[go: up one dir, main page]

JPS5942824B2 - Catalytic reaction test furnace - Google Patents

Catalytic reaction test furnace

Info

Publication number
JPS5942824B2
JPS5942824B2 JP9283179A JP9283179A JPS5942824B2 JP S5942824 B2 JPS5942824 B2 JP S5942824B2 JP 9283179 A JP9283179 A JP 9283179A JP 9283179 A JP9283179 A JP 9283179A JP S5942824 B2 JPS5942824 B2 JP S5942824B2
Authority
JP
Japan
Prior art keywords
catalyst
temperature
furnace
gas
catalytic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9283179A
Other languages
Japanese (ja)
Other versions
JPS5616856A (en
Inventor
祥男 柳田
博 三平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESUTETSUKU KK
Original Assignee
ESUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESUTETSUKU KK filed Critical ESUTETSUKU KK
Priority to JP9283179A priority Critical patent/JPS5942824B2/en
Publication of JPS5616856A publication Critical patent/JPS5616856A/en
Publication of JPS5942824B2 publication Critical patent/JPS5942824B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、自動車排気ガスや各種燃焼機器の排気ガスな
どの有害ガスと同じ組成の模擬ガスを用いて、前記有害
ガスを浄化し無害化する触媒の反応効率、反応速度、反
応温度等の特性を調べるようにした触媒反応試験炉に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a simulated gas having the same composition as harmful gases such as automobile exhaust gas and exhaust gas from various combustion equipment to evaluate the reaction efficiency and reaction of a catalyst that purifies and renders harmful gases harmless. This invention relates to a catalytic reaction test furnace designed to investigate characteristics such as speed and reaction temperature.

一般に、この種の触媒については、高い温度で反応させ
れば、良い結果が得られることが知られている。
It is generally known that good results can be obtained with this type of catalyst if the reaction is carried out at a high temperature.

しカル乍ら、自動車の排気ガス経路等に介装した触媒反
応炉を高温状態に保つことは多くの面で不利であり、実
際上困難でもあるところから、可及的に広い温度域にお
いて反応が十分に行なわれるような触媒の開発が進めら
れている。また、触媒反応炉の多くは、燃焼室から排出
された高温状態にあるガスで触媒を加熱して反応温度域
まで昇温する方法が採用されているため、ガスが伝達す
る熱による触媒の温度上昇過程における反応状態が問題
になる。従つて、触媒の反応開始温度を知ることは、極
めて重要な試験課題となつているが、従来の触媒反応試
験炉では、反応開始温度の試験が困難であつた。
However, maintaining a catalytic reactor installed in the exhaust gas path of a car at a high temperature is disadvantageous in many aspects and is also difficult in practice, so it is necessary to carry out reactions in as wide a temperature range as possible. Progress is being made in the development of catalysts that will allow this to occur satisfactorily. In addition, many catalytic reactors use a method of heating the catalyst with high-temperature gas discharged from the combustion chamber to raise the temperature to the reaction temperature range, so the temperature of the catalyst due to the heat transferred by the gas is The reaction state during the ascent process becomes a problem. Therefore, knowing the reaction initiation temperature of a catalyst has become an extremely important test subject, but it has been difficult to test the reaction initiation temperature in conventional catalytic reaction test furnaces.

即ち、装置の小型化を図り、かつ、模擬ガスの高温状態
での自然反応を避ける意味から、第5図に示すように、
模擬ガスの加熱炉bと触媒反応試験炉aとはできるだけ
近づけて配置される。
That is, in order to downsize the device and avoid spontaneous reactions of the simulated gas at high temperatures, as shown in Figure 5,
The simulated gas heating furnace b and the catalytic reaction test furnace a are arranged as close as possible.

従つて、加熱炉bから触媒cまでの距離が短く、高温の
模擬ガスが直接触媒cを通るため、第6図に示すように
、触媒cの温度は徐々に上昇するが、触媒反応試験炉a
内のガス温度は、ガスの送給と同時にほぼ一定となり、
触媒反応試験炉a内のガス温度が何度の時点で、触媒c
が反応を開始するのかを知ることができない。勿論、模
擬ガスを一旦低い温度に保ち、加熱炉bの温度を徐々に
上昇させていくことによつて、触媒cの反応開始温度を
知ることはできるが、数多くの試験触媒について、遂一
このような工程を繰り返していたのでは、時間がかかり
、加熱炉での熱損失と相まつて、試験費用が著しく高価
なものとなつてしまうのである。
Therefore, since the distance from heating furnace b to catalyst c is short and the high-temperature simulated gas passes directly through catalyst c, the temperature of catalyst c gradually increases as shown in FIG. a
The gas temperature inside becomes almost constant at the same time as the gas is supplied,
At what point in time is the gas temperature in the catalytic reaction test furnace a, the catalyst c
It is not possible to know what will initiate the reaction. Of course, it is possible to find out the reaction start temperature of catalyst c by keeping the simulated gas at a low temperature and gradually increasing the temperature of heating furnace b, but this is not the case for many test catalysts. Repeating such a process takes time, and combined with the heat loss in the heating furnace, the testing cost becomes extremely high.

本発明は、このような従来欠点を解消できる触媒反応試
験炉を提供するものである。
The present invention provides a catalytic reaction test furnace that can overcome these conventional drawbacks.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

Aは、保護カバーを兼ねたステー1を介して基苗2に固
着された円筒状の炉壁3と、該炉壁3に対して分離可能
な触媒保持具4とを備えた触媒反応試験炉、Bはその上
部に近接して配置された加熱炉である。
A is a catalytic reaction test furnace equipped with a cylindrical furnace wall 3 fixed to a base seedling 2 via a stay 1 that also serves as a protective cover, and a catalyst holder 4 that is separable from the furnace wall 3. , B is a heating furnace placed close to the top thereof.

反応性の低い稀釈用の大流量ガスは混合室5内を流れる
間に、前記加熱炉Bにより+分に加熱され昇温するが、
反応性の高いNO等のガスは、高温状態での自然反応を
可及的に防止するために、パイプ6,7により混合室5
の出口近くに送り込まれる。この場合、パイプ6,7に
よる送込み位置から試験炉Aまでの距離が短くても、パ
イプ6,.7によつて添加するガスと前記稀釈用大流量
ガスが十分に混合され、安定した模擬ガスとなつて試験
炉Aに導入されるように、第2図に示す如く、パイプ6
,7の先端を上方に折り曲げて、前記反応性ガスを混合
室5内の大流量ガスの流れに対し、対向流として添加す
るとともに、混合室5内の出口近くに邪魔板8を設けて
混合を助長することが望ましい。前記触媒保持具4は、
炉壁3の下フランジ3aに下方から押し当てられている
だけであり、基台2に枢着したレバー9を第1図の実線
位置から仮想線位置へと押し下げることによつて触媒保
持具4が下降し、炉壁3から分離するようになつている
While the large flow rate gas for dilution with low reactivity flows through the mixing chamber 5, it is heated by the heating furnace B to +min and its temperature is increased.
Highly reactive gases such as NO are transferred to the mixing chamber 5 through pipes 6 and 7 in order to prevent spontaneous reactions at high temperatures as much as possible.
sent near the exit. In this case, even if the distance from the feeding position of the pipes 6, 7 to the test furnace A is short, the pipes 6, . As shown in FIG. 2, the pipe 6 is installed so that the gas added by the pipe 7 and the large flow rate gas for dilution are sufficiently mixed and introduced into the test furnace A as a stable simulated gas.
, 7 are bent upward to add the reactive gas as a counterflow to the large flow gas flow in the mixing chamber 5, and a baffle plate 8 is provided near the outlet in the mixing chamber 5 for mixing. It is desirable to encourage this. The catalyst holder 4 is
The catalyst holder 4 is only pressed from below against the lower flange 3a of the furnace wall 3, and the catalyst holder 4 is pushed down from the solid line position to the imaginary line position in FIG. is descended and separated from the furnace wall 3.

10は下フランジ3aの下面とこれに対向する触媒保持
具4上面との気密を確保する金属製のOリング、11は
アジヤスタ一、12は舒ンタナツト、13は基台2に設
けた昇降ガイド用の孔である。
10 is a metal O-ring that ensures airtightness between the lower surface of the lower flange 3a and the upper surface of the catalyst holder 4 facing it, 11 is an adjuster, 12 is a socket nut, and 13 is an elevating guide provided on the base 2. It is a hole.

14は触媒ケース15に装填された触媒であり、触媒ケ
ース15の下端内面を円錐状の斜面15aに形成する一
方、触媒保持具4の上面には、これに密着嵌合するテー
パ状の突起4aを設けて、触媒14の交換に際して、触
媒ケース15ごと触媒保持具4からワンタツチ操作で分
離できるように構成してある。
Reference numeral 14 denotes a catalyst loaded in a catalyst case 15, and the inner surface of the lower end of the catalyst case 15 is formed into a conical slope 15a, while the upper surface of the catalyst holder 4 has a tapered projection 4a that tightly fits therein. is provided so that when replacing the catalyst 14, the entire catalyst case 15 can be separated from the catalyst holder 4 with a single touch operation.

また触媒ケース15の下端内面の斜面15aとテーパ状
突起4aとは、精密な加工又はすり合わせによつてリー
クが起こらないように配慮してあり、かつ、触媒ケース
15を試験炉Aのセンター軸に合わせて取り付ける位置
決め具としての役目を兼ねている。尚、図示の触媒保持
具4は、加工しやすいように、テーパ状突起4aを有す
る上半部とガス出口23を有する下半部とに分割形成さ
れ、ボルト24にて一体的に連結されているが一体物で
形成してもよい。前記混合室5と試験炉Aを接続する流
路16には、該炉Aに送給される模擬ガス量以上の吸引
能力を有する吸引機(例えば、吸引ポンプ)17を備え
たバイパスライン18を設ける一方、前記ステー1には
、触媒保持具4に固着した腕部19によつて0N.0F
F操作されるマイクロスイツチ20を設けて、触媒保持
具4を炉壁3から分離することによつて、このマイクロ
スイツチ20が0Nし、吸引機17が作動するように構
成してある。
Furthermore, the slope 15a and the tapered protrusion 4a on the inner surface of the lower end of the catalyst case 15 are designed to prevent leakage through precise machining or grinding, and the catalyst case 15 is aligned with the center axis of the test reactor A. It also serves as a positioning tool to be attached together. The illustrated catalyst holder 4 is divided into an upper half having a tapered protrusion 4a and a lower half having a gas outlet 23 for ease of processing, and these are integrally connected by bolts 24. However, it may be formed as a single piece. A bypass line 18 equipped with a suction device (for example, a suction pump) 17 having a suction capacity greater than the amount of simulated gas supplied to the furnace A is provided in the flow path 16 connecting the mixing chamber 5 and the test furnace A. On the other hand, the stay 1 is provided with a 0N. 0F
A micro switch 20 that is operated by F is provided to separate the catalyst holder 4 from the furnace wall 3, so that the micro switch 20 is turned ON and the suction device 17 is activated.

211,2,3は温度センサ、22は差圧測定管である
211, 2, and 3 are temperature sensors, and 22 is a differential pressure measuring tube.

尚、触媒14上面と温度センサ212との距離を調整す
るため触媒14の位置を変更調整できる構造(たとえば
触媒保持具4の交換等)としてもよい。この実施例では
、上述の如き構成において、触媒反応試験炉Aの内部で
、かつ、触媒14よりも上流側の位置に、該炉Aに送給
される模擬ガスの流れを炉壁3内面に向けて反射させる
冷熱器25を設けて、模擬ガスを一旦触媒反応開始温度
以下に冷却した後、徐々に昇温させるように構成したの
である。
Note that in order to adjust the distance between the upper surface of the catalyst 14 and the temperature sensor 212, a structure may be used in which the position of the catalyst 14 can be changed and adjusted (for example, by replacing the catalyst holder 4). In this embodiment, in the above-described configuration, a flow of simulated gas to be fed to the furnace A is applied to the inner surface of the furnace wall 3 inside the catalytic reaction test furnace A and at a position upstream of the catalyst 14. A cooler 25 is provided to reflect the simulated gas, and after the simulated gas is cooled to below the catalytic reaction starting temperature, the temperature is gradually raised.

以上の実施例によれは、触媒14を炉A内にセツトした
状態で、高温の模擬ガスを炉A内に送給すると、第2図
及び第3図イに示すように、高温模擬ガスは先ず冷却器
25に衝突して直接冷却器25に熱を奪われ、次いで炉
壁3によつて熱を奪われる。
According to the above embodiment, when high-temperature simulated gas is fed into the furnace A with the catalyst 14 set in the furnace A, the high-temperature simulated gas is First, it collides with the cooler 25 and the heat is taken away directly by the cooler 25, and then the heat is taken away by the furnace wall 3.

従つて、触媒14直前におけるガス温度は、上記の冷却
作用により;旦触媒14の反応開始温度以下までに急速
に低下するが、高温模擬ガスとの熱交換により、冷却器
25及び炉壁3の温度が次第に上昇するため、このガス
温度は、触媒14の温度上昇に近い速度で上昇し始め、
触媒反応開始温度を経て予め設定された所定の温度にま
で徐々に上昇する(第4図参照)触媒14の交換に際し
ては、レバー9を操作して、触媒保持具4を下降させる
と、マイクロスイツチ20が0Nし、吸引機17が作動
するので、第3図岨こ示すように、高温の模擬ガス(実
線矢印で示す)がバイパスライン18に流れると同時に
、炉壁3の下端開口から大気(破線矢印で示す)が吸引
されバイパスライン18へと流れ、触媒14の交換を行
なつている間に、冷却器25、炉壁3を冷却し、次の試
験に備えることになる。
Therefore, the gas temperature immediately before the catalyst 14 rapidly decreases to below the reaction initiation temperature of the catalyst 14 due to the above-mentioned cooling effect; however, due to the heat exchange with the high-temperature simulated gas, As the temperature gradually increases, the gas temperature begins to increase at a rate close to the temperature increase of the catalyst 14,
When replacing the catalyst 14, which gradually rises to a preset temperature after reaching the catalytic reaction starting temperature (see Figure 4), operate the lever 9 to lower the catalyst holder 4, and the micro switch will be activated. 20 is turned ON and the suction device 17 is activated, as shown in FIG. ) is sucked in and flows into the bypass line 18, and while the catalyst 14 is being replaced, the cooler 25 and furnace wall 3 are cooled in preparation for the next test.

従つて、加熱炉Bの運転及び模擬ガスを連続発生したま
ま、触媒14の交換を行ない、出口23から取り出され
るガスの分析を行なうことによつて、各触媒の反応開始
温度を知ることができる。尚、冷熱器25による冷却度
合が少なくて済む場合には、熱容量が小さく、かつ、高
温ガス流を炉壁3に向けて反射させる形式の冷却器25
を使用すればよく、冷却度合を大きくする場合には、冷
熱器25としてSUSの糸フイルタ一やセラミツク等、
触媒作用がなく、且つ熱容量の大きいものを使用すれば
よい。また、このように、熱容量の異なる冷熱器25を
何種類か用意しておき、適当なものを選択して用いる他
、反射させる形式の冷却器25を中空形状にしておき、
必要に応じて、その内部に、SUS、粒状のセラミツク
等を任意量充填して、熱容量を変更するように構成して
もよい。本本発明は、上述した構成よりなり、触媒反応
試験炉の内部で、かつ、触媒よりも上流側の位置に、冷
却器を設けて、前記炉に送給された高温状態にある模擬
ガスを一旦触媒反応開始温度以下に冷却した後、徐々に
昇温させるようにしたので、加熱炉の温度を一定に保つ
たまま、触媒の反応開始温度を調べることができる効果
がある。
Therefore, by replacing the catalyst 14 with the heating furnace B operating and continuously generating the simulated gas, and analyzing the gas taken out from the outlet 23, it is possible to know the reaction start temperature of each catalyst. . Note that if the degree of cooling by the cooler 25 is required to be small, the cooler 25 has a small heat capacity and is of a type that reflects the high-temperature gas flow toward the furnace wall 3.
If you want to increase the degree of cooling, use a SUS thread filter, ceramic, etc. as the cooler 25.
It is sufficient to use a material that does not have a catalytic action and has a large heat capacity. In addition, in this way, several types of coolers 25 with different heat capacities are prepared and an appropriate one is selected and used, and the reflective type cooler 25 is made hollow,
If necessary, the heat capacity may be changed by filling an arbitrary amount of SUS, granular ceramic, etc. inside the structure. The present invention has the above-mentioned configuration, and is provided with a cooler inside the catalytic reaction test furnace and at a position upstream of the catalyst to temporarily cool the simulated gas in a high temperature state fed to the furnace. Since the temperature was gradually raised after cooling to below the catalytic reaction starting temperature, it is possible to check the reaction starting temperature of the catalyst while keeping the temperature of the heating furnace constant.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体の縦断面図
、第2図は要部拡大図、第3図イ,口は作用図、第4図
はガス温度と触媒温度の関係を示すダイヤグラム、第5
図は従来例を示す縦断面図、第6図は従来例におけるガ
ス温度と触媒温度の関係を示すダイヤグラムである。 A・・・・・・触媒反応試験炉、14・・・・・・触媒
、25・・・・・・冷熱器。
The drawings show an embodiment of the present invention; Fig. 1 is an overall vertical sectional view, Fig. 2 is an enlarged view of the main parts, Fig. 3 is an action diagram, and Fig. 4 is the relationship between gas temperature and catalyst temperature. Diagram showing 5th
The figure is a longitudinal sectional view showing a conventional example, and FIG. 6 is a diagram showing the relationship between gas temperature and catalyst temperature in the conventional example. A...Catalytic reaction test furnace, 14...Catalyst, 25...Cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒反応試験炉の内部で、かつ、触媒よりも上流側
の位置に、冷熱器を設けて、前記炉に送給された模擬ガ
スを一旦触媒反応開始温度以下に冷却した後、徐々に昇
温させるように構成してあることを特徴とする触媒反応
試験炉。
1. A cooler is provided inside the catalytic reaction test furnace and at a position upstream of the catalyst to cool the simulated gas fed to the furnace to below the catalytic reaction starting temperature, and then gradually raise the temperature. A catalytic reaction test furnace characterized by being configured to heat the catalyst.
JP9283179A 1979-07-20 1979-07-20 Catalytic reaction test furnace Expired JPS5942824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9283179A JPS5942824B2 (en) 1979-07-20 1979-07-20 Catalytic reaction test furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9283179A JPS5942824B2 (en) 1979-07-20 1979-07-20 Catalytic reaction test furnace

Publications (2)

Publication Number Publication Date
JPS5616856A JPS5616856A (en) 1981-02-18
JPS5942824B2 true JPS5942824B2 (en) 1984-10-17

Family

ID=14065371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9283179A Expired JPS5942824B2 (en) 1979-07-20 1979-07-20 Catalytic reaction test furnace

Country Status (1)

Country Link
JP (1) JPS5942824B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167639A (en) * 1983-03-15 1984-09-21 Mitsubishi Electric Corp Hot air space heater
JPS6017342A (en) * 1983-07-08 1985-01-29 Kanegafuchi Chem Ind Co Ltd Apparatus and its using method for detecting explosion phenomenon of inflammable gas
JPS6035134U (en) * 1983-08-16 1985-03-11 三菱電機株式会社 hot air heater
CN100489280C (en) * 2001-08-06 2009-05-20 西南研究会 Method and apparatus for testing catalytic converter durability

Also Published As

Publication number Publication date
JPS5616856A (en) 1981-02-18

Similar Documents

Publication Publication Date Title
CN100457252C (en) Compact steam reformer
US4643166A (en) Steam engine reaction chamber, fuel composition therefore, and method of making and operating same
EP0757968A1 (en) Hydrogen generator
US4064840A (en) Method and apparatus for oxidizing a fuel in an internal combustion engine
JP2002505532A5 (en)
CA2521292A1 (en) Method and apparatus for rapid heating of fuel reforming reactants
EP0585343A1 (en) Primary flow cvd apparatus and method
US20200393126A1 (en) Catalytic thermal debind furnaces with feedback control
JPS5942824B2 (en) Catalytic reaction test furnace
TWI377984B (en) Novel reactor for carrying out very high temperature and high pressure reactions
US4780271A (en) Process and apparatus for burning gases containing hydrogen and for cooling resulting combustion gases
TW590792B (en) Reaction device with a heat-exchanger
US8430556B2 (en) Internal heat exchanger/mixer for process heaters
US6274098B1 (en) Apparatus for the treatment of exhaust gases by combining hydrogen and oxygen
CA2309047C (en) Catalytic combustion heater
JPS6138408B2 (en)
RU2134154C1 (en) Apparatus for performing endothermic reaction
JP4887021B2 (en) CO removing device, fuel reforming device, and fuel cell system
JP2003520747A (en) Steam reformer
CN111721798B (en) Automobile catalyst hydrothermal aging test equipment, test method and test method
CN100521332C (en) Hydrogen flow control apparatus for hydrogen storage container
US11215399B2 (en) High temperature reaction system
WO2005035107A3 (en) Fuel reforming inlet device system and process
JP2000072405A (en) Reaction furnace for generating water
JP2526723B2 (en) Fuel cell reformer