[go: up one dir, main page]

JPS5941969A - Gradational image recording and processing system - Google Patents

Gradational image recording and processing system

Info

Publication number
JPS5941969A
JPS5941969A JP57152272A JP15227282A JPS5941969A JP S5941969 A JPS5941969 A JP S5941969A JP 57152272 A JP57152272 A JP 57152272A JP 15227282 A JP15227282 A JP 15227282A JP S5941969 A JPS5941969 A JP S5941969A
Authority
JP
Japan
Prior art keywords
dots
dot
black
white
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57152272A
Other languages
Japanese (ja)
Other versions
JPH0336354B2 (en
Inventor
Atsushi Otani
淳 大谷
Yukio Tokunaga
徳永 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57152272A priority Critical patent/JPS5941969A/en
Publication of JPS5941969A publication Critical patent/JPS5941969A/en
Publication of JPH0336354B2 publication Critical patent/JPH0336354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40087Multi-toning, i.e. converting a continuous-tone signal for reproduction with more than two discrete brightnesses or optical densities, e.g. dots of grey and black inks on white paper

Landscapes

  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To realize gradational image recording having a high quality by a small quantity of memory, by storing the number of dots being in an independent relation corresponding to light and shade, when light and shade are expressed by plural dots of different colors. CONSTITUTION:One dot is further divided into a dot matrix of 4X4. Ternary dots of black, gray and white are distributed to each picture element of this matrix of 4X4. The ternary assignment in the matrix element is allowed 9 to correspond to being easy to become black, grey and white. In case when black, grey and white consist of (x) pieces, (y) pieces and (z) pieces, respectively, (x)+ (y)+(z) are 16. As to which part of the 4X4 matrix black of (x) pieces is assigned, determination is performed automatically in accordance with (x) pieces. Grey of (y) pieces is determined in the same way. Accordingly, the processing can be executed by only storing the number of pieces of black and grey in the image memory.

Description

【発明の詳細な説明】 (1)発明の属する分野の説明 本発明は、階調画像記録処理方式、特に濃淡を有する画
像の1画素に白、灰、黒の3値をとる複数個のドツトを
対応させ、その複数個のドツト中の白、灰、黒ドツト数
構成を変化させて階調を表現する記録処理方式において
、階調記録装置のメモリ量を軽減するとともに高品質な
階調画像記録を実現する記録処理方式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Description of the field to which the invention pertains The present invention relates to a gradation image recording processing method, in particular a method in which a plurality of dots having three values of white, gray, and black are formed in one pixel of an image having shading. A recording processing method that expresses gradation by changing the composition of the number of white, gray, and black dots in the plurality of dots, reduces the amount of memory in the gradation recording device, and produces high-quality gradation images. The present invention relates to a recording processing method for realizing recording.

(2)従来の技術の説明 第1図は従来のこの種方式の構成例を示しており、■は
従来の階調記録装置、2は階調信号、3は階調記録用ド
ツト・パターン格納メモリ、4はバッファ・メモリ、5
は記録部である。従来のこの種方式では、記録装置1に
階調信号2を人力し、メモリ3から信号2に対応した白
、灰、黒の3値ドツト・パターンを読出し、バッファ・
メモリ4に一時格納し、適宜記録部5に情報を送り、階
調画像の記録を行っていた。第1図は6階調を4×4の
ドツト・パターンで表現する場合を例として示しである
が、メモリ3には必要な階調数だけ3値ドツト・パター
ンを格納する必要があるため、多段あるいは多種類の階
調数を表現しようとすると、メモリ規模が大きくなる欠
点があった。すなわちmXnのマトリクス要素ズの場合
に必要な1階調あたりのビット数BcはBc=2XmX
nビ7トであり、k種類の階調数N1(i=1.2.・
・・k)ットのメモリ容量が必要となる。
(2) Description of conventional technology Figure 1 shows an example of the configuration of a conventional system of this kind, where ■ is a conventional gradation recording device, 2 is a gradation signal, and 3 is a dot pattern storage for gradation recording. Memory, 4 is buffer memory, 5
is the recording section. In the conventional method of this type, a gradation signal 2 is manually inputted to the recording device 1, a ternary dot pattern of white, gray, and black corresponding to the signal 2 is read out from the memory 3, and then the 3-value dot pattern of white, gray, and black is read out from the memory 3, and then the 3-value dot pattern of white, gray, and black corresponding to the signal 2 is read out from the memory 3.
The information is temporarily stored in the memory 4, and the information is sent to the recording section 5 as needed to record the gradation image. FIG. 1 shows an example in which six gradations are expressed by a 4 x 4 dot pattern, but since it is necessary to store as many ternary dot patterns as the required number of gradations in the memory 3, When trying to express multiple levels or different types of gradation numbers, there is a drawback that the memory size becomes large. In other words, in the case of mXn matrix elements, the number of bits Bc required per gradation is Bc = 2XmX
n bits, 7 bits, k types of gradation number N1 (i = 1.2.
...k) memory capacity is required.

また、マトリクスにおける3値ドツトの配置態様は一般
には複数通りあり、ドツト配置により記録濃度は一定だ
が、画品質は変化する。すなわち、ドツト配置によって
は、縞等の空間周波数における低周波数成立が目立ち、
画品質が損われる。そのため、従来では、第2図に示す
ように、各階調レベル毎に数種類のドツト配置の異なる
パターンを用意しておき、これらをサイクリックあるい
はランダムに抽出して記録を行っていた。あるいは、第
2図のように複数種類用意せず、各階調レベルに対応す
る3値ドツト数構成における全てのドツト配置の中から
、低周波数成分の最も小さいドツト・パターンを予め選
択し、これを用いていた。
Furthermore, there are generally multiple ways of arranging the ternary dots in the matrix, and although the recording density is constant depending on the dot arrangement, the image quality changes. In other words, depending on the dot arrangement, low frequencies in the spatial frequency such as stripes are noticeable,
Image quality is impaired. Therefore, conventionally, as shown in FIG. 2, several types of patterns with different dot arrangements were prepared for each gradation level, and these were extracted cyclically or randomly and recorded. Alternatively, instead of preparing multiple types as shown in Figure 2, the dot pattern with the smallest low frequency component is selected in advance from among all the dot arrangements in the ternary dot number configuration corresponding to each gradation level, and this is I was using it.

しかし、これらの従来の態様では、前者は必要なメモリ
容量が更に増大するという欠点があり、さらに後者と共
通の欠点として、階調しIペル間の影響を考慮せずにパ
ターンを選択していることにより、記録部において異な
る階調レベルの境界付近等に擬似輪郭や綾等の画品質劣
化要因が目立つということがあった。なお第1図、第2
図において黒メツシユは黒ドツト、斜線メツシュは灰ド
ツト白メツシュは白ドツトを表わしている。
However, in these conventional methods, the former has the disadvantage that the required memory capacity is further increased, and a common disadvantage with the latter is that patterns are selected without considering the influence between gradations and I-pels. As a result, image quality deterioration factors such as false contours and twills are noticeable near boundaries between different gradation levels in the recording section. In addition, Figures 1 and 2
In the figure, black meshes represent black dots, hatched meshes represent gray dots, and white meshes represent white dots.

(3)発明の目的 本発明はこれらの欠点を除去するため、各階調レベル毎
に白、灰、黒の3値のうち独立である2値のドツト個数
のみを記憶しておき、予め定めておいたドツトΦマトリ
クスに対するドツト配置順位に従って3値ドツトを配置
するようにしたもので、以下図面について詳細に説明す
る。
(3) Purpose of the Invention In order to eliminate these drawbacks, the present invention stores only the number of independent binary dots among the three values of white, gray, and black for each gradation level, and The ternary dots are arranged according to the order of dot arrangement with respect to the placed dot Φ matrix, and the drawings will be explained in detail below.

(4)発明の構成および作用の説明 第3図は本発明の詳細な説明するための例であり、4×
4のトントロパターンeマトリクスの各要素に番号が割
り付けである。この各番号は黒、灰、白の3値ドツトを
各マトリクス要素に割り付ける順序を示しており、いわ
ば各マトリクス要素の黒、灰、白へのなり易さを表わし
ている。具体的には、ある階調レベルに対応する3値ド
ツト・パターンのドツト数構成が、黒X個、灰y個、白
2個のとき(x+y+z=16 )、第3図で1〜Xま
では黒、(x+1)〜(x+y )までは灰、(x+y
+1)〜16までは白が割り付けられる。
(4) Explanation of the structure and operation of the invention FIG. 3 is an example for explaining the invention in detail.
A number is assigned to each element of the Tontoro pattern e-matrix of No. 4. These numbers indicate the order in which the three-valued dots of black, gray, and white are assigned to each matrix element, and represent, so to speak, the ease with which each matrix element becomes black, gray, or white. Specifically, when the number of dots in a ternary dot pattern corresponding to a certain gradation level is X black, y gray, and 2 white (x+y+z=16), the number of dots from 1 to X in Figure 3 is is black, (x+1) to (x+y) is gray, (x+y
+1) to 16 are assigned white.

ただし、X、y、zのいずれかが00ときばその値のド
ツIf当、然割り付けられない。従って、第2図の階調
レベル7のように黒6個、灰4個、白6個のドツト・パ
ターンの場合には、第3図図示番号の1〜Gに黒、7〜
1oに灰、11〜16に白が割り付けられ、結果として
本発明の方式に従うと第2図の階調レベル7に対応して
第4図のパターンが発生される。第3図および第4図の
例では黒から順に割り付ける場合を示したが、当然臼か
ら順に割り付ける方法も考えられる。
However, if any of X, y, and z is 00, that value cannot be assigned to the dot If. Therefore, in the case of a dot pattern of 6 black, 4 gray, and 6 white dots, such as gradation level 7 in FIG. 2, the numbers 1 to G in FIG.
Gray is assigned to 1o and white is assigned to 11 to 16, and as a result, according to the method of the present invention, the pattern shown in FIG. 4 is generated corresponding to gradation level 7 of FIG. 2. Although the examples shown in FIGS. 3 and 4 show the case where the blocks are laid out in order from black, it is of course also possible to lay out the blocks in order from the millstone.

第3図および第4図の例は4×4のマトリクス・サイズ
の場合を示しているが、一般にmXn(m。
The examples in FIGS. 3 and 4 show a matrix size of 4×4, but in general mXn (m.

nは整数)のマトリクス・サイズの場合も同様に1から
m X nのドツト配置順位をマトリクス要素に割り付
けておけばよい。また、各階調レベルに対応させるドツ
ト・パターンの3値ドント数構成は予め求めてお(こと
ができさらに、マトリクス・サイズが一定のときは3値
のうち一2値のドツト個数x、yだけが独立であり、他
の1っ(d (m X n−x−y)で求まることを利
用すれば各階調レベル毎に2値のドツト個数Xt  Y
だけを記憶させておけばよいととになる。従って、O≦
x、y5m×nであるので、1階調あたり必要なメモリ
量Bnta Bn = 2 X c logz(mXn
 ) )ビットであるここで〔〕ハガウス記号である。
In the case of a matrix size (n is an integer), dot placement orders of 1 to m.times.n may be similarly assigned to the matrix elements. Furthermore, when the matrix size is constant, only the number x, y of one binary dot among the three values can be calculated in advance. are independent, and by using the fact that it can be found by the other 1(d (m
All you have to do is remember that. Therefore, O≦
Since x, y5m×n, the amount of memory required per gradation is Bnta Bn = 2 X c logz (mXn
) ) is the bit where [ ] is the Hagauss symbol.

例えばm X n = 4 X 4のときはBn=8ビ
ットであり、従来の方法ではBc=32ビットであるか
ら、1/4にメモリ容量を削減することができる。
For example, when m x n = 4 x 4, Bn = 8 bits, and in the conventional method, Bc = 32 bits, so the memory capacity can be reduced to 1/4.

さらに、本発明では第5図に示すような態様により、マ
トリクス要素にドツト配置順位を割り付けるので、常に
高品質な記録を実現することができる。第5図は番号1
〜13までに割り付けが終わり、次に番号14の位置を
定めようとする場合を例として示す。マトリクス要素に
割り付ける順位は黒または白へのなり易さなので1〜1
30ドツトは黒にし、14の候補ドツト(この場合3つ
ある)に順次点を代入し、他の候補ドットハ白として低
周波数成分の定量的評価量を求め、この評価量を各候補
ドツトについて比較し最適な値を与える候補ドツトを1
4と決定する。第5図では候補トン) (a)〜(C)
のうち、(C)が最適であった場合を例として示しであ
る。他の番号も全く同様にして求まる。このように、常
に最適な画質を与えるように番号を割り付けるので、全
てのドツト・パターンをどのように配置しても画質は良
好となる。
Furthermore, in the present invention, dot placement orders are assigned to matrix elements in the manner shown in FIG. 5, so that high-quality recording can always be achieved. Figure 5 is number 1
As an example, the case where the allocation is completed by 13 and the next position is to be determined is shown. The order assigned to matrix elements is 1 to 1 based on the ease with which they become black or white.
The 30 dots are made black, the points are sequentially assigned to the 14 candidate dots (in this case there are 3), the other candidate dots are set as white, the quantitative evaluation amount of the low frequency component is obtained, and this evaluation amount is compared for each candidate dot. and select 1 candidate dot that gives the optimal value.
Decided to be 4. Candidate tons in Figure 5) (a) to (C)
Of these, the case (C) is shown as an example. Other numbers are determined in exactly the same way. In this way, numbers are assigned so as to always give the optimum image quality, so the image quality will be good no matter how all the dot patterns are arranged.

なお、1の場所は自由であるが、マトリクスの端に近い
と擬似輪郭が生じる可能性もあるので、マトリクスの中
心要素に設定する方が良い。ドツト・パターンの低周波
数成分の定量的評価量としてはいくつか考えられるが、
実験の結果、以下の評価量に従えば高品質な画像を得る
ことができる。
Note that the location of 1 is free, but if it is close to the edge of the matrix, a false contour may occur, so it is better to set it to the central element of the matrix. There are several possible quantitative evaluation quantities for the low frequency components of dot patterns, but
As a result of experiments, high-quality images can be obtained by following the following evaluation quantities.

まずrn X nのドツト・パターンをfx、(0≦X
≦m1.Q≦y≦n+)と表わす。ここで、 とする。
First, the dot pattern of rn
≦m1. Q≦y≦n+). Here, let .

ドツト番ハターンf の2次元フーリエ級数7 Fuvは (但しu =0 、1. ・・・、 m  1 ; y
==Q、 l、 、、、n−1)で表わされる。また、
エネルギ・スペクトルEuvおよび周波数ωuvは Euv = l Fuv 12. rauv =nで示
される。第5図のように、候補ドツトに黒を代入しその
低周波数成分を評価するために、候補ドツト・パターン
毎に評価量Pi  を求める。PipPi =min 
(ωuvlEuv\Q 、 ωuv\0)で示される。
The two-dimensional Fourier series 7 Fuv of the dot number pattern f is (where u = 0, 1. . . . , m 1 ; y
==Q, l, , , n-1). Also,
The energy spectrum Euv and the frequency ωuv are Euv = l Fuv 12. It is denoted by rauv =n. As shown in FIG. 5, in order to assign black to the candidate dots and evaluate their low frequency components, an evaluation amount Pi is determined for each candidate dot pattern. PipPi=min
It is indicated by (ωuvlEuv\Q, ωuv\0).

すなわち、エネルギ・ス′ベクトルが0でない最低周波
数そのものを評価量とし、これが最大のものを最適な候
補ドツトと判定する(低周波数成分が弱いと判定する)
In other words, the lowest frequency for which the energy vector is not 0 is used as the evaluation quantity, and the one with the largest value is determined to be the optimal candidate dot (low frequency components are determined to be weak).
.

第6図は本発明の実施例であり、6は階調記録装置、7
げ入力階調信号、8はコントローラ、9はドツト個数格
納メモリ、10はドツト配置順序格納メモリ、11i、
1:バッファ・メモリ、12に記録部である。
FIG. 6 shows an embodiment of the present invention, in which 6 is a gradation recording device, 7
8 is a controller, 9 is a dot number storage memory, 10 is a dot arrangement order storage memory, 11i,
1: buffer memory; 12: recording section;

階調記録装置6に階調信号7が入力されると、まずコン
トローラ8が起動される。人力信号7に基づき、対応す
る階調レベルをコントローラ8で求め、メモリ9にアク
セスする。メモリ9には各階調レベルに対応する3値ド
ント・パターンの3値ドツトのうち独立な2値のドツト
個数が格納されており、それらの個数がメモリ9から読
出される。メモリ10にはマトリクス要素に割り付けら
れたドツト配置順序が格納されているので、メモリ9か
ら読出した個数情報に基づきコントローラ8の制御の下
、バッファ11に3値ドツト・パターンとしてメモリ1
0に格納された順序で書き込まれる。バッファ11から
は適宜3値情報が記録部12に送られ、階調画像記録が
行われる。
When the gradation signal 7 is input to the gradation recording device 6, the controller 8 is first activated. Based on the human input signal 7, the corresponding gradation level is determined by the controller 8, and the memory 9 is accessed. The memory 9 stores the number of independent binary dots among the ternary dots of the ternary dot pattern corresponding to each gradation level, and these numbers are read out from the memory 9. Since the memory 10 stores the dot placement order assigned to the matrix elements, the memory 1 is stored in the buffer 11 as a ternary dot pattern under the control of the controller 8 based on the number information read from the memory 9.
They are written in the order they were stored in 0. The ternary information is sent from the buffer 11 to the recording section 12, where gradation image recording is performed.

(5)効果の説明 以上説明したように、本発明によれば、ドツト・パター
ン・マトリクスの要素に対し、ドツト・パターンの低周
波数“成分を常に小さくするようなドツト配置順序を割
り付けているので、常に縞、綾、ザラつき、擬似輪部の
ない高品質な記録が実現できるという利点がある。また
各階調レベルに対応した3値ドツト・パターンのドツト
数構成だけを記憶するようにしたので、従来のドツト・
パターンをそのまま記憶する方式に比較してメモリ量の
軽減が図れるという利点がある。言うまでもなく、本発
明は記録解像度が高く数階調程厩が表現可能な装置例え
ば感熱式記録装置における多段の階調記録方式として有
効である。例えば、データ通信の端末機あるいはファク
シミリの記録部等にきわめて有効である。
(5) Description of Effects As explained above, according to the present invention, the elements of the dot pattern matrix are assigned a dot arrangement order that always minimizes the low frequency components of the dot pattern. , it has the advantage of always being able to realize high-quality recording without stripes, twill, roughness, or pseudo limbus.Also, only the dot number configuration of the ternary dot pattern corresponding to each gradation level is memorized. , conventional dots
This method has the advantage that the amount of memory can be reduced compared to a method that stores patterns as they are. Needless to say, the present invention is effective as a multi-level gradation recording method in a device having high recording resolution and capable of expressing several gradations, such as a thermal recording device. For example, it is extremely effective for data communication terminals or facsimile recording units.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のこの種の記録処理の原理説明図、第2図
は従来の処理におけるドツト・パターンの格納例、第3
図は本発明の詳細な説明する説明図、第4図は本発明の
処理に従って発生されたドツト・パターン例、第5図は
ドツト配置順序の決定するイ多1 態様を説明する説明図、第6図は本発明の実へ声成を示
す。 図中、6T/′i階調記録装置、7は入力階調信号、8
はコントローラ、9はドツト個数格納メモリ、10はド
ツト配置順序格納メモリ、11はバッファ・メモリ、1
2は記録部を表わす。 第 1[2] 第  2(2] 第3図   第4図 第5図
Fig. 1 is an explanatory diagram of the principle of this type of conventional recording processing, Fig. 2 is an example of storing dot patterns in the conventional processing, and Fig. 3
4 is an explanatory diagram explaining the present invention in detail; FIG. 4 is an example of a dot pattern generated according to the process of the present invention; FIG. Figure 6 shows the implementation of the present invention. In the figure, 6T/'i gradation recording device, 7 is input gradation signal, 8
is a controller, 9 is a dot number storage memory, 10 is a dot arrangement order storage memory, 11 is a buffer memory, 1
2 represents a recording section. 1st [2] 2nd (2) Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)濃淡画像の1画素に複数個のドツトを対応させ、
白、灰、黒の3値の面積を変化させて階調を表現する階
調面1象記録処理方式において、1画素に対応させるド
ツト・パターン・マトリクス要素に対して3値ドツトの
配置順序をあらかじめ決定し割り付けておくと共に、各
記録濃度に対応させるドツト・パターンの3値ドツト個
数のうち独立な2値の個数を記憶しておくよう構成され
てなり、入力された階調信号にもとづいて当該記憶内容
を読出し、前記ドツト配置順序に従いマトリクス要素に
3値ドントを配置し記録を行うことを特徴とする階調画
像記録処理方式。
(1) Multiple dots correspond to one pixel of a grayscale image,
In the gradation surface single image recording processing method that expresses gradations by changing the areas of the 3 values of white, gray, and black, the arrangement order of 3 value dots is determined for the dot pattern matrix element corresponding to one pixel. In addition to determining and assigning the dots in advance, the number of independent binary dots among the three-value dots of the dot pattern corresponding to each recording density is stored. A gradation image recording processing method characterized in that the stored content is read out, ternary dots are arranged in matrix elements according to the dot arrangement order, and recording is performed.
(2)  上記マトリクス要素へのドツト配置順序を決
定する割り付けに当って、既に順序の割り付けが終わっ
たマトリクス要素に黒ドツトを配置し、まだ割り付けの
終わっていない候補要素の1つに黒、他に白を配置し、
このような黒、白2値のドツト・パターンの空間周波数
成分を求め、エネルギーを有する最低周波数を順次比較
してゆき、この値が最大となる候補要素を見出し、この
マトリクス要素に対してそれまでに決定した順序の最大
番号の次の番号を与えるようにして上記割り付けを行う
ことを特徴とする特許請求の範囲第(1)項記載の階調
画像記録処理方式。
(2) In the assignment to determine the dot placement order to the matrix elements, a black dot is placed on the matrix element for which the order has already been assigned, and a black dot is placed on one of the candidate elements that has not yet been assigned. Place white on
The spatial frequency components of such a binary black and white dot pattern are determined, the lowest frequencies with energy are sequentially compared, the candidate element with the highest value is found, and the 2. The gradation image recording processing method according to claim 1, wherein the allocation is performed by giving the next number after the maximum number determined in the order.
JP57152272A 1982-09-01 1982-09-01 Gradational image recording and processing system Granted JPS5941969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152272A JPS5941969A (en) 1982-09-01 1982-09-01 Gradational image recording and processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152272A JPS5941969A (en) 1982-09-01 1982-09-01 Gradational image recording and processing system

Publications (2)

Publication Number Publication Date
JPS5941969A true JPS5941969A (en) 1984-03-08
JPH0336354B2 JPH0336354B2 (en) 1991-05-31

Family

ID=15536870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152272A Granted JPS5941969A (en) 1982-09-01 1982-09-01 Gradational image recording and processing system

Country Status (1)

Country Link
JP (1) JPS5941969A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672432A (en) * 1983-04-28 1987-06-09 Canon Kabushiki Kaisha Method for recording a color image using dots of colorants of different densities
US4686538A (en) * 1984-10-31 1987-08-11 Canon Kabushiki Kaisha Tone recording method
US4692773A (en) * 1982-07-23 1987-09-08 Canon Kabushiki Kaisha Image forming method using image forming elements having different concentrations and pitches
US4713746A (en) * 1982-05-14 1987-12-15 Canon Kabushiki Kaisha Method for forming pictures
US4714964A (en) * 1984-07-13 1987-12-22 Canon Kabushiki Kaisha Intermediate gradient image forming method
US4727436A (en) * 1982-09-01 1988-02-23 Canon Kabushiki Kaisha Method and apparatus for producing a picture
US4772911A (en) * 1984-01-19 1988-09-20 Canon Kabushiki Kaisha Image formation apparatus
US4959659A (en) * 1983-03-08 1990-09-25 Canon Kabushiki Kaisha Color picture forming apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597195B1 (en) 2010-07-23 2015-01-28 Oji Holdings Corporation Wire for producing a microfibrous cellulose-containing sheet and method for producing a microfibrous cellulose-containing sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713746A (en) * 1982-05-14 1987-12-15 Canon Kabushiki Kaisha Method for forming pictures
US4692773A (en) * 1982-07-23 1987-09-08 Canon Kabushiki Kaisha Image forming method using image forming elements having different concentrations and pitches
US4727436A (en) * 1982-09-01 1988-02-23 Canon Kabushiki Kaisha Method and apparatus for producing a picture
US4959659A (en) * 1983-03-08 1990-09-25 Canon Kabushiki Kaisha Color picture forming apparatus and method
US4672432A (en) * 1983-04-28 1987-06-09 Canon Kabushiki Kaisha Method for recording a color image using dots of colorants of different densities
US4772911A (en) * 1984-01-19 1988-09-20 Canon Kabushiki Kaisha Image formation apparatus
US4714964A (en) * 1984-07-13 1987-12-22 Canon Kabushiki Kaisha Intermediate gradient image forming method
US4686538A (en) * 1984-10-31 1987-08-11 Canon Kabushiki Kaisha Tone recording method

Also Published As

Publication number Publication date
JPH0336354B2 (en) 1991-05-31

Similar Documents

Publication Publication Date Title
CA1114747A (en) Electronic halftone screening with halftone cells approximating a parallelogram
US4698691A (en) Halftone image processing method
US4149194A (en) Variable angle electronic halftone screening
JPH07120414B2 (en) Apparatus and method for generating halftone threshold value of image
US5130821A (en) Method and apparatus for digital halftoning employing density distribution for selection of a threshold template
EP0412034B1 (en) Improved pel resolution addressing conversion
CN1012302B (en) Color image dispaly system
JPS61237574A (en) Generation of halftone image
US4366507A (en) Shaded picture signal processing system and method
US5289294A (en) Image processing apparatus
JPS5941969A (en) Gradational image recording and processing system
EP0427380A2 (en) Method of producing halftone images
WO1990014731A1 (en) Page buffer for an electronic gray-scale color printer
JPH03120957A (en) Method and apparatus for nonlinearly dither digital image
US5184213A (en) Binarizing method for color image using modified error diffusion method
EP0824822B1 (en) Multiple density level stochastic screening system and method
JPH04505089A (en) False density contour suppression using stochastically modified input signals for comparison with thresholds
EP1217825A2 (en) Tile map based multi-level supercell screening
JPS6223353B2 (en)
JP2000299783A (en) Image processing method and device
WO1991010312A2 (en) False density contour suppression using stored random probabilities to form print/no print decisions
JPS60130263A (en) Intermediate tone picture processing method
JPH0117310B2 (en)
EP0321315A2 (en) Half tone printing or display apparatus
JPH05336371A (en) Image reader