JPS5940347B2 - Driving method of solid-state image sensor - Google Patents
Driving method of solid-state image sensorInfo
- Publication number
- JPS5940347B2 JPS5940347B2 JP52152900A JP15290077A JPS5940347B2 JP S5940347 B2 JPS5940347 B2 JP S5940347B2 JP 52152900 A JP52152900 A JP 52152900A JP 15290077 A JP15290077 A JP 15290077A JP S5940347 B2 JPS5940347 B2 JP S5940347B2
- Authority
- JP
- Japan
- Prior art keywords
- time
- charge
- signal
- solid
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
Description
【発明の詳細な説明】
本発明は、半導体表面に形成した複数個のホトダイオー
ドに蓄積された光情報を読み出す固体撮像素子の駆動方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a solid-state image sensor that reads out optical information accumulated in a plurality of photodiodes formed on a semiconductor surface.
以下に述べる従来例および本発明の説明においては、固
体撮像素子は電子を情報源とするが、これは電荷の極性
および電位関係を逆にすることにより、正孔を情報源と
する固体撮像素子にも全く同様にして適用できる。In the conventional example described below and the description of the present invention, a solid-state image sensor uses electrons as an information source, but by reversing the charge polarity and potential relationship, a solid-state image sensor using holes as an information source can be changed. It can be applied in exactly the same way.
第1図は従来電荷移送素子を信号読み出し装置として用
いる固体撮像素子の平面構造の一部を示した概念図の一
例であつて、ホトダイオード1、蓄積ゲート2、移送ゲ
ート3、電荷移送素子4から成つており、ホトダイオー
ド1で光電変換された電荷が蓄積ゲート2の下およびホ
トダイオード1に蓄えられ、これが所定の時間(蓄積時
間)経た後、移送ゲート3を経て電荷移送素子4へ移さ
れ、順次出力側へ読み出される。FIG. 1 is an example of a conceptual diagram showing a part of the planar structure of a solid-state image sensor that uses a conventional charge transfer element as a signal readout device. The charge photoelectrically converted by the photodiode 1 is stored under the storage gate 2 and in the photodiode 1, and after a predetermined time (storage time), it is transferred to the charge transfer element 4 via the transfer gate 3, and is sequentially transferred to the charge transfer element 4. Read out to the output side.
第2図は第1図に示した固体撮像素子の従来の駆動方法
と出力波形の例を模式的に示したものである。FIG. 2 schematically shows an example of the conventional driving method and output waveform of the solid-state image sensor shown in FIG. 1.
第1図、第2図において、蓄積ゲート2には直流の電圧
VpOが印加されてその下に電荷を蓄積し、移送ゲート
3には、11に示すように移送時間τ1だけ導通状態(
以下導通状態ないし蓄積状態になるようなパルスの状態
を0オン゛と呼び非導通ないし非蓄積の場合を゛オフ”
と呼為)になるようなパルスφ1が印加さへ電荷移送素
子は2相のパルスφ1,φ2によつて駆動する。同図に
12,13で示した如くφ1,φ2は移送時間τ1中は
一力がオン、他方がオフに止まつてオンのパルス(第2
図ではφ1)が印加されている電極下にホトダイオード
1および蓄積ゲート2の下(以下この部分をホトセンサ
部と呼ぶ)から信号電子を受けとる。移送が完了すると
、電荷移送素子4によつて信号電子は順次出力側へ送ら
れる。ホトセンサ部(ホトダイオード1と蓄積ゲート2
の部分をまとめた名称)から電荷移送素子4への電荷の
移送時間τ,以下は移送ゲート3はオフであるので、こ
の間光電変換された電子はホトセンサ部に蓄えられる(
蓄積時間τ8)。近年固体撮像素子は、その軽量、小形
等の利点から各種の用途に用いられるようになつた。In FIGS. 1 and 2, a DC voltage VpO is applied to the storage gate 2 to accumulate charges thereunder, and the transfer gate 3 is kept in a conductive state for a transfer time τ1 (as shown in 11).
Hereinafter, the state of the pulse that is in a conductive state or an accumulation state is called 0-ON, and the state of a pulse that is non-conductive or non-accumulative is called "OFF".
The charge transfer element is driven by two-phase pulses φ1 and φ2. As shown at 12 and 13 in the figure, one force is on during the transfer time τ1 of φ1 and φ2, and the other remains off, and then the on pulse (second
Signal electrons are received from below the photodiode 1 and the storage gate 2 (hereinafter this part will be referred to as a photosensor section) under the electrode to which φ1 in the figure is applied. When the transfer is completed, the signal electrons are sequentially sent to the output side by the charge transfer element 4. Photosensor section (photodiode 1 and storage gate 2
Since the transfer gate 3 is off, the electrons photoelectrically converted during this period are stored in the photosensor section (
Accumulation time τ8). In recent years, solid-state image sensors have come to be used for various purposes due to their advantages such as light weight and small size.
これと共に、第2図に示したような単純な駆動方法では
必ずしもすべてに通用しなくなつている。たとえば画像
信号を電話回線を利用して伝送するような応用の場合、
電話回線に通しうる信号帯域が音声帯域で低いため、低
いデータレートでしか信号が送れない。しかし半導体素
子中では暗電流のわき出しのために、低いデータレート
で読み出すと偽信号が混入し易く、半導体素子からの読
み出しと、伝送との間にデータレートの変換が必要とな
る。この信号処理に要する時間が蓄積時間τ8と移送時
間τ,の和(第2図の駆動方法の場合の1周期)に比べ
長くなるようなときには、第3図に示すように第2図に
示したものとは別の駆動方法が必要である。Along with this, the simple driving method shown in FIG. 2 is no longer applicable to all applications. For example, in applications where image signals are transmitted using telephone lines,
Because the signal band that can pass through telephone lines is low in the voice band, signals can only be sent at low data rates. However, due to the generation of dark current in semiconductor devices, false signals are likely to be mixed in when reading at a low data rate, and data rate conversion is required between reading from the semiconductor device and transmission. When the time required for this signal processing is longer than the sum of the accumulation time τ8 and the transfer time τ (one cycle in the case of the driving method shown in FIG. 2), the time required for this signal processing is as shown in FIG. A different drive method is required.
第3図は上記のような信号処理の時間が必要な場合の固
体撮像素子の従来の駆動方法の例を示す図であつて、2
1に示す移送時間τ,の後、電荷移送素子による信号読
み出し時間τROを含んで22で示した信号処理の時間
τ9が長く続く。FIG. 3 is a diagram showing an example of a conventional driving method for a solid-state image sensor when the time required for signal processing as described above is shown.
After the transfer time τ, shown at 1, a signal processing time τ9 shown at 22 continues for a long time, including the signal readout time τRO by the charge transfer element.
この信号処理時間τ,の間、移送ゲートパルスφ1争は
オフであるのでこの間は蓄積時間τ8と同様に信号電荷
がホトセンサ部に蓄積される。During this signal processing time τ, the transfer gate pulse φ1 is off, so during this time signal charges are accumulated in the photosensor section in the same way as during the accumulation time τ8.
この間に蓄積される電荷は蓄積時間が所定のものでない
ので情報は所望のものとは異なる。そこで第3図にある
ように、蓄積時間24に入る前に、23のように一度移
送ゲートパルスφ1をオンにして、信号処理時間τ,2
2の間に蓄えられた電荷を一掃する(以下これをプリン
スキヤンと呼ぶ、この出力は後段へは送らず切りすてる
)。第2図に示したように、1周期の中に蓄積時間τ8
と移送時間τ1のみの駆動方法でも、読み出す信号を適
当に何周期分か間引きすれば、τ8より長いτ が実現
できるが、この場合τ がτp ′
PS+τ1の整数倍でなくてはならないので不便で
あつて実際のシステムには適用できずプリスキヤンを行
なう第3図のような駆動力法をとる必要がある。Since the charge accumulated during this period does not have a predetermined accumulation time, the information is different from the desired one. Therefore, as shown in FIG. 3, before entering the accumulation time 24, the transfer gate pulse φ1 is turned on as shown in 23, and the signal processing time τ, 2 is turned on.
(hereinafter, this is called a plinth scan; this output is not sent to the subsequent stage and is discarded). As shown in Figure 2, the accumulation time τ8 in one cycle
Even with a driving method using only the transfer time τ1, it is possible to achieve τ longer than τ8 by thinning out the readout signal by an appropriate number of cycles, but in this case, τ becomes τp′
Since it has to be an integral multiple of PS+τ1, it is inconvenient and cannot be applied to an actual system, and it is necessary to use the driving force method as shown in FIG. 3, which performs pre-scanning.
しかし、第3図のような駆動方法は次のような重大な欠
点がある。However, the driving method shown in FIG. 3 has the following serious drawbacks.
すなわち、信号処理に十分な時間をとるためτ,〉τ8
とする。あるいはτ,の期間に強い光が当るようなとき
蓄積されていた電荷の量が多くなつて、電荷移送素子に
完全に収容できず、プリスキヤンで完全に電荷が取り除
くことができずに後に残り、後に続く本来の読み出し信
号25に重なつて出る場合がある。これはτ2の間に照
射された光信号の強さによつてこの大きさが異なり、一
種の残像現象のように、特に光が強く当つた絵素にはよ
り多くの電荷が残つてしまつて、前の時間の画の情報が
次にくる本信号に重なつて現われる。第3図の例では、
22で示したτ の期間蓄えられた信号がプリスキヤン
にpよつて26のように取出されても、一部が後に残り
、本出力25に重なつて27のような出力を与える。In other words, in order to take enough time for signal processing, τ, 〉τ8
shall be. Alternatively, when strong light hits the period τ, the amount of accumulated charge increases and cannot be completely accommodated in the charge transfer element, and the charge cannot be completely removed by pre-scanning and remains behind. The signal may be output superimposed on the subsequent original read signal 25. The magnitude of this varies depending on the strength of the optical signal irradiated during τ2, and like a kind of afterimage phenomenon, more charge remains on pixels that are particularly strongly hit by light. , the information of the previous image appears superimposed on the next main signal. In the example in Figure 3,
Even if the signal stored for a period of τ shown at 22 is taken out as shown at 26 by the pre-scanner p, a portion remains behind and is superimposed on the main output 25 to give an output like 27.
この現象を除くためには光の強さや信号処理時間τ,に
応じて、プリスキヤンの回数を増すなどする必要があり
、周辺回路が複雑になつてシステムを構成するのに高い
費用がかかるなど、固体撮像素子の実用上重大な欠陥と
なつている。In order to eliminate this phenomenon, it is necessary to increase the number of pre-scans depending on the light intensity and signal processing time τ, which makes the peripheral circuitry complicated and increases the cost of configuring the system. This has become a serious defect in the practical use of solid-state image sensors.
本発明の目的は上記の問題点を解消した駆動力法を提供
することである。An object of the present invention is to provide a driving force method that eliminates the above-mentioned problems.
本発明は上記目的を達成するために、信号処理に要する
時間τ 中の少なくとも一部で、移送ゲpートを導通状
態におくか、又は蓄積ゲートにパルスを印加して、τ
の間に電荷移送素子の電荷保ゝ p持能力を越えるよ
うな電荷の蓄積を防ぐものであつて、これに伴ない、プ
リスキヤンは従来通り1回でも本信号への偽信号の混入
を防ぎ、あるいはプリスキヤンなしでも上記のような問
題のない駆動力法を提供し、これによつて単純な周辺回
路による素子の駆動が可能になり、システム構成の単純
化、低コスト化、ひいては高信頼性が可能になるもので
ある。To achieve the above object, the present invention makes the transfer gate conductive or pulses the storage gate for at least part of the time τ required for signal processing, τ
This function prevents the accumulation of charges that exceed the charge holding capacity of the charge transfer element during the period of time, and in conjunction with this, the pre-scanning prevents the mixing of false signals into the main signal even once, as in the past. Alternatively, we provide a driving force method that does not have the above-mentioned problems even without a pre-scan, and this makes it possible to drive the device with a simple peripheral circuit, simplifying the system configuration, reducing costs, and ultimately achieving high reliability. It becomes possible.
実施例 以下、本発明を実施例を参照して詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.
第4図は本発明になる駆動力法の実施例を示すタイミン
グチヤート図であつて、第3図に示した従来のプリスキ
ヤンカ式と比べると明らかなように移送ゲートパルスφ
1は蓄積時間τ8(第4図中31,32)においてはオ
フ、他はオンになるようなパルスを印加する。FIG. 4 is a timing chart showing an embodiment of the driving force method according to the present invention, and as is clear from the comparison with the conventional pre-scanker method shown in FIG.
1 applies a pulse that is off during the accumulation time τ8 (31, 32 in FIG. 4) and on at other times.
このようにすると蓄積時間τ8中は信号電荷は蓄積され
るが、他の時間では蓄積されずに常に光信号で発生した
電荷が電荷移送素子に流れ込んで取り除かれ、信号処理
時間中に発生した電荷が、本信号に混入するようなこと
はない。この場合ホトセンサ部から電荷移送素子へ電荷
を移す時間(移送時間τ1)はφ1ではなく、電荷移送
素子の駆動パルスφ1およびφ2がオンおよびオフにホ
ールドする時間(第2図12,13)によつて自動的に
決められる。第4図に示した駆動方法によるとτ,の時
間以外は常に光の強さに応じた量の電荷が電荷移送素子
に流れ込むので、読み出し期間τRO33,34中も本
信号にこの電荷流入がある。しかし元来原理的にτ5〉
τROであり、実際上はτ8〉τROとすることが容易
であるので、この条件下では、流入する電荷量は十分少
なく、無視することができる。しかし、もしτ8〉τR
Oの条件に設定できず、あるいは厳密に電荷の流入を防
止したいときには第5図のような駆動力法を採用すれば
よい。In this way, the signal charge is accumulated during the accumulation time τ8, but at other times it is not accumulated and the charge generated by the optical signal always flows into the charge transfer element and is removed, and the charge generated during the signal processing time However, it does not mix into the main signal. In this case, the time (transfer time τ1) for transferring the charge from the photosensor section to the charge transfer element is determined not by φ1 but by the time during which the drive pulses φ1 and φ2 of the charge transfer element are held on and off (Fig. 2, 12 and 13). automatically determined. According to the driving method shown in FIG. 4, an amount of charge corresponding to the intensity of light always flows into the charge transfer element except for the time τ, so this charge inflow also occurs in the main signal during the readout period τRO33, 34. . However, originally in principle τ5〉
τRO, and in practice it is easy to set τ8>τRO, so under this condition, the amount of charge flowing in is sufficiently small and can be ignored. However, if τ8〉τR
If it is not possible to set the condition of O, or if it is desired to strictly prevent the inflow of charges, the driving force method as shown in FIG. 5 may be adopted.
第5図は本発明になる別の実施例を示すタイミングチヤ
ート図で、第4図と比較すると判るように蓄積時間τ,
41,42と読み出し時間τRO43,44を包括する
時間τX45,46,φ,はオフになつていて、読み出
し時間中に本信号に光信号による電荷が他から流入しな
いようになつている。第5図に示した駆動方法であれば
、τ8とτROが余り変らない場合でも本発明の効果を
得ることができる。このとき本信号の読み出しを含む時
間τ。FIG. 5 is a timing chart showing another embodiment of the present invention. As can be seen from comparison with FIG. 4, the accumulation time τ,
The time τX45, 46, φ, which includes the readout time τRO41, 42 and the readout time τRO43, 44, is turned off to prevent charges caused by the optical signal from flowing into the main signal from other sources during the readout time. With the driving method shown in FIG. 5, the effects of the present invention can be obtained even when τ8 and τRO do not differ much. At this time, the time τ including reading of the main signal.
45,46中、φ1がオフであるので、この間に蓄積し
た光信号による電荷が、47,48に示すように出力さ
れるが、これは、信号処理部で本信号以外読み込まない
ようにすることは容易であるので本発明の効果に変わり
はない。During 45 and 46, φ1 is off, so the charge due to the optical signal accumulated during this time is output as shown at 47 and 48, but this is because the signal processing section should not read anything other than this signal. Since this is easy, there is no change in the effect of the present invention.
第6図は本発明になる別の実施例を示す図である。FIG. 6 is a diagram showing another embodiment of the present invention.
第6図に示した実施例では、第2図に示すような蓄積ゲ
ートに直流の電圧PGを印加する代りに、蓄積ゲートパ
ルスφPGを印加する。φPGは蓄積時間τ8と移送時
間τ1以外では51の期間のようにオフになつているの
で電荷は蓄積されず、本信号に信号処理の間の光照射に
よる電荷が混入することはない。第6図に示した実施例
は、蓄積ゲートにφPGなるパルスを印加してτ,+τ
1とそれ以外の信号処理の時間τ を区別すること以外
は第2図にpおける従来の単純な駆動力法を大体採用で
き、またプリスキヤンも不要であるので、出力信号処理
回路や駆動回路等の周辺回路が非常に単純となり、本発
明による効果は大である。In the embodiment shown in FIG. 6, instead of applying the DC voltage PG to the storage gate as shown in FIG. 2, a storage gate pulse φPG is applied. Since φPG is off during the period 51 other than the storage time τ8 and the transfer time τ1, no charge is accumulated, and no charge is mixed into this signal due to light irradiation during signal processing. In the embodiment shown in FIG. 6, a pulse φPG is applied to the storage gate, and τ, +τ
Except for distinguishing the signal processing time τ 1 and other signal processing times, the conventional simple driving force method in p shown in FIG. The peripheral circuitry of the device becomes very simple, and the effects of the present invention are significant.
本発明の説明で第2図〜第6図に述べている固体撮像素
子の駆動方法で、移送パルスφ1に関して最低限必要な
ことは、φ1が蓄積時間τ8中はオフ、移送時間τ1中
はオンとなつていることである。In the solid-state imaging device driving method described in FIGS. 2 to 6 in the explanation of the present invention, the minimum requirement for the transfer pulse φ1 is that φ1 is off during the accumulation time τ8 and on during the transfer time τ1. This is what is happening.
従つて第4図に示した実施例において、φ1はτ。の期
間全てにわたつてオンである必要はなく、τ の期間に
蓄積される多量の電荷をゝ pτ,の期間中に電荷移
送素子にすべて移してしまえるだけの期間オン状態にな
つていればよい。Therefore, in the embodiment shown in FIG. 4, φ1 is τ. It does not need to be on for the entire period τ, as long as it is on for a period long enough to transfer all of the large amount of charge accumulated during the period τ to the charge transfer element during the period pτ. good.
たとえば第3図の従来の駆動方法でも、22で示したτ
,の期間にφ1を適当な時間オンにすることにより、2
6で取り出す電荷量を軽減し、27のような偽信号の混
入した出力をさけることができ、本発明の効果を得るこ
とができる。第5図に示した実施例でも同様にして、φ
1がτ8,τ、で示した期間はオフ、τ1の期はオンで
あつて、τ,一τ、が、τ,の間に発生する電荷を取り
除くに十分な時間であれば、τo≧τROの条件下でτ
、の長さは任意である。For example, even in the conventional driving method shown in FIG.
, by turning on φ1 for an appropriate period of time, 2
It is possible to reduce the amount of charge taken out in 6 and avoid outputs mixed with false signals such as in 27, thereby achieving the effects of the present invention. Similarly, in the embodiment shown in FIG.
1 is off during the period indicated by τ8, τ, and on during the period τ1, and if τ, - τ is a sufficient time to remove the charge generated during τ, then τo≧τRO Under the condition of τ
The length of , is arbitrary.
第6図に示した駆動方式でφPGに関して52/に破線
で示すようにτ。In the drive system shown in FIG. 6, τ is as shown by the broken line at 52/ with respect to φPG.
の期間に食い込んでオンであつても、残りのオフの期間
に52の期間蓄積した電荷を排除することができれば、
本発明の効果に変わりはない。以上第4図〜第6図に説
明した本発明の実施例においては出力の模式的なほうら
く線およびφ1あるいはφPG以外は省略したが、第4
図、第5図では蓄積ゲートには直流のバイアスPGが印
加されており、また第4図〜第6図ではφ1,φ2は第
2図と同様に移送時間τ1と記した期間のみ一方がオン
、他力がオフにホールドして電荷を電荷移送素子に移し
、他の期間は常に所定の周波数でこれを駆動しているも
のである。Even if it is on during the period of , if it is possible to eliminate the charge accumulated for 52 periods during the remaining off period,
There is no change in the effects of the present invention. In the embodiments of the present invention described above in FIGS. 4 to 6, parts other than the schematic output line and φ1 or φPG are omitted, but the fourth
In Figures 4 and 5, a DC bias PG is applied to the storage gate, and in Figures 4 to 6, one of φ1 and φ2 is turned on only during the period marked as transfer time τ1, as in Figure 2. , the external force is held off to transfer the charge to the charge transfer element, and during other periods it is always driven at a predetermined frequency.
すなわち本発明の実施例では、移送時間τ1はφ1,φ
2が、電荷移送素子の駆動周期より長い時間、オンおよ
びオフに止まつている時間を指し、蓄積時間τ8はτ1
の直前に先行して、第4図、第5図ではφ1がオフに、
第6図ではφPGがオンに各々なつている時間を指して
いる。That is, in the embodiment of the present invention, the transfer time τ1 is equal to φ1, φ
2 refers to the time during which the charge transfer element remains on and off for a time longer than the driving cycle, and the accumulation time τ8 is equal to τ1
Immediately before, in Figures 4 and 5, φ1 is turned off,
FIG. 6 indicates the time when φPG is turned on.
また読み出し時間τROは、素子の絵素数とデータレー
トで決まる。外部回路の信号処理は広義には信号が読み
出され始めてから、次の信号がまた読み出され始めるま
で、すなわち、素子の動作上の1周期の間すべてにわた
つて行ないうるものであるが、本発明の説明では便宜上
τ8+τ,以外の時間を信号処理時間τ,と呼んだ。以
上説明した本発明の実施例は、第1図に概念的に構成を
示した固体撮像素子に適用されるものであるが、これは
素子が1次元、2次元のものであることにかかわりなく
適用できることはもちろんであり、また構造もホトダイ
オード、蓄積ゲート移送ゲートおよび電荷移送素子が順
次接続されているような固体撮像素子であれば何であつ
てもよく、たとえばホトダイオード1に関して線対称な
位置にも蓄積ゲート、移送ゲート、電荷移送素子が配置
されて、交互にホトダイオードがこれらに接続されるよ
うな構造であつてもかまわない。Further, the readout time τRO is determined by the number of picture elements of the element and the data rate. In a broad sense, signal processing in an external circuit can be performed from the time a signal begins to be read until the next signal begins to be read out again, that is, throughout one cycle of the device's operation. In the description of the present invention, for convenience, the time other than τ8+τ is referred to as signal processing time τ. The embodiments of the present invention described above are applied to the solid-state imaging device whose configuration is conceptually shown in FIG. 1, but this applies regardless of whether the device is one-dimensional or two-dimensional. Of course, it can be applied to any solid-state imaging device as long as the structure is such that a photodiode, a storage gate transfer gate, and a charge transfer element are connected in sequence. It is also possible to have a structure in which storage gates, transfer gates, and charge transfer elements are arranged and photodiodes are alternately connected to these.
第1図に示した固体撮像素子の構造ではホトダイオード
1に隣接して蓄積ゲート2が設けられているが、たとえ
ば透明電極を用いるなどして蓄積ゲートにも光電変換機
能を持たせるか、あるいはホトダイオードと蓄積ゲート
を1つの電極で兼ねる構造の素子もある。このような素
子でも本発明が適用できることはいうまでもなく、また
第4図、第5図に示したような実施例は、蓄積ゲートの
ない、ホトダイオードと移送ゲートおよび電荷移送素子
からなる構造の素子でも適用できることは明らかである
。本発明の説明では、電荷移送素子の,駆動はφ1,φ
2の2相のパルスによつているが、これは何相であつて
も本発明の効果に変わりはなく、移送時間τ,中どの相
の駆動パルスをオン又はオフにして電荷を受け取るかは
、それぞれの場合に応じて変わることはもちろんのこと
である。In the structure of the solid-state image sensor shown in FIG. 1, a storage gate 2 is provided adjacent to a photodiode 1. However, it is recommended that the storage gate also have a photoelectric conversion function, for example by using a transparent electrode, or that the photodiode There are also devices with a structure in which one electrode serves as the storage gate. It goes without saying that the present invention can be applied to such devices, and the embodiments shown in FIGS. 4 and 5 have a structure consisting of a photodiode, a transfer gate, and a charge transfer element without an accumulation gate. It is clear that the present invention can also be applied to elements. In the description of the present invention, the drive of the charge transfer element is φ1, φ
However, the effect of the present invention remains the same no matter how many phases there are, and it depends on which phase of the drive pulse is turned on or off to receive the charge during the transfer time τ. Of course, this will vary depending on each case.
本発明の実施例では第4図、第5図ではφ,に第6図で
はφPOに本発明を適用した例を示したが、これはこれ
らを組合せて、たとえば第4図ないし第5図に示した駆
動方法と同時に第6図に示したタイミングでφPGを蓄
積ゲートに印加してもよい。In the embodiment of the present invention, an example in which the present invention is applied to FIG. 4, φ in FIG. 5, and φPO in FIG. 6 is shown. Simultaneously with the driving method shown, φPG may be applied to the storage gate at the timing shown in FIG.
第7図に第6図を具体的に実施する読み出し制御回路例
を、第8図にそのタイミングチヤートを示す。FIG. 7 shows an example of a readout control circuit specifically implementing FIG. 6, and FIG. 8 shows its timing chart.
外部回路で発生した所定の蓄積時間信号INTは、ワン
シヨツトマルチパイプレータ(0N)73と0R回路7
4に加わる。0M73は、INT信号の後端でトリカー
されQ。A predetermined accumulation time signal INT generated in an external circuit is sent to a one-shot multipipulator (0N) 73 and an 0R circuit 7.
Join 4. 0M73 is triggered by the rear end of the INT signal and becomes Q.
M信号を発生する。QOM信号は、0R74に加わる。
0R回路74の出力は、蓄積ゲート2に加わつている。Generates an M signal. The QOM signal is applied to 0R74.
The output of the 0R circuit 74 is applied to the storage gate 2.
0R回路74のハイ・レベル値は、固体撮像素子75を
蓄積モードに対する所定の電圧値である。The high level value of the 0R circuit 74 is a predetermined voltage value for placing the solid-state image sensor 75 in the accumulation mode.
したがつてNT信号とQOM信号が出ている間固体撮像
素子75は、蓄積モードにある。又QOM信号は、D型
フリツプフロツプ72に加わりクロツクパルスCPと同
期してφ1信号を発生する。従つてINT信号期間中に
蓄積された信号は、移送ゲート3を通つて電荷移送素子
4へ転送さ八出力ゲート76、出力アンプJモVを通つて
出力へ移送される。なお、71は移相パルスφ1,φ2
を作成するためのD型フリツプフロツプ、φRはりセツ
トパルス、0Gは出力ゲートパルスである。以上説明し
たごとく本発明によれば、固体撮像素子を駆動する際、
その出力信号の処理に要する時間中、移送ゲートを導通
状態におくか、又は蓄積ゲートにパルスを印加して、そ
の間非導通状態にし、信号処理の時間に発生する電荷を
排除して所望の蓄積時間に蓄えられる本信号への偽信号
の混入の防止を容易にすることができ、これによつて単
純な周辺回路でも鮮明な信号を得ることができ、固体撮
像素子の画質向上、システム構成の単純化、低コスト化
の点で著しい向上を得ることができる。Therefore, while the NT signal and QOM signal are being output, the solid-state image sensor 75 is in the accumulation mode. The QOM signal is also applied to a D-type flip-flop 72 to generate the φ1 signal in synchronization with the clock pulse CP. Therefore, the signal accumulated during the INT signal period is transferred to the charge transfer element 4 through the transfer gate 3 and to the output via the output gate 76 and the output amplifier JMOV. In addition, 71 is a phase shift pulse φ1, φ2
0G is the output gate pulse. As explained above, according to the present invention, when driving a solid-state image sensor,
Either the transfer gate is conductive during the time required to process the output signal, or the storage gate is pulsed to be non-conducting during the time required to process the output signal, eliminating the charge generated during the signal processing time to achieve the desired accumulation. It is possible to easily prevent false signals from being mixed into the main signal that is stored over time. This makes it possible to obtain clear signals even with simple peripheral circuits, improve the image quality of solid-state image sensors, and improve system configuration. Significant improvements can be made in terms of simplification and cost reduction.
第1図は従来の固体撮像素子の平面構造の一部を模式的
に示した図、第2図、第3図は従来の固体撮像素子の,
駆動力法を示す図、第4図〜第8図は本発明の駆動方法
の実施例を示す図である。Figure 1 is a diagram schematically showing a part of the planar structure of a conventional solid-state image sensor, and Figures 2 and 3 are diagrams showing the structure of a conventional solid-state image sensor.
The drawings showing the driving force method and FIGS. 4 to 8 are drawings showing examples of the driving method of the present invention.
Claims (1)
生する信号電荷を信号電圧の印加により蓄積する蓄積ゲ
ートと、該蓄積ゲートの蓄積電荷を移送する移送ゲート
と、移送パルスによつて駆動され移送ゲートから移送さ
れた上記蓄積電荷を順次その出力側に読み出す電荷移送
素子とを具備した固体撮像素子において、上記固体撮像
素子の読出しの1周期が上記ホトダイオードにおいて光
信号を光電変換して信号電荷として蓄積する時間、該信
号電荷を上記電荷移送素子へ移送する時間、上記電荷移
送素子で読み出す時間および読み出された信号を外部回
路で処理する時間からなり、少くとも上記の処理する時
間の一部において上記蓄積ゲートを非蓄積または上記移
送ゲートを導通とし、前記処理する時間の一部において
は電荷を蓄積しないようにすることを特徴とする固体撮
像素子の駆動方法。1 A plurality of photodiodes, an accumulation gate that accumulates signal charges generated in the photodiodes by applying a signal voltage, a transfer gate that transfers the accumulated charges of the accumulation gates, and a transfer gate that is driven by a transfer pulse and is transferred from the transfer gate. In a solid-state imaging device including a charge transfer element that sequentially reads out the accumulated charges to the output side, one reading cycle of the solid-state imaging device is a time period during which the photodiode photoelectrically converts an optical signal and accumulates it as a signal charge. , consisting of a time for transferring the signal charge to the charge transfer element, a time for reading it with the charge transfer element, and a time for processing the read signal in an external circuit, and at least a part of the processing time is spent on the accumulation. A method for driving a solid-state image sensing device, characterized in that the gate is non-accumulating or the transfer gate is conductive so that no charge is accumulated during a part of the processing time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52152900A JPS5940347B2 (en) | 1977-12-21 | 1977-12-21 | Driving method of solid-state image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52152900A JPS5940347B2 (en) | 1977-12-21 | 1977-12-21 | Driving method of solid-state image sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5485632A JPS5485632A (en) | 1979-07-07 |
JPS5940347B2 true JPS5940347B2 (en) | 1984-09-29 |
Family
ID=15550578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52152900A Expired JPS5940347B2 (en) | 1977-12-21 | 1977-12-21 | Driving method of solid-state image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5940347B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58136179A (en) * | 1982-02-05 | 1983-08-13 | Sony Corp | Solid-state image pickup device |
JPS5933979A (en) * | 1982-08-20 | 1984-02-24 | Nippon Kogaku Kk <Nikon> | Driving method of inter-line transfer ccd |
JPS60176370A (en) * | 1984-02-21 | 1985-09-10 | Nippon Kogaku Kk <Nikon> | Driver of solid-state image pickup device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS522211A (en) * | 1975-06-24 | 1977-01-08 | Oki Electric Ind Co Ltd | Video scanning system |
-
1977
- 1977-12-21 JP JP52152900A patent/JPS5940347B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5485632A (en) | 1979-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI327861B (en) | Solid-state imaging device, driving method therefor, and imaging apparatus | |
KR870005542A (en) | Video camera device | |
US5777671A (en) | Solid state imager having high frequency transfer mode | |
JPS5940347B2 (en) | Driving method of solid-state image sensor | |
JP2000299817A (en) | Solid-state image pickup element, its drive method and camera system | |
US4862487A (en) | Solid-state imaging device | |
EP1328115B1 (en) | A ccd having improved flushing by reducing power consumption and creating a uniform dark field while maintaining low dark current | |
US4857996A (en) | Image pickup device with reduced fixed pattern noise | |
JP2671307B2 (en) | Solid-state imaging device | |
JPS61172488A (en) | solid-state imaging device | |
JPH04237271A (en) | Image pickup device | |
JP3852494B2 (en) | Solid-state imaging device and driving method thereof | |
JPH05326919A (en) | Image reading apparatus | |
JP2658062B2 (en) | Still video camera imaging method | |
JP3093645B2 (en) | Imaging device having charge storage type light receiving unit | |
JP2549653B2 (en) | Solid-state image sensor camera | |
JP2956289B2 (en) | Solid-state imaging device afterimage characteristic evaluation method | |
JP2634804B2 (en) | Signal reading method for solid-state imaging device | |
JP3340482B2 (en) | Method and apparatus for sweeping out unnecessary charge of image sensor | |
JP2004222128A (en) | Method for driving solid-state image pickup device | |
RU2150179C1 (en) | Device for stabilization of video signal amplitude | |
JPH11234572A (en) | Image pickup device and its drive method | |
JP3641714B2 (en) | Method for driving solid-state imaging device and imaging device using the same | |
JPH0965213A (en) | Image pickup device | |
JPS63164578A (en) | Solid state image pickup device |