[go: up one dir, main page]

JPS5942320B2 - Audio processing method - Google Patents

Audio processing method

Info

Publication number
JPS5942320B2
JPS5942320B2 JP49105385A JP10538574A JPS5942320B2 JP S5942320 B2 JPS5942320 B2 JP S5942320B2 JP 49105385 A JP49105385 A JP 49105385A JP 10538574 A JP10538574 A JP 10538574A JP S5942320 B2 JPS5942320 B2 JP S5942320B2
Authority
JP
Japan
Prior art keywords
signal
interval
value
predictor
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49105385A
Other languages
Japanese (ja)
Other versions
JPS5132107A (en
Inventor
康彦 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP49105385A priority Critical patent/JPS5942320B2/en
Publication of JPS5132107A publication Critical patent/JPS5132107A/en
Publication of JPS5942320B2 publication Critical patent/JPS5942320B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 本発明は音声信号の予測符号化と復調の方式に関する。[Detailed description of the invention] The present invention relates to a method for predictive encoding and demodulation of audio signals.

予測符号化方式は、パルス符号変調方式(以後PCMと
呼ぶ)に比較して、少ないビット数に符号化できるのが
特徴である。
The predictive encoding method is characterized by being able to encode data into a smaller number of bits than the pulse code modulation method (hereinafter referred to as PCM).

本発明は、その効果をさらに大ならしめるものである。The present invention further enhances this effect.

以下、図面によつて説明する。This will be explained below with reference to the drawings.

第1図は差分パルス符号変調法(Differenti
alPulseCodeModulation、DPC
M)を利用した従来の音声処理方式の構成図である。第
1図におい△てSiは離散的音声入力信号、Siは予測
信号、Θは減算器、elは差信号、QUANは量子化器
、ei゜は量子化差信号、4は加算器、Si゜は加算信
号、DPREDは予測器、CODは符号器、Diは符号
化出カラーである(ただし、i=1、2、3、・・・・
・・)。
Figure 1 shows the differential pulse code modulation method (Differential pulse code modulation method).
alPulseCodeModulation, DPC
FIG. 2 is a configuration diagram of a conventional audio processing method using M). In Fig. 1, Si is a discrete audio input signal, Si is a predicted signal, Θ is a subtracter, el is a difference signal, QUAN is a quantizer, ei゜ is a quantized difference signal, 4 is an adder, Si゜is the addition signal, DPRED is the predictor, COD is the encoder, and Di is the encoded output color (where i=1, 2, 3, . . .
・・).

Siは通常過去の値、Si−0、Si−、、Si−O、
・・・・・・・・・Si−nから予測される。予測係数
をa0、a2、a3、・・・・・・ anとすれば、△
Si■a4Si−1+ a2si−2+a3si−3+
・・・・・・+anSi−n・・・・・・・・・ ・・
・・・・・・・・・・・・・・・・・・・・・・・・・
(1)と表わされる。
Si is usually a past value, Si-0, Si-, , Si-O,
......Predicted from Si-n. If the prediction coefficients are a0, a2, a3, ... an, then △
Si■a4Si-1+ a2si-2+a3si-3+
・・・・・・+anSi-n・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
It is expressed as (1).

また、△ ei。Also, △ ei.

Si−Si3゜゜゜゜゜゜’゜’゜゜゜’゜’゜゜゜゜
゜゜゜゜゜゜゜010゜゜゜゜゜゜゜(2)であり、e
iの自乗平均が最小となるように予測係数al、a2、
a3、・・・・・・ anが決定される。例えば、音声
信号の長時間自己相関係数が、サンプリング周期の整数
倍の遅延に対してR。、R0、R2、R3、・・・・・
・Rnのとき、a0、a2、a3・・・・・・anは次
の連立一次方程式の解として得られる。(3)式から求
められた係数を用いてりが(1)のように求まり、従つ
て(2)式からEiが順次求められる。Eiを量子化し
て得られるeげは若干の量發7.′.:^悴=;34;
”.,.=―、:?重=袷1tQ;←π艷プリング周期
に等しい遅延素子(レジスタ等で構成される),Al,
a2,・・・・・・Anは係数器である。
Si-Si3゜゜゜゜゜゜'゜'゜゜゜'゜'゜゜゜゜゜゜゜゜゜゜゜゜010゜゜゜゜゜゜゜゜ (2), and e
The prediction coefficients al, a2,
a3, ... an is determined. For example, the long-term autocorrelation coefficient of an audio signal is R for a delay that is an integral multiple of the sampling period. , R0, R2, R3,...
- When Rn, a0, a2, a3...an are obtained as solutions of the following simultaneous linear equations. Using the coefficients obtained from equation (3), RI is obtained as shown in (1), and Ei is therefore sequentially obtained from equation (2). The amount of e obtained by quantizing Ei is slightly larger7. '. :^悴=;34;
".,.=-,:?weight=艷1tQ;←delay element (composed of a register etc.) equal to the pulling period (consisting of a register, etc.), Al,
a2, . . . An are coefficient multipliers.

かくして、Ei*をCODで符号化することによつて、
{Si}の系列よりも冗長削減された信号系列{Di}
が得られる。第2図は、符号化信号系列{Di}から元
の音声信号系列を復元する復調方式である。
Thus, by encoding Ei* with COD,
Signal sequence {Di} with reduced redundancy than the sequence of {Si}
is obtained. FIG. 2 shows a demodulation method for restoring the original audio signal sequence from the encoded signal sequence {Di}.

第2図において、DECは復号器で、その他は第1図の
ものと全く同じである。ここでDiはDECによつてE
i8に逆変換され、Ei8からSi8が導出されるが、
このS已は量子化による誤差を若干含んでいるが概略S
iに等しいものが再現される。以上が従来の予測符号化
とその復調方式であるが、予測係数が固定化されている
ために、著るしい効果は期待できなかつた。たとえば、
8ビツトPCMと同程度の音声品種を得るためには6ビ
ツトの予測符号化が必要で、情報圧縮率は3/4が限度
であつた。本発明は上記の欠点を除去し、十程度の情報
圧縮率を達成し得る予測符号化方式を提供するものであ
る。
In FIG. 2, DEC is a decoder, and the rest is exactly the same as in FIG. Here, Di is E by DEC.
It is inversely converted to i8 and Si8 is derived from Ei8, but
Although this S value includes some errors due to quantization, it is approximately S
The one equal to i is reproduced. The above is the conventional predictive coding and its demodulation method, but because the predictive coefficients are fixed, no significant effect can be expected. for example,
In order to obtain the same variety of audio as 8-bit PCM, 6-bit predictive coding was necessary, and the information compression rate was limited to 3/4. The present invention eliminates the above-mentioned drawbacks and provides a predictive encoding method that can achieve an information compression rate of about 10.

また従来の予測符号化方式では、音声の長時間自己相関
係数から予測係数を定め、係数を固定化していたことに
難点があつた。
Another problem with conventional predictive coding methods is that the prediction coefficients are determined from the long-term autocorrelation coefficients of speech, and the coefficients are fixed.

予測符号化方式による情報圧縮率効果は入力信号系列の
統計的性質に全く依存するもので、音声信号のように長
時間にわたつて定常的な確率過程と見なし得ないような
入力信号に対しでは、予測係数を一定に保つことは得策
でない。これは音声信号のスペクトル分布が変化するの
に対し、予測係数が一定ではスベクトルの再現性が悪く
なるためである。しかしながら、音声のスペクトル分布
の変化は調音器管の運動に基づくもので、比較的緩やか
で数あるいは数+Ms(たとえば20〜30ms)の短
区間ではほぼ定常的な信号とみなすことができる。
The information compression rate effect of the predictive coding method depends entirely on the statistical properties of the input signal sequence, and it is difficult for input signals such as audio signals that cannot be considered to be a stationary stochastic process over a long period of time. , it is not a good idea to keep the prediction coefficient constant. This is because, while the spectral distribution of the audio signal changes, if the prediction coefficient is constant, the reproducibility of the vector becomes worse. However, the change in the spectral distribution of speech is based on the movement of the articulator tube, and is relatively gradual, and can be regarded as an almost stationary signal over a short period of several or several + Ms (for example, 20 to 30 ms).

本発明はこの点に着目し、20〜30ms毎の短時間自
己相関係数から予測係数を決定し、予測器を動的に制御
して音声スペクトルの再現性を改善したものである。こ
のようにすると、8ビツトPCM方式と同程度の音声品
質で情報量をほぼ1/2に圧縮することができ、高能率
伝送、高能率記録に効果をもたらすものである。即ち、
同一伝送系において多重回線数が2倍になり、また録音
編集式の音声合成装置においては、同一のメモリで2倍
の語いを収容できることになり、きわめて経済的なシス
テムの実現が可能となる。次に、本発明による実施例を
図面で説明する。第4図は、本発明による音声符号化方
式の説明図である。第4図において、Akn(k=1,
2,3,・・・・・・:n=1,2,3,・・・・・・
)は第k番目の区間における予測係数、MIXは混合器
、DPREは第6図に示す予測器、その他は第1図と全
く同じものである。Aknは、従来の符号化方式と異な
り20〜30msの短区間ごとに、その区間における差
信号Eiの自乗平均が最小となるように決定する。この
とき、例えば第k番目の区間におけるAk,,Ak2,
Ak3,・・・・・・Aknは次式の一元連立方程式の
解として得られる。ただRkO,Rkl,Rk2,・・
・・・・・・・Rknは、第k区間における自己相関係
数(遅延時間はサンプリング周期の整数倍)である。
The present invention focuses on this point, determines a prediction coefficient from short-time autocorrelation coefficients every 20 to 30 ms, and dynamically controls the predictor to improve the reproducibility of the speech spectrum. In this way, the amount of information can be compressed to approximately 1/2 with the audio quality comparable to that of the 8-bit PCM system, resulting in highly efficient transmission and highly efficient recording. That is,
The number of multiplex lines is doubled in the same transmission system, and the same memory can accommodate twice as many words in a recording/editing speech synthesizer, making it possible to realize an extremely economical system. . Next, embodiments according to the present invention will be described with reference to the drawings. FIG. 4 is an explanatory diagram of the speech encoding method according to the present invention. In FIG. 4, Akn (k=1,
2, 3,...: n=1, 2, 3,...
) is a prediction coefficient in the k-th interval, MIX is a mixer, DPRE is a predictor shown in FIG. 6, and the others are exactly the same as in FIG. 1. Unlike the conventional encoding method, Akn is determined for each short period of 20 to 30 ms so that the root mean square of the difference signal Ei in that period is minimized. At this time, for example, Ak,,Ak2, in the kth section,
Ak3,...Akn are obtained as solutions of the following one-dimensional simultaneous equations. Just RkO, Rkl, Rk2,...
. . . Rkn is an autocorrelation coefficient in the k-th interval (delay time is an integral multiple of the sampling period).

予鳥:責暢こ?iされた予測係数を用いて、のように導
出し、以下従来の方式と全く同様にしてDiを導出する
Yotori: Kannoko? Using the predicted coefficients determined by i, the following is derived, and Di is derived in the same manner as in the conventional method.

ここでDiとAknをMIXで混合し、混合された信号
系列{Mi}を得る。第6図は第5式の演算を行なう予
測器での構成を示すもので、2は乗算器、その他は第3
図のものと全く同じである。乗算器では、過去の値Si
8l−n(n=1,2,・・・・・・)と予測係数Ak
n(n=1,2,・・・・・・)の積を導出する。この
時、Aknは区間が変わるごとに更新され、その区間内
では一定の値に保たれるようにしてある。{Mi}の系
列が、本発明による符号化音声信号である。
Here, Di and Akn are mixed by MIX to obtain a mixed signal sequence {Mi}. Figure 6 shows the configuration of a predictor that performs the calculation of equation 5, where 2 is a multiplier and the others are 3rd
It is exactly the same as the one shown in the figure. In the multiplier, the past value Si
8l-n (n=1, 2,...) and prediction coefficient Ak
Derive the product of n (n=1, 2,...). At this time, Akn is updated every time the interval changes and is kept at a constant value within that interval. The sequence {Mi} is the encoded audio signal according to the present invention.

これを復調して元の音声信号を再現する方式を第5図に
示す。第5図で、SEPは分離器、DECは復号器、そ
の他は第4図のものと全く同じである。SEPは{Mi
}の系列を{Di}の系列と予測係数Aknに分離する
。DECは符号系列{Di}を元の量子化差信号系列{
Ei◆}に逆変換二′I,′.′)静,1゛=―重τ:
:↑;!Iの和Si◆が再現された音声信号で、若干の
誤差を含んでいるが、概略Siに等しいものである。次
に実施例について説明する。今帯域幅4.81CIIz
の音声信号を10KHzでサンプリング(8ビツトPC
M)して得られた離散的信号系列を{Si}とし、25
6サンプル(25.6msの長さ)ごとの区間に分割す
る。予測を過去の4サンプルから行なうものとすると、
予測係数は各区間ごとに4個(Ak,,Ak2,Ak,
,Ak4;k=1,2,3,・・・・・・)づつ決定さ
れる。この予測係数は、256サンプルの各区間ごとに
算出された短時間自己相関係数(RkO,Rk,,Rk
2,Rk3,Rk4)から第(4)式によつて算出され
たものである。上記予測係数を区間ごとに更新しながら
DPREより予測信号系列{Si}を導出し、この{S
i}と入力信号系列{Si}から導出された差信号系列
{Ei}をQUANで順次15段階に非線形素子化し、
量子化信号系列{Ei◆}を得る。次にCODで{Ei
◆}を順次4ビツトの符号系列{Di}へ変換し、MI
Xで各区間ごとにAknと混合して符号化音声信号系列
{Mi}を出力する。この時係数1個を12ビツトで構
成するものとすれば、合計4×12ビツトの情報量とな
る。MIXでは、この係数情報を区間と区間の間に挿入
するようにしている。{Mi}から元の音声を再現する
時は、まずSEPで12ビツトの係数情報4個を抽出し
て、{Di}とAknに分離する。{Di}は順次DE
Cにて、15段階の量子化信号系列{Ei◆}に逆変紮
S::=重:ニ中二?―−6加算して順次{Si◆}を
出力するようにしている。
A method for demodulating this and reproducing the original audio signal is shown in FIG. In FIG. 5, SEP is a separator, DEC is a decoder, and the other components are exactly the same as those in FIG. SEP is {Mi
} is separated into a sequence of {Di} and a prediction coefficient Akn. The DEC transforms the code sequence {Di} into the original quantized difference signal sequence {
Ei◆} is inversely transformed into 2′I,′. ′) static, 1゛=-heavy τ:
:↑;! The sum of I, Si♦, is the reproduced audio signal, which includes some errors, but is approximately equal to Si. Next, an example will be described. Bandwidth now 4.81CIIz
Sampling the audio signal at 10KHz (8-bit PC
Let the discrete signal sequence obtained by M) be {Si}, and 25
Divide into intervals of 6 samples (25.6 ms length). Assuming that the prediction is made from the past 4 samples,
There are four prediction coefficients for each interval (Ak, ,Ak2,Ak,
, Ak4; k=1, 2, 3, . . . ). This prediction coefficient is the short-time autocorrelation coefficient (RkO, Rk,, Rk
2, Rk3, Rk4) using equation (4). The predicted signal sequence {Si} is derived from DPRE while updating the above prediction coefficient for each interval, and this {S
i} and the difference signal sequence {Ei} derived from the input signal sequence {Si} is sequentially converted into a nonlinear element in 15 steps using QUAN,
A quantized signal sequence {Ei◆} is obtained. Next, in COD {Ei
◆} is sequentially converted into a 4-bit code sequence {Di}, and MI
At X, it is mixed with Akn for each section and outputs an encoded audio signal sequence {Mi}. At this time, if one coefficient is made up of 12 bits, the total amount of information will be 4×12 bits. In MIX, this coefficient information is inserted between intervals. When reproducing the original voice from {Mi}, first extract four pieces of 12-bit coefficient information using SEP and separate it into {Di} and Akn. {Di} is sequential DE
At C, the 15-level quantized signal sequence {Ei◆} is inversely modified S::=heavy: 2/2? --6 is added and {Si◆} is output sequentially.

{Si◆}には量子化に伴う誤差を若干含んでいるが概
略{Si}に等しい信号である。このようにすれば、(
4×256+4×12)/(8×256)+1/2の情
報圧縮が実現でき、音声品質も8ビツトPCMにほぼ等
しいものが得られ、従つて音声の高能率伝送、高密度記
録に多大の効果をもたらすことができる。
Although {Si◆} includes some errors due to quantization, it is a signal roughly equal to {Si}. If you do this, (
Information compression of 4 x 256 + 4 x 12) / (8 x 256) + 1/2 can be achieved, and the audio quality is almost the same as 8-bit PCM. can bring about effects.

第7図は予測次数とS/N改善度との関係は示?.′:
=,1J゜ニエ→:リリ:j二1”゛工釉〜′二τ:=
=;゛:=報量で符号化できることになる。
Does Figure 7 show the relationship between prediction order and S/N improvement? .. ′:
=,1J゜nie→:Lily:j21"゛Glaze~'2τ:=
=;゛:=This means that it can be encoded with the amount of information.

逆に情報量を一定とすれば、S/N改善という形で効果
を評価することができる。このS/N改善度(S/N)
IMPはDPCMの原理に基づき、次式で表わされる。
―−]〜V凰′第7図は男性2名および女性2名が発生
した、それぜれ約9秒の音声信号から、約30msごと
に算出した(S/N)IMPの対数値を全体に亘つて平
均して求めたS/N改善度曲線である。
On the other hand, if the amount of information is kept constant, the effect can be evaluated in terms of S/N improvement. This S/N improvement degree (S/N)
IMP is based on the principle of DPCM and is expressed by the following equation.
--]~V凰' Figure 7 shows the overall logarithm of (S/N) IMP calculated every 30 ms from audio signals of approximately 9 seconds each generated by two men and two women. This is an S/N improvement degree curve obtained by averaging over the period.

第7図からも明らかなように、横軸の予測次数が4次ま
では、S/N改善効果が大きいが、4次を越えるとS/
N改善度が鈍下する。予測次数を2倍の8次にすると予
測係数に割当てるビツト数は、2倍(すなわち12ビツ
ト×4から12ビツト×8)になるが、S/N改善度は
、わずかに1.2dB増加するのみである。予測係数に
割当てるビツト数が増大するということは、情報量が増
加し、圧縮の効率が低下し、また処理時間がかかること
になる。本発明は上記のような構成であり、予測次数を
4とすることにより、情報量を増加させることなく、圧
縮の効率を低下させることなく、さらに処理時間を長く
することなく、8ビツトPCMと同程度の音声品種を得
ることができる。
As is clear from Fig. 7, the S/N improvement effect is large up to the fourth predicted order on the horizontal axis, but beyond the fourth, the S/N
The degree of N improvement slows down. If the prediction order is doubled to 8th, the number of bits allocated to the prediction coefficient will be doubled (from 12 bits x 4 to 12 bits x 8), but the S/N improvement will increase slightly by 1.2 dB. Only. Increasing the number of bits allocated to prediction coefficients increases the amount of information, reduces compression efficiency, and increases processing time. The present invention has the above-mentioned configuration, and by setting the prediction order to 4, it can be used with 8-bit PCM without increasing the amount of information, without decreasing compression efficiency, and without increasing processing time. It is possible to obtain the same level of voice variety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の予測符号化方式の構成図、第2図は従来
の予測符号化信号復調方式の構成図、第3図は従来の予
測器の構成図、第4図は本発明による音声符号化方式の
構成図、第5図は本発明による符号化音声復調方式の構
成図、第6図は本発明による音声符号化方式における予
測器の構成図、第7図は本発明の音声処理方式における
予測次数とS/N改善度との関係を示す図である。 QUAN・・・・・・量子化器、COD・・・・・・符
号器、DPRE・・・・・・予測器、MIX・・・・・
・混合器、SEP・・・・・・分離器、DEC・・・・
・・復号器。
Fig. 1 is a block diagram of a conventional predictive coding system, Fig. 2 is a block diagram of a conventional predictive coding signal demodulation system, Fig. 3 is a block diagram of a conventional predictor, and Fig. 4 is a block diagram of a conventional predictive coding signal demodulation system. 5 is a block diagram of the encoded speech demodulation method according to the present invention, FIG. 6 is a block diagram of the predictor in the speech encoding method according to the present invention, and FIG. 7 is a block diagram of the speech processing according to the present invention. It is a figure which shows the relationship between the prediction order and S/N improvement degree in a method. QUAN...Quantizer, COD...Encoder, DPRE...Predictor, MIX...
・Mixer, SEP... Separator, DEC...
...Decoder.

Claims (1)

【特許請求の範囲】[Claims] 1 過去の標本値から予測値を導出する予測器と、ある
時刻における標本値と予測値との差信号を導出する減算
器と、差信号を非線形量子化する量子化器と、量子化器
出力信号と予測信号(予測値)との和から近似的に過去
の標本値(予測器の入力信号)を導出する加算器と、量
子化器出力信号を符号化信号に変換する符号器とを有す
る予測符号化を行なう音声処理方式において、離散的入
力音声信号を数あるいは数十ms程度の短区間に分割し
、各区間ごとに、その区間内のある時刻における標本値
とそれ以前の4つの標本値から予測した値との差の自乗
平均値(各区間内に亘つての平均値)が最小となるよう
に、あらかじめ決定された予測係数を設定し、分割区間
が移動する毎にその区間に対応した前記予測係数を更新
し、かつ、その区間内の入力信号を処理している間は、
一定に保つようになした予測器を使用し、かつ、入力信
号の分割区間に対応した符号化出力信号の区間と区間の
間に前記予測係数を挿入する混合器を付加したことを特
徴とする音声処理方式。
1 A predictor that derives a predicted value from past sample values, a subtracter that derives a difference signal between the sample value and the predicted value at a certain time, a quantizer that nonlinearly quantizes the difference signal, and a quantizer output It has an adder that approximately derives a past sample value (predictor input signal) from the sum of a signal and a predicted signal (predicted value), and an encoder that converts a quantizer output signal into a coded signal. In an audio processing method that performs predictive coding, a discrete input audio signal is divided into short intervals of several or tens of milliseconds, and for each interval, the sample value at a certain time within that interval and the four samples before that are divided. A predetermined prediction coefficient is set so that the root mean square value (average value over each interval) of the difference with the predicted value is the minimum, and each time the divided interval moves, it is calculated in that interval. While updating the corresponding prediction coefficient and processing the input signal within that interval,
The present invention is characterized in that it uses a predictor that maintains a constant constant value, and further includes a mixer that inserts the prediction coefficient between intervals of the encoded output signal corresponding to the divided intervals of the input signal. Audio processing method.
JP49105385A 1974-09-11 1974-09-11 Audio processing method Expired JPS5942320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49105385A JPS5942320B2 (en) 1974-09-11 1974-09-11 Audio processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49105385A JPS5942320B2 (en) 1974-09-11 1974-09-11 Audio processing method

Publications (2)

Publication Number Publication Date
JPS5132107A JPS5132107A (en) 1976-03-18
JPS5942320B2 true JPS5942320B2 (en) 1984-10-13

Family

ID=14406187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49105385A Expired JPS5942320B2 (en) 1974-09-11 1974-09-11 Audio processing method

Country Status (1)

Country Link
JP (1) JPS5942320B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251733A (en) * 1984-05-28 1985-12-12 Sony Corp Digital signal transmitter
JPS618300A (en) * 1984-06-25 1986-01-14 三菱樹脂株式会社 Method of cutting cylindrical body made of plastic

Also Published As

Publication number Publication date
JPS5132107A (en) 1976-03-18

Similar Documents

Publication Publication Date Title
US4811396A (en) Speech coding system
US4672441A (en) Method and apparatus for picture data reduction for digital video signals
US20010027393A1 (en) Method of and apparatus for processing at least one coded binary audio flux organized into frames
US5956686A (en) Audio signal coding/decoding method
JPS5921039B2 (en) Adaptive predictive coding method
EP0369682B1 (en) Efficient coding method and its decoding method
JPS6161305B2 (en)
KR20020019483A (en) Method for improving the coding efficiency of an audio signal
US4319082A (en) Adaptive prediction differential-PCM transmission method and circuit using filtering by sub-bands and spectral analysis
JP2007504503A (en) Low bit rate audio encoding
EP0131005B1 (en) Digital decoder
EP0049271B1 (en) Predictive signals coding with partitioned quantization
KR100460109B1 (en) Conversion apparatus and method of Line Spectrum Pair parameter for voice packet conversion
JPH05173599A (en) Speech coding and decoding device
US7801732B2 (en) Audio codec system and audio signal encoding method using the same
JPH0629934A (en) Adaptive differential coding transmission method
US5265219A (en) Speech encoder using a soft interpolation decision for spectral parameters
JPS5942320B2 (en) Audio processing method
JPH10268897A (en) Signal coding method and device therefor
US20090076828A1 (en) System and method of data encoding
IL94119A (en) Digital speech coder
JP3453116B2 (en) Audio encoding method and apparatus
US5875424A (en) Encoding system and decoding system for audio signals including pulse quantization
JPS6134697B2 (en)
JPS6333025A (en) Sound encoding method