JPS5939778A - Composite sintered body tool and manufacture - Google Patents
Composite sintered body tool and manufactureInfo
- Publication number
- JPS5939778A JPS5939778A JP14737082A JP14737082A JPS5939778A JP S5939778 A JPS5939778 A JP S5939778A JP 14737082 A JP14737082 A JP 14737082A JP 14737082 A JP14737082 A JP 14737082A JP S5939778 A JPS5939778 A JP S5939778A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- sintered
- hard
- support
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000956 alloy Substances 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 38
- 239000010432 diamond Substances 0.000 claims description 32
- 229910003460 diamond Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000007791 liquid phase Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 239000010953 base metal Substances 0.000 claims 4
- 238000003466 welding Methods 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000002542 deteriorative effect Effects 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000005219 brazing Methods 0.000 description 22
- 238000005520 cutting process Methods 0.000 description 15
- 238000005553 drilling Methods 0.000 description 8
- 239000011435 rock Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- -1 iron group metals Chemical class 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 101150033765 BAG1 gene Proteins 0.000 description 2
- 229910009043 WC-Co Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 101150051314 tin-10 gene Proteins 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
微細なダイヤモンド粒子を鉄族金属等の結合材を用いて
超高圧、高温下で焼結して得られるダイヤモンド焼結体
は切削工具や伸線ダイス又はドリルビットの刃先材とし
て従来の超硬合金に比較して格段に優れた耐摩耗性を有
することから新らしい工具材として注目されている。[Detailed description of the invention] The diamond sintered body obtained by sintering fine diamond particles at ultra-high pressure and high temperature using a binder such as iron group metal can be used as the cutting edge of cutting tools, wire drawing dies, or drill bits. It is attracting attention as a new tool material because it has much better wear resistance than conventional cemented carbide.
このダイヤモンド焼結体は工具材として優れた特徴を有
しているが、その製造には超高圧装置を必要とするため
、焼結体の大きさ、形状においては超硬合金に比較する
と制約される点が多い。This diamond sintered body has excellent characteristics as a tool material, but its production requires ultra-high pressure equipment, so the size and shape of the sintered body are limited compared to cemented carbide. There are many points.
一般には第1図に示したような円板状の焼結体とし、図
の1がダイヤモンド焼結体部で、2はこれをサポートす
る超硬合金製の母材である。3は例えば特願昭54−1
1127に記載されているような中間接合層である。こ
の複合焼結体を円板のまま又は適宜切断して例えば切削
工具の場合は鋼製のバイト、シャンクにロウ付けしてバ
イトを製作する。このようなロウ付は加工時にダイヤモ
ンド焼結体部が約700℃以上に=定時間以上加熱され
ると特性の劣化が生じることが判明している。Generally, it is a disc-shaped sintered body as shown in FIG. 1, and 1 in the figure is a diamond sintered body part, and 2 is a base material made of cemented carbide that supports this part. 3 is, for example, patent application 1984-1.
1127. This composite sintered body is made into a disc as it is or by cutting it as appropriate and brazing it to a steel bit or shank in the case of a cutting tool, for example, to produce a cutting tool. It has been found that such brazing causes deterioration of characteristics if the diamond sintered body is heated to about 700° C. or higher for a certain period of time during processing.
このため通常低融点の銀ロウ材等を用いてロウ付けして
いる。一般の切削工具等の用途に対してはこのような低
融点のロウ材を用いたロウ付けでも工具に加わる切削応
力が比較的小さい使用条件下では問題はない。ところが
岩石を掘削するドリルビットにこの焼結体を応用する場
合はこの方法では不充分であることが11明した。For this reason, brazing is usually performed using a low melting point silver brazing material or the like. For applications such as general cutting tools, even brazing using such a low melting point brazing material poses no problem under usage conditions in which the cutting stress applied to the tool is relatively small. However, it has been found that this method is insufficient when applying this sintered body to a drill bit for drilling rock.
ドリルビットでは第1図に示したようす統結体を第8図
tζ示す如く多数ビットクラウンに埋め込んで刃先とし
て使用する。このような例は米国特許第4098862
号に開示されている。第1図の如き複合焼結体を融点7
00℃以下の低融点ロウ材を用いてビットクラウンに接
合したドリルビットを用いて岩石の掘削を行なうと、比
較的柔らかく掘削が容易な砂岩等を掘削する場合は余り
問題はないが、火成岩等の東・硬質岩を掘削するとロウ
付は部より刃先焼結体が脱落したり、又はロウ措は部が
動くといった問題が生じた。低融点ロウ材として一般的
に用いられるPA四つ(例えばJIS規格BAg−1)
は室温でのせん断強度が高々20に9/yg”程度
で高温になると著しく強度が低下する。ドリルビットで
は先ず刃先に加わる掘削応力が大きく、また岩石は均一
なものは少ないため、その応力の変動が大きい。更に泥
水等の掘削液体を使用しても高深度の地層を掘削する場
合は掘削時の刃先部のみならずビット自体の温度も高温
になる。又地層によっては泥水が使用できない場合も生
じる。In a drill bit, a large number of integrated bodies as shown in FIG. 1 are embedded in the bit crown as shown in FIG. 8 tζ and used as cutting edges. An example of this is U.S. Pat. No. 4,098,862.
Disclosed in the issue. A composite sintered body as shown in Figure 1 has a melting point of 7.
When drilling rocks using a drill bit whose bit crown is bonded to a low-melting-point brazing material of 00°C or less, there is no problem when drilling sandstone, etc., which is relatively soft and easy to drill, but when drilling igneous rocks, etc. When excavating hard rocks, problems arose such as the sintered cutting edge falling off from the brazing part, or the brazing part moving. Four PAs commonly used as low melting point brazing materials (e.g. JIS standard BAg-1)
The shear strength of a drill bit at room temperature is approximately 20 to 9/yg, and the strength decreases significantly at high temperatures.First of all, the drilling stress applied to the cutting edge of a drill bit is large, and since rocks are rarely uniform, it is difficult to reduce that stress. The fluctuation is large.Furthermore, even if drilling fluid such as muddy water is used, when drilling deep geological strata, not only the cutting edge but also the bit itself becomes high in temperature.Also, depending on the stratum, muddy water cannot be used. also occurs.
以上のことから特にダイヤモンド焼結体をドリルビット
に応用する際には第1図の如き焼結体のビットクラウン
への固定方法が非常に重要である。For the above reasons, especially when applying a diamond sintered body to a drill bit, the method of fixing the sintered body to the bit crown as shown in FIG. 1 is very important.
本発明は上記の目的に対し種々検討を行なった結果到達
したものである。第2図により本発明の詳細な説明する
。The present invention has been achieved as a result of various studies aimed at achieving the above objectives. The present invention will be explained in detail with reference to FIG.
第2図(イ)、(ロ)の1.&8は第1図と同じもので
ある。超高圧、高温下で焼結したこれらの複合焼結体を
更に体積が大きい硬質焼結合金の支持体5゜6に接合す
るに当って、図の如く母材部2と支持体50間に高強度
の金属又は合金の厚さ1に以下の板4をはさみ、この部
分を電子ビーム又はレーザーの如き高エネルギーの細い
ビーム7を用いて瞬間的に溶解させ接合を行なう。この
とき、中間に挿入したインサート金属又は合金4は溶解
するとともに、母材硬質焼結合金及び支持体焼結硬質合
金の一部′がインサート金属、又は合金中に拡散し、硬
質物質がインサート金属または合金中に分散して析出す
る。このため、インサート金属又は合金の強度や耐摩耗
性はさらに増加するとともに、焼結硬質合金とインサー
ト金属又は合金の界面強度も非常に高くなる。この中間
にそう人するインサート金属又は合金は溶解、凝固後の
強度が前述した通常のロウ材よりも大中に高(、接合強
度が大となる材料を選択する。好適な材料はFe *
N t a C。1 in Figure 2 (a) and (b). &8 is the same as in FIG. When joining these composite sintered bodies sintered under ultra-high pressure and high temperature to a support 5.6 made of a hard sintered alloy with a larger volume, a gap is created between the base material 2 and the support 50 as shown in the figure. The following plates 4 are sandwiched between a high-strength metal or alloy having a thickness of 1, and this portion is instantaneously melted and bonded using a high-energy narrow beam 7 such as an electron beam or laser. At this time, the insert metal or alloy 4 inserted in the middle is melted, and a part of the base material hard sintered alloy and the support material sintered hard alloy is diffused into the insert metal or alloy, and the hard substance is inserted into the insert metal. Or dispersed and precipitated in the alloy. Therefore, the strength and wear resistance of the insert metal or alloy are further increased, and the interfacial strength between the sintered hard alloy and the insert metal or alloy is also extremely high. For insert metals or alloys that fall somewhere in between, select a material whose strength after melting and solidification is medium to high (and bonding strength is high) compared to the normal brazing material mentioned above. A suitable material is Fe*
Nt a C.
からなる鉄族金属又はこれ等を主成分とする合金板であ
る。一般にロウ付けでは接合すべき基体の融点より低い
融点を有するロウ材を用いる。これはロウ付けにおいて
は接合すべき基体の少(とも一方を使用するロウ材の融
点以上に加熱することを必要とするからである。This is an iron group metal consisting of or an alloy plate mainly composed of iron group metals. Generally, in brazing, a brazing material having a melting point lower than the melting point of the substrates to be joined is used. This is because brazing requires heating at least one of the substrates to be joined to a temperature higher than the melting point of the brazing material used.
これに対して本発明では接合すべき母材の融点以上の融
点を有する材料をインサート金属として使用することが
可能となり、一般のロウ材(銀四つ、銅ロウ、Niロウ
)よりも高強度の材料により接合を行なうことができる
。ダイヤモンド焼結体の母材(第1.2図の2)はWC
m Tics Tact MoC等の周期律表の第4a
* 5a* 6a 族の炭化物、炭窒化物、窒化物等を
鉄族金属で結合した硬質焼結合金が用いられる。好適な
例は籠又はMoC又は(Mo 、W)CをCo又はNi
で結合した焼結合金である。ffa例えばVl/C−C
o合金の液相出現温度は約1320℃である。In contrast, with the present invention, it is possible to use a material with a melting point higher than the melting point of the base materials to be joined as the insert metal, which has higher strength than general brazing materials (silver brazing, copper brazing, Ni brazing). Bonding can be performed using the following materials. The base material of the diamond sintered body (2 in Figure 1.2) is WC.
4a of the periodic table such as m Tics Tact MoC etc.
A hard sintered alloy is used in which carbides, carbonitrides, nitrides, etc. of the *5a*6a group are bonded with iron group metals. A preferred example is a cage or MoC or (Mo, W)C with Co or Ni
It is a sintered alloy bonded with ffa e.g. Vl/C-C
The liquid phase appearance temperature of the O alloy is about 1320°C.
本発明で使用する支持体(第2図の5.6)は母材(第
2図の2)と同様の硬質焼結合金である。The support used in the present invention (5.6 in FIG. 2) is a hard sintered alloy similar to the base material (2 in FIG. 2).
母材部と支持体を接合するインサート金属、合金として
は鉄族金属又はこれ等を主成分とする合金が適している
。As the insert metal or alloy for joining the base material and the support, iron group metals or alloys containing these as main components are suitable.
中でもCo又はNiは接合すべき硬質焼結合金の結合相
として使用されており、溶解接合時に接合強度を低下せ
しめるような冶金学的な欠陥を生じ難い点て好ましい。Among these, Co or Ni is used as a binder phase for hard sintered alloys to be joined, and is preferred because it is unlikely to cause metallurgical defects that would reduce joint strength during melt joining.
特にインサート金属としてNi又はNi 合金を用い
た場合は溶解接合時に硬質焼結合金中の例えばWCや(
Mo 、W ) C等の炭化物が分解してインサート金
属と反応して有害な複合炭化物相が析出するようなこと
が少なく、凝固後のインサート金属中にはWCや(Mo
sW)Cの如く硬質焼結合金中と同一の組成の炭化物が
分散、析出しており、極めて高強度の接合が可能である
。分散、析出している炭化物等の硬質物質の含有量は容
積で0.1%〜60%が好ましい。含有量がo、i96
未満であるとインサート金属の強度向上は望めず、また
含有量が60容量%を超えると、炭化物が分解してイン
サート金属中にボアーが生じ、強度が低下する。インサ
ート金属の厚さは1m以下が好ましい。厚さがl tx
を越えるとインサート金属の耐摩耗性が劣るため、好ま
しくない。In particular, when Ni or Ni alloy is used as the insert metal, for example, WC or (
It is rare for carbides such as Mo, W) C to decompose and react with the insert metal to precipitate a harmful composite carbide phase, and the insert metal after solidification does not contain WC or (Mo).
Carbide having the same composition as in the hard sintered alloy, such as sW)C, is dispersed and precipitated, making it possible to bond with extremely high strength. The content of hard substances such as dispersed and precipitated carbides is preferably 0.1% to 60% by volume. Content is o, i96
If the content is less than 60% by volume, the strength of the insert metal cannot be improved, and if the content exceeds 60% by volume, carbides are decomposed to form bores in the insert metal, resulting in a decrease in strength. The thickness of the insert metal is preferably 1 m or less. Thickness is l tx
Exceeding this is not preferable because the wear resistance of the insert metal will be poor.
本発明の複合焼結体をドリルビット刃先として使用する
に当っては、第8図に示す如くビットクラウンの部分に
凹所を設け、これに支持体部(第2図(ロ)の6)を圧
入又は焼ばめして強固に固定することができる。又体積
の大きな支持体部を利用して通常のロウ付けによってダ
イヤモンド焼結体部に加熱による劣化を生じさせること
なく固定することも可能となる。When using the composite sintered body of the present invention as a drill bit cutting edge, a recess is provided in the bit crown portion as shown in FIG. It can be firmly fixed by press-fitting or shrink-fitting. Furthermore, it is also possible to fix the diamond sintered body to the diamond sintered body by ordinary brazing by using a support having a large volume without causing deterioration due to heating.
以上上としてドリルビットへの応用を中心に述べたが、
他の用途例えば切削工具、穴明は工具、砥石のドレッサ
ーや耐摩用途に対しても刃先部の焼結体と工具支持部の
接合面積が比較的に小さく接合強度が通常のロウ付けで
不足する場合1ζは極めて有用である。The above discussion focused on application to drill bits, but
For other applications such as cutting tools, drilling tools, grindstone dressers, and wear-resistant applications, the joint area between the sintered body at the cutting edge and the tool support is relatively small, and the joint strength is insufficient with normal brazing. The case 1ζ is extremely useful.
以下実施例により詳細に説明する。This will be explained in detail below using examples.
実施例1゜
超高圧、高温下で焼結して得られた#S1図の如き焼結
体を準備した。直径はlQM、ダイヤモンド焼結体部l
は体積で約90%のダイヤモンド粒子をCo を結合
材として超高圧、高温下で焼結したもので厚みは0.5
題である。母材2は厚さ8開のWC−6%Coの超硬合
金で、この母材とダイヤモンド焼結体は厚さ80μの中
間接合層を介して焼結と同時)ζ接合されている。中間
接合層はCBNを体積で60%とTiN−10重量%A
f の焼結体で形成されている。この複合ダイヤモン
ド焼結体を直径io題で長さがlQBのWC−12%C
o合金製の支持体に接合した。インサート金属板として
、Niの直径11mx、厚さ0.5myn、の板4を用
いた。それぞれを脱脂、洗浄、脱磁処理後、第2図の如
くセットシ、これを真空チャンバー内に装入し、加速電
圧150KV、ビーム電流(1mA1 ビーム径0.3
1nJn、で2秒間でNi インサート材を溶fWせ
しめて接合した。Example 1 A sintered body as shown in Fig. #S1 obtained by sintering under ultra-high pressure and high temperature was prepared. Diameter is lQM, diamond sintered body part l
is made by sintering approximately 90% diamond particles by volume under ultra-high pressure and high temperature using Co as a binder, and the thickness is 0.5%.
That's the issue. The base material 2 is a cemented carbide of WC-6% Co with a thickness of 8 mm, and this base material and the diamond sintered body are ζ-bonded via an intermediate bonding layer with a thickness of 80 μm (simultaneously with sintering). The intermediate bonding layer is made of 60% CBN by volume and TiN-10%A by weight.
It is made of a sintered body of f. This composite diamond sintered body is made of WC-12%C with a diameter of io and a length of lQB.
It was joined to a support made of o alloy. As the insert metal plate, a Ni plate 4 having a diameter of 11 mx and a thickness of 0.5 myn was used. After degreasing, cleaning, and demagnetizing each, set them as shown in Figure 2 and place them in a vacuum chamber.
The Ni insert material was melted and bonded at 1 nJn for 2 seconds.
溶接後の複合焼結体を分断してX線マイクロアナライザ
ーにより観察した結果を第4図に示す。FIG. 4 shows the results of dividing the welded composite sintered body and observing it with an X-ray microanalyzer.
Ni インサート中には母材WC−Co超硬合金の成
分であるWとCo が拡散しており硬質物質である籠
が析出しており、この含有量は体積で15%であった。W and Co, which are components of the base material WC-Co cemented carbide, were diffused into the Ni insert, and a cage, which was a hard substance, was precipitated, and the content was 15% by volume.
またNi は母材WC−Coへ拡散している。Further, Ni is diffused into the base material WC-Co.
次にこの接合部のせん断強度を測定した。比較のためJ
IS BAg −1相当の銀四つ材を用いて、同じ焼結
体と支持体をロウ付けした試料も作成しせん断強度を測
定した。その結果、本発明のものは常温で80 Kf/
IuL” 、 850℃でも’l0Ky/g−の値を示
したのに対し、比較材はそれぞれ20”/!RjL”
e 1 f3 Kp/gz。Next, the shear strength of this joint was measured. J for comparison
A sample was prepared by brazing the same sintered body and support using four silver materials equivalent to IS BAg-1, and the shear strength was measured. As a result, the product of the present invention has a power of 80 Kf/
IuL", showed a value of 'l0Ky/g- even at 850°C, whereas the comparative materials each showed a value of 20"/! RjL”
e 1 f3 Kp/gz.
であった。Met.
実施例&
実施例1で用いたものと同じ第2図(イ)の如き措造を
有する複合ダイヤモンド焼結体をSCM鋼で製作された
ビットボディへ圧入し、8枚歯よりなる直径60mのコ
アビットを作成した。比較のため市販のビット用ダイヤ
モンド焼結体を超硬合金に四−付けした複合ダイヤモン
ド焼結体を同様にして、 SCMIIのビットボディに
圧入したコアピットも作成した。Example & A composite diamond sintered body having the same structure as that used in Example 1 as shown in Fig. 2 (a) was press-fitted into a bit body made of SCM steel, and a 60 m diameter diamond with 8 teeth was press-fitted into a bit body made of SCM steel. Created core bit. For comparison, a composite diamond sintered body made by attaching a commercially available diamond sintered body for bits to a cemented carbide was similarly press-fitted into the SCMII bit body to create a core pit.
これらのコアピットで一軸圧縮応力1700 Ky/c
mRの安山岩を50m/分の速度で20m掘削したとこ
ろ、本発明のビットは刃先の脱落もなく、さらに掘削可
能であった。Uniaxial compressive stress of 1700 Ky/c in these core pits
When excavating 20 m of mR andesite at a speed of 50 m/min, the bit of the present invention did not cause the cutting edge to fall off, and further excavation was possible.
一方市販の複合ダイヤモンド焼結体を用いたビットは2
ケのダイヤモンド焼結体がロウ付は部より剥離した。On the other hand, the bit using commercially available composite diamond sintered body is 2
The diamond sintered body peeled off from the soldered area.
実施例&
直径14RILの(Mo、W ) C−1596Ni
−59’6 Co合金母材に直接接合された厚さ&5門
のダイヤモンド焼結体ブランクを用意した。ダイヤモン
ド焼結体は85容量%のダイ主モンド粒子を(Mo、w
)c、Nt。Example & (Mo, W) C-1596Ni with diameter 14RIL
-59'6 A diamond sintered body blank with a thickness of 5 gates and directly bonded to a Co alloy base material was prepared. The diamond sintered body contains 85% by volume of diamond particles (Mo, w
) c, Nt.
Co を結合材として超高圧、高温下で焼結したもの
で、厚さ0.5Mである。It is sintered under ultra-high pressure and high temperature using Co as a binder, and has a thickness of 0.5M.
この複合ダイヤモンド焼結体を直径14xm、長さ5H
の(Mo、W)C−2096Ni−596Co合金の支
持体に接合した。インサート金属による接合強度を調査
するため、直径15xm、厚さ0.6#llのN t
r Co aFe 板を用°意し、加速電圧150KV
、ビーム電流lO”A aビーム径0.8Bで5秒間で
インサート金属を溶解せしめてダイヤモンド焼結体ブラ
ンクと支持体を接合した。これらのせん断強度を常温で
測定したところNl をインサート金属として用いた
もoは、85 Kl/B”*Co を用いたものは7
.9にダ/m” tFe を用いたものは’IOKI
7m−であった。This composite diamond sintered body has a diameter of 14 x m and a length of 5 H.
(Mo, W)C-2096Ni-596Co alloy support. In order to investigate the bonding strength using insert metal, N t with a diameter of 15 x m and a thickness of 0.6 #ll was used.
r Prepare a Co aFe board and apply an acceleration voltage of 150KV.
The diamond sintered blank and the support were bonded by melting the insert metal in 5 seconds with a beam current of 1O''A and a beam diameter of 0.8B.The shear strength of these was measured at room temperature, and it was found that Nl was used as the insert metal. Itamo o is 85 Kl/B”*Co is 7
.. 9 using da/m" tFe is 'IOKI'.
It was 7m.
第1図は本発明で用いる複合ダイヤモンド焼結体の槽造
を示す斜視図、第2図(イ)、←)は本発明の複合焼結
体工具及びその製法を説明する図である。
第8図は本発明の応用であるドリルビットの例であや、
(イ)が正面図、←)が上面図である。
第4図(イ)、(ロ)、(9、に)はNi インサー
トを用いて接合したダイヤモンド焼結体母材とNi
インサートの接合界面を示す150倍拡大の顕微鏡写真
である。
l;ダイヤモンド焼結体、2;母材部、8;中間層、4
;インサート金属、58支持体、6;支持体、7;高エ
ネルギービーム、8;複合焼結体、0 ・ 1/ 智
フ t −! ギノ第1図
才2図FIG. 1 is a perspective view showing the construction of a vessel for the composite diamond sintered body used in the present invention, and FIG. 2 (a), ←) is a diagram illustrating the composite sintered body tool of the present invention and its manufacturing method. Figure 8 is an example of a drill bit which is an application of the present invention.
(A) is a front view, and ←) is a top view. Figures 4 (a), (b), and (9) show the diamond sintered base material and Ni
It is a 150 times enlarged micrograph showing the bonding interface of the insert. l; Diamond sintered body, 2; Base material portion, 8; Intermediate layer, 4
; insert metal, 58 support, 6; support, 7; high energy beam, 8; composite sintered body, 0.1/chifut-! Gino 1st figure 2nd figure
Claims (1)
ヤモンド焼結体部と、これに超高圧、高圧下での焼結時
に直接、または、厚さ0.5n以下の中間層を介在して
結合された硬質焼結合金製の母材部からなる複合焼結体
が該母材部より大きな体積を有する支持体に接合された
複合焼結体工具において、該支持体が硬質焼結合金であ
り、上記複合焼結体の母材部端面と支持体とが該硬質焼
結合金の液相出現温度以上の融点を有する厚さ1IuL
以下の高強度の金属又は合金層を介して溶接接合されて
おり、該高強度の金属または合金中に硬質焼結合金母材
及び硬質焼結合金支持体の硬質物質が分散、析出してい
ることを特徴とする複合焼結体工具。 (2、特許請求の範囲第(1)項記載の複合焼結体工具
において、母材部及び支持体の接合層が鉄族金属又はこ
れを主成分とする合金であることを特徴とする複合焼結
体工具。 (3)特許請求の範囲第(1)項記載の複合焼結体工具
において母材部及び支持体がWC又は(Mo、W) C
を主成分とし、結合相が主としてCo、Niからなる硬
質焼結合金であり、両者が厚さl myr、以下のNi
又はNi合金層を介して溶接接合されてなり、該接合層
tlJに溶接時に母材部及び支持体の硬質焼結合金より
拡散してきたWC又は(Mo 、W ) Cが分散して
析出していることを特徴とする複合焼結体工具。 (4)高強度の金属または合金層中に分散して析出して
いる硬質、物質の含有量が容はで0.1% 以上、60
96以下の特許請求の範囲第(1)、(2)、(3)項
記載の複合焼結体工具。 (5)ダイヤモンドを体積で50%以上含有するダイヤ
モンド焼結体部と、これを超高圧、高温下での焼結時に
直接、または、厚さを0.5訂以下の中間層を介在して
結合された硬質焼結合金製の母[オ部よりなる複合焼結
体を、この複合焼結体の母材部端面とこの母材部より大
きな体積を有する硬質焼結合金の支持体端面との間に高
強度の金Ji4又は合金の、厚さlIt!L以下の板を
はさみ、この仮を高エネルギービームによって該硬質焼
結合金の液相出現温度以上の温度に加熱溶融させ、該硬
質合金製母材部及び支持体の端面より硬質合金中の硬質
化合物を溶融した板中に拡散させ、分散して析出せしめ
、ダイヤモンド焼結体部が実質的に劣化しない状態で該
母材と支持体を溶接接合させることを特徴とする複合焼
結体工具の製造方法。 (6)特許請求の範囲第(4)項において、高エネルギ
ービームが電子ビームまたはレーザービームであること
を特徴とする複合焼結体工具の製造方法。[Scope of Claims] (1) A diamond sintered body containing 5096 or more diamonds by volume, and an intermediate layer with a thickness of 0.5 nm or less that is applied directly to this during sintering under ultra-high pressure and high pressure. In a composite sintered tool in which a composite sintered body consisting of a base metal part made of a hard sintered alloy is joined to a support body having a larger volume than the base metal part, the support body is made of a hard sintered alloy. The hard sintered alloy has a thickness of 1 IuL, and the base metal end face of the composite sintered body and the support have a melting point higher than the liquid phase appearance temperature of the hard sintered alloy.
They are welded together through the following high-strength metal or alloy layers, and the hard substances of the hard sintered alloy base material and hard sintered alloy support are dispersed and precipitated in the high-strength metal or alloy. A composite sintered tool characterized by: (2. The composite sintered tool according to claim (1), wherein the bonding layer between the base material and the support is made of an iron group metal or an alloy containing iron group metal as a main component. Sintered compact tool. (3) In the composite sintered compact tool described in claim (1), the base material portion and the support body are WC or (Mo, W)C.
It is a hard sintered alloy whose main components are
Or, they are joined by welding through a Ni alloy layer, and WC or (Mo, W)C, which has diffused from the hard sintered alloy of the base metal and support during welding, is dispersed and precipitated in the joining layer tlJ. A composite sintered tool characterized by: (4) The content of hard substances dispersed and precipitated in a high-strength metal or alloy layer is 0.1% or more, 60
A composite sintered tool according to claims (1), (2), and (3) below. (5) A diamond sintered body containing 50% or more of diamond by volume, which is sintered under ultra-high pressure and high temperature either directly or with an intermediate layer having a thickness of 0.5 or less. A composite sintered body consisting of a bonded hard sintered alloy motherboard is connected to an end face of the base material of the composite sintered body and an end face of a hard sintered alloy support having a larger volume than the base material. of high-strength gold Ji4 or alloy between the thickness lIt! A plate of L or less in size is sandwiched between the plates, and this temporary is heated and melted by a high-energy beam to a temperature higher than the liquid phase appearance temperature of the hard sintered alloy, and the hard alloy in the hard alloy is A composite sintered tool, characterized in that a compound is diffused into a molten plate, dispersed and precipitated, and the base material and support are welded together without substantially deteriorating the diamond sintered part. Production method. (6) The method for manufacturing a composite sintered tool according to claim (4), wherein the high-energy beam is an electron beam or a laser beam.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14737082A JPS5939778A (en) | 1982-08-24 | 1982-08-24 | Composite sintered body tool and manufacture |
CA000415073A CA1216158A (en) | 1981-11-09 | 1982-11-08 | Composite compact component and a process for the production of the same |
DE8282305971T DE3274815D1 (en) | 1981-11-09 | 1982-11-09 | A composite compact component comprising a diamond or boron nitride compact |
EP82305971A EP0079243B1 (en) | 1981-11-09 | 1982-11-09 | A composite compact component comprising a diamond or boron nitride compact |
US06/805,590 US4686080A (en) | 1981-11-09 | 1985-12-09 | Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14737082A JPS5939778A (en) | 1982-08-24 | 1982-08-24 | Composite sintered body tool and manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5939778A true JPS5939778A (en) | 1984-03-05 |
Family
ID=15428687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14737082A Pending JPS5939778A (en) | 1981-11-09 | 1982-08-24 | Composite sintered body tool and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939778A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184332A (en) * | 1984-03-02 | 1985-09-19 | 三菱電機株式会社 | Nutritive solution culture apparatus |
JPS61125707A (en) * | 1984-11-21 | 1986-06-13 | Sumitomo Electric Ind Ltd | Composite sintered tool and its manufacturing method |
-
1982
- 1982-08-24 JP JP14737082A patent/JPS5939778A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184332A (en) * | 1984-03-02 | 1985-09-19 | 三菱電機株式会社 | Nutritive solution culture apparatus |
JPH0217134B2 (en) * | 1984-03-02 | 1990-04-19 | Mitsubishi Electric Corp | |
JPS61125707A (en) * | 1984-11-21 | 1986-06-13 | Sumitomo Electric Ind Ltd | Composite sintered tool and its manufacturing method |
JPS6260201B2 (en) * | 1984-11-21 | 1987-12-15 | Sumitomo Electric Industries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4686080A (en) | Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same | |
US4959929A (en) | Tool insert | |
EP0157625B1 (en) | Composite tool | |
EP0418078B1 (en) | Composite abrasive compacts | |
US7487849B2 (en) | Thermally stable diamond brazing | |
US5111895A (en) | Cutting elements for rotary drill bits | |
JPH06669B2 (en) | High hardness sintered compact composite material with sandwich structure | |
JPH0218365A (en) | Wear-resistant polycrystalline diamond heat resistor | |
GB2427215A (en) | Thermally stable ultra-hard material compact constructions | |
US4772294A (en) | Brazed composite compact implements | |
JPS59134665A (en) | Method of coupling cubic boron nitride compact | |
US20060137257A1 (en) | Composite diamond compacts | |
EP0213300B1 (en) | Brazed composite compact implements | |
US5498480A (en) | Composite diamond abrasive compact | |
JPS5939778A (en) | Composite sintered body tool and manufacture | |
JPS5884187A (en) | Composite sintered tool and its manufacturing method | |
JPS5938491A (en) | Composite sintered tool and production thereof | |
JPS591104A (en) | Composite sintered tool and manufacturing method thereof | |
US4730765A (en) | Method of bonding by use of a phosphorus containing coating | |
JPS60210382A (en) | Manufacturing method of composite sintered tool | |
JP2003011067A (en) | Super-abrasive grain tool provided with sintered super- abrasive grain tip | |
JPS6049589B2 (en) | Composite sintered body for tools and its manufacturing method | |
US4941892A (en) | Tool component | |
JPS5879879A (en) | Composite diamond sintered body | |
JPS5884188A (en) | Composite sintered body tool and manufacture |