 2 平均繊維長0.1WWLのピツチ系炭素繊維(クレハカ
ーボンフアイバ一M−101[F]、太洋化研株式会社
製)40重量%、フエノール樹脂(カシユ一株式会社製
カシユ一変成樹脂)20重量%、硫酸バリウム40重量
%をペンシェル混合機により30秒間混合した。
Comparative Example 2 Pitch-based carbon fiber (Kureha Carbon Fiber M-101 [F], manufactured by Taiyo Kaken Co., Ltd.) with an average fiber length of 0.1 WWL, 40% by weight, phenol resin (Kashiyu-ichi modified resin manufactured by Kashiyu-ichi Co., Ltd.) ) and 40% by weight of barium sulfate were mixed for 30 seconds using a pen shell mixer.

該混合物における炭素繊維の長さは出発繊維と変らず0
.1Wr1n程度であつた〇ついで該混合物を成形用金
型を用いて実施例1と同様に成形した。得られた成形品
の気孔率は9.2%であつた。成形品の摩擦試験および
力学特性の評価結果はそれぞれ表1、表2に示す〇繊維
長0.4wr1n以下、成形品の気孔率15%以下でも
前熱処理で加圧せん断混合しないと本発明の如き効果は
有しなかつたo以上のごとく本発明の摩擦材料は高温領
域において摩擦係数の安定かつ優れた耐摩耗性を示し、
さらに優れた機械的特性を有することが明らかである。
The length of the carbon fibers in the mixture remains the same as the starting fibers and is 0.
.. The mixture was then molded in the same manner as in Example 1 using a mold. The porosity of the molded article obtained was 9.2%. The evaluation results of the friction test and mechanical properties of the molded product are shown in Tables 1 and 2, respectively.〇Even if the fiber length is 0.4wr1n or less and the porosity of the molded product is 15% or less, it will not work as in the present invention unless pressure-sheared and mixed in the preheat treatment. As described above, the friction material of the present invention exhibits a stable friction coefficient and excellent wear resistance in a high temperature region,
It is clear that it has even better mechanical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素繊維、フエノール樹脂及び硫酸バリウムの
混合物を加圧せん断混練した後フエノール樹脂を焼失し
て回収した炭素繊維の顕微鏡写真で、白い短繊維状は炭
素繊維を示す。
FIG. 1 is a micrograph of carbon fibers recovered by pressurizing and shearing a mixture of carbon fibers, phenolic resin, and barium sulfate, then burning off the phenolic resin, and the white short fibers indicate carbon fibers.

Claims (1)

【特許請求の範囲】 1 炭素繊維とフェノール樹脂と摩擦調整剤を前熱処理
として加圧せん断混練することにより混合し、ついで該
混合物を熱加圧成形することにより得られる複合材料中
の炭素繊維の平均繊維長が0.4mm以下で気孔率が1
5%以下の摩擦材料。 2 炭素繊維、フェノール樹脂および摩擦調整剤の組成
がそれぞれ炭素繊維が5〜60重量%、フェノール樹脂
が10〜30重量%および摩擦調整剤が残部である特許
請求の範囲第1項記載の摩擦材料。 3 炭素繊維とフェノール樹脂と摩擦調整剤より構成さ
れる摩擦材料の製造に際し、前熱処理として70〜14
0℃において加圧せん断混練することにより混合物を得
、ついで該混合物を熱加圧成形することを特徴とする摩
擦材料の製造方法。 4 炭素繊維、フェノール樹脂および摩擦調整剤の組成
がそれぞれ炭素繊維が5〜60重量%、フェノール樹脂
が10〜30重量%および摩擦調整剤が残部である特許
請求の範囲第3項記載の摩擦材料の製造方法。
[Claims] 1. Carbon fibers in a composite material obtained by mixing carbon fibers, a phenolic resin, and a friction modifier by pressure-shear kneading as a preheat treatment, and then hot-pressing the mixture. Average fiber length is 0.4mm or less and porosity is 1
Friction material of 5% or less. 2. The friction material according to claim 1, wherein the composition of carbon fiber, phenolic resin, and friction modifier is 5 to 60% by weight of carbon fiber, 10 to 30% by weight of phenolic resin, and the balance is friction modifier. . 3. When manufacturing a friction material composed of carbon fiber, phenolic resin, and friction modifier, 70 to 14
1. A method for producing a friction material, which comprises obtaining a mixture by pressure-shearing and kneading at 0° C., and then molding the mixture under heat. 4. The friction material according to claim 3, wherein the composition of carbon fiber, phenolic resin, and friction modifier is 5 to 60% by weight of carbon fiber, 10 to 30% by weight of phenolic resin, and the balance is friction modifier. manufacturing method.
JP7727078A 1978-06-26 1978-06-26 Friction material with excellent wear resistance and its manufacturing method Expired JPS594455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7727078A JPS594455B2 (en) 1978-06-26 1978-06-26 Friction material with excellent wear resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7727078A JPS594455B2 (en) 1978-06-26 1978-06-26 Friction material with excellent wear resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS555907A JPS555907A (en) 1980-01-17
JPS594455B2 true JPS594455B2 (en) 1984-01-30

Family

ID=13629151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7727078A Expired JPS594455B2 (en) 1978-06-26 1978-06-26 Friction material with excellent wear resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS594455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672842A2 (en) 1994-03-17 1995-09-20 Osaka Gas Co., Ltd. Method for producing friction material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167920A (en) * 1980-05-24 1981-12-23 Aisin Seiki Co Ltd Clutch facing for vehicle
FR2508999B1 (en) * 1981-07-01 1986-08-22 Lorraine Carbone CARBON-CARBON COMPOSITE MATERIAL BRAKE DISC AND EMBODIMENTS
JPS61174853A (en) * 1985-01-30 1986-08-06 Hitachi Cable Ltd Communication method of line switching loop network
CN1065251C (en) * 1997-06-18 2001-05-02 中国石油化工总公司 Friction material for braking control system
US7537824B2 (en) * 2002-10-24 2009-05-26 Borgwarner, Inc. Wet friction material with pitch carbon fiber
US8021744B2 (en) 2004-06-18 2011-09-20 Borgwarner Inc. Fully fibrous structure friction material
US7429418B2 (en) 2004-07-26 2008-09-30 Borgwarner, Inc. Porous friction material comprising nanoparticles of friction modifying material
DE102008013907B4 (en) 2008-03-12 2016-03-10 Borgwarner Inc. Frictionally-locking device with at least one friction plate
JP2010285578A (en) * 2009-06-15 2010-12-24 Akebono Brake Ind Co Ltd Friction material
JP5797073B2 (en) * 2011-09-26 2015-10-21 日清紡ブレーキ株式会社 Friction material manufacturing method
CN108864512B (en) * 2018-07-05 2020-08-07 北京天宜上佳高新材料股份有限公司 Preparation method of fiber reinforced resin-based friction material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672842A2 (en) 1994-03-17 1995-09-20 Osaka Gas Co., Ltd. Method for producing friction material

Also Published As

Publication number Publication date
JPS555907A (en) 1980-01-17

Similar Documents

Publication Publication Date Title
US4373038A (en) Asbestos-free friction material
JPS594455B2 (en) Friction material with excellent wear resistance and its manufacturing method
US4388423A (en) Friction lining material
JPS6317872B2 (en)
US4432922A (en) Process for molding a brake lining friction product
KR100808519B1 (en) Non-asbestos friction materials
EP0469464A2 (en) Friction lining and process for manufacturing it
GB2085019A (en) Friction material
US5250588A (en) Organic friction material composition for use to produce friction linings
JP3138751B2 (en) Composition for friction element
US3972394A (en) Friction material
US4461643A (en) Friction lining material
US3842031A (en) Friction material
JP3121754B2 (en) Phenolic resin molding material
JPH11148071A (en) Composition for friction material
RU2175335C2 (en) Method of preparing friction polymeric materials
US4487729A (en) Friction lining material
KR100503711B1 (en) Compostion for non glass taxtile
KR20200102908A (en) Metal alloy fiber and friction material
RU2119511C1 (en) Polymer friction composition and method of manufacturing friction material
SU787433A1 (en) Frictional polymeric composition
CN1075782A (en) Do not contain the asbestos braking material
JP2601652B2 (en) Friction material for brake
JP3809924B2 (en) Friction material composition, method for producing friction material composition, and friction material using friction material composition
JP3782243B2 (en) Friction material for brake