[go: up one dir, main page]

JPS5939769A - Method of sintering silicon nitride - Google Patents

Method of sintering silicon nitride

Info

Publication number
JPS5939769A
JPS5939769A JP57149382A JP14938282A JPS5939769A JP S5939769 A JPS5939769 A JP S5939769A JP 57149382 A JP57149382 A JP 57149382A JP 14938282 A JP14938282 A JP 14938282A JP S5939769 A JPS5939769 A JP S5939769A
Authority
JP
Japan
Prior art keywords
sintering
powder
stage
atmosphere
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57149382A
Other languages
Japanese (ja)
Other versions
JPS631273B2 (en
Inventor
栄治 上條
正明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57149382A priority Critical patent/JPS5939769A/en
Publication of JPS5939769A publication Critical patent/JPS5939769A/en
Publication of JPS631273B2 publication Critical patent/JPS631273B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)技術の背景 この発明は高温強度が高く、高密度を有する窒化けい素
焼給体を得るための窒化けい素の焼結方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (a) Background of the Technology The present invention relates to a method for sintering silicon nitride to obtain a silicon nitride burner having high high temperature strength and high density.

最近セラミックス材料、特に耐熱性材料としてのセラミ
ックスの開発が盛んに行われており、なかでも高温にお
いて安定な耐熱性物質である共有結合性化合物、特に窒
化けい素(SisN4)が非常にすぐれた材料であるこ
とが知られている。
Recently, the development of ceramic materials, especially ceramics as heat-resistant materials, has been actively conducted, and covalent compounds, especially silicon nitride (SisN4), which are heat-resistant substances that are stable at high temperatures, are excellent materials. It is known that

一般にセラミックスは、原料セラミックス粉末を成形焼
結して使用されるものであるが、Si3N4の場合は、
一般の酸化物セラミックスと異なり、難焼結性物質であ
るため、単独組成たとえば5iBN4  粉末のみを焼
結しても緻密な焼結体を得ることは困難である。
Ceramics are generally used by molding and sintering raw ceramic powder, but in the case of Si3N4,
Unlike general oxide ceramics, it is a material that is difficult to sinter, so it is difficult to obtain a dense sintered body even if only a single composition, such as 5iBN4 powder, is sintered.

このため5iaN4粉末の場合などにはMgOr kl
 201+ 1Y208 eceo2tBeoなどの酸
化物粉末を焼結助剤として添加して焼結することが行わ
れている。
Therefore, in the case of 5iaN4 powder, MgOr kl
Sintering is carried out by adding oxide powder such as 201+ 1Y208 eceo2tBeo as a sintering aid.

しかしてこのような焼結助剤を加えた5isN+粉末を
使用して通常行われているプレス成形をして真空あるい
は常圧で加熱焼結する方法は、焼結コストが低く工業的
に有用ではあるが、5i3Na焼結体に微孔がそのまま
残存するので高密度の焼結体を得ることは困難である。
However, the conventional method of press forming using 5isN+ powder containing a sintering aid and heating and sintering it in vacuum or normal pressure is not industrially useful due to its low sintering cost. However, since the micropores remain in the 5i3Na sintered body, it is difficult to obtain a high-density sintered body.

これに対して、高温下で加圧しながら焼結するホットプ
レス法は、より緻密な焼結体を得ることはできるが、高
温において強度低下が生ずる欠点があり、また焼結コス
トが高くつくという難点がある。
On the other hand, the hot press method, in which sintering is carried out under pressure at high temperatures, can produce a more dense sintered body, but it has the disadvantage that strength decreases at high temperatures and sintering costs are high. There are some difficulties.

この高温における強度低下は、焼結助剤の添加により5
isN4の粉末界面に低融点物質が生成することによる
ものであると考えられ、焼結助剤を使用する場合は不可
避である。
This decrease in strength at high temperatures can be reduced by adding sintering aids.
This is thought to be due to the formation of a low melting point substance at the isN4 powder interface, which is unavoidable when a sintering aid is used.

さらに焼結助剤の混合割合を減少し、あるいは焼結助剤
を添加せずに高圧ガス雰囲気中で焼結したり、爆発成型
などで粉末に瞬間的に高圧を加えて粉砕したのち、焼結
するなどの方法が試みられているが、何れの方法も焼結
コストが高く、また高温強度の低下現象が残る欠点があ
り、工業的な方法として成功していない。
Furthermore, the mixing ratio of the sintering aid may be reduced, or the powder may be sintered in a high-pressure gas atmosphere without the addition of a sintering aid, or the powder may be pulverized by instantaneously applying high pressure using explosive molding, etc., and then sintered. Methods such as sintering have been attempted, but all of these methods have the drawbacks of high sintering costs and a reduction in high-temperature strength, and have not been successful as industrial methods.

本発明者らは上記の点に鑑みて焼結助剤を用いながら高
温強度、高密度の5LaN4焼結体を得る51gN4粉
末の焼結法について、5isN4粉末をプレス成形した
のち、真木、減圧あるいは加圧などの各種の雰囲気およ
び温度など焼結条件を変化させて焼結を行って試験を繰
返した結果、この発明に至ったものである。
In view of the above points, the present inventors have developed a method for sintering 51gN4 powder to obtain a 5LaN4 sintered body with high temperature strength and high density while using a sintering aid.After press-forming 5isN4 powder, Maki, vacuum or This invention was achieved as a result of repeating tests by performing sintering under various atmospheres such as pressurization, and varying sintering conditions such as temperature.

(ロ)発明の開示 即ち、本発明は、焼結助剤を添加した5iaNn粉末の
成形体を焼結するに際し、焼結時の昇温過程を同一焼結
炉内で、 (第1段階) 真空雰囲気または還元性減圧雰囲気下で、成形体粉末に
吸着している酸素または水分等を蒸発または分解除去す
る工程 (第2段階) latm以下のN2  分圧を有する減圧雰囲気で粉末
成形体表面の酸化膜を除去しながら焼結する工程 (第8段階) latm以上のN2  分圧を有する加圧雰囲気で焼結
を進行させる工程 (第4段階) 1000 atm以上のN2またはArまたはArとN
11の混合ガス加圧雰囲気でさらに焼結体をち密化する
工程の4段階で行うことを特徴とするもので、これによ
って高密度、高強度で、高温での強度劣化の少い51g
N4焼結体が得られるのである。
(B) Disclosure of the Invention That is, the present invention provides that, when sintering a compact of 5iaNn powder to which a sintering aid has been added, the temperature raising process during sintering is carried out in the same sintering furnace (first step). A process of evaporating or decomposing oxygen or moisture adsorbed on the compact powder in a vacuum atmosphere or a reducing reduced pressure atmosphere (second stage). Step of sintering while removing the oxide film (8th step) Step of sintering in a pressurized atmosphere with N2 partial pressure of latm or more (4th step) N2 or Ar or Ar and N of 1000 atm or more
It is characterized by the process of further densification of the sintered compact in a pressurized atmosphere of a mixed gas of 11. This process results in a 51g product with high density, high strength, and little strength deterioration at high temperatures.
A N4 sintered body is obtained.

本発明の方法において、第1段階は、原料となる5is
N4粉末や焼結助剤粉末から、もしくは粉末処理工程で
含有または吸着する酸素、水分または有機物等の焼結阻
害物もしくは、焼結体中に残留し、焼結体特性を劣化さ
せる物質を除去しようとするものであり、真空または還
元性減圧雰囲気で行われる。処理温度範囲は、上記有害
物質の除去効果と5isNa粉末や焼結助剤粉末が分解
しないという観点から室温から1100°Cの範囲で行
うことが好ましい。
In the method of the present invention, the first step is to use 5is as a raw material.
Removes sintering inhibitors such as oxygen, moisture, or organic substances that are contained or adsorbed from N4 powder or sintering aid powder or during the powder processing process, or substances that remain in the sintered body and deteriorate the properties of the sintered body. It is intended to be carried out in a vacuum or in a reducing atmosphere. The treatment temperature range is preferably from room temperature to 1100° C. from the viewpoint of the effect of removing the above-mentioned harmful substances and preventing the 5isNa powder and the sintering aid powder from decomposing.

また第2段階は、成形体を構成する5iaN4粉末表面
の酸化物を除去しつつ焼結を進行させる工程であり、こ
の工程では液相が発生し、ち密化が開始するので、雰囲
気圧力としては減圧とし、焼結体中に雰囲気ガスまたは
、被焼結体から発生するガスがトラップされることによ
る空孔の残留を防がなければならない。雰囲気ガスとし
ては、被焼結体の分解を抑えるためにN2  分圧を必
要とし、また粉末表面の酸化物除去効果を高めるため、
N2またはCOガス分圧を加えることが有効である。
The second stage is a process in which sintering progresses while removing oxides on the surface of the 5iaN4 powder that constitutes the compact. In this process, a liquid phase is generated and densification begins, so the atmospheric pressure is The pressure must be reduced to prevent pores from remaining in the sintered body due to trapping of atmospheric gas or gas generated from the sintered body. As the atmospheric gas, N2 partial pressure is required to suppress the decomposition of the sintered body, and to enhance the effect of removing oxides from the powder surface.
It is effective to apply a partial pressure of N2 or CO gas.

処理温度としては、800〜1700℃の範囲で行うこ
とが好ましい。800°C以下の温度では酸化物除去効
果が期待できない。また1700°C以上での減圧処理
は、5isN4粉末の分解を促進するので好ましくない
The treatment temperature is preferably in the range of 800 to 1700°C. At temperatures below 800°C, no oxide removal effect can be expected. Further, a reduced pressure treatment at 1700° C. or higher is not preferable because it promotes decomposition of the 5isN4 powder.

第3段階は本来の焼結過程であり4.シたがって5i3
Niの分解を抑制しつつ焼結を進行させるためlatm
以上のN2  分圧を有する加圧雰囲気を必要とする。
The third stage is the original sintering process and 4. Therefore 5i3
latm to advance sintering while suppressing the decomposition of Ni.
A pressurized atmosphere with a partial pressure of N2 above is required.

処理温度は用いる焼結助剤の種類によっても異なるが一
般に1500〜2000°Cの範囲に入る。
Although the treatment temperature varies depending on the type of sintering aid used, it is generally in the range of 1500 to 2000°C.

第4・段階は、第3段階までの過程で残留する空孔を除
去し、焼結体をち密化するために1.000atm以」
二の雰囲気圧力で熱間静圧する工程である。一般には1
1000at以上の圧力下での熱間静圧処理はAr  
雰囲気で行われているが、5isN4焼結体の処理では
N2雰囲気中またはN2とAr  の混合ガス雰囲気で
行うのが5iaN4  の分解を抑えるためには好まし
い。温度は1600〜2000°Cの範囲が効果的であ
る。
The fourth stage is to remove pores remaining in the process up to the third stage and to densify the sintered body at a pressure of 1.000 atm or higher.
This is a step of applying hot static pressure at atmospheric pressure. Generally 1
Hot static pressure treatment under pressure of 1000at or more
However, in order to suppress the decomposition of 5iaN4, it is preferable to perform the treatment in an N2 atmosphere or a mixed gas atmosphere of N2 and Ar in the treatment of a 5isN4 sintered body. A temperature range of 1600 to 2000°C is effective.

以上水した様に本発明によれば、同一炉体内で、気中に
取り出すことなく連続的に、■成形体粉末に吸着してい
る有害物の除去する工程、■成形体粉末表面の酸化膜を
除去しつつ焼結する工程、■加圧N2  雰囲気で5i
aN4の分解を抑えつつ焼結を進行させる工程、■焼結
体に含まれる空孔を高圧雰囲気で除去し、焼結体をち密
化する工程を行うことができ、高純度、高密度、高強度
で、高温での強度特性劣化の少ない焼結体を得ることが
できる。
As mentioned above, according to the present invention, in the same furnace body, continuously without taking it out into the air, (1) a step of removing harmful substances adsorbed to the compact powder, (2) an oxide film on the surface of the compact powder. The process of sintering while removing ■ 5i in a pressurized N2 atmosphere
It is possible to perform the process of proceeding with sintering while suppressing the decomposition of aN4, and the process of removing the pores contained in the sintered body in a high-pressure atmosphere and making the sintered body denser, resulting in high purity, high density, and A sintered body with high strength and little deterioration of strength characteristics at high temperatures can be obtained.

実施例 SisN489wt%、A120a 7%、Y2O34
%の粉末混合物を試験片形状に型押成形し、下記条件に
て焼結した焼結体を研削後、曲げ強度を測定した結果を
第1表に示す。
Example SisN489wt%, A120a 7%, Y2O34
% of the powder mixture was pressed into the shape of a test piece, and the sintered body was sintered under the following conditions. After grinding, the bending strength was measured. Table 1 shows the results.

第  1  表Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)焼結助剤を添加した窒化けい素粉末の圧粉体を焼
結するに際し、昇温過程において同一焼結炉内で、 (第1段階) 真空雰囲気または還元性減圧雰囲気下で成形体中に吸着
している酸素または水分等を蒸発または分解除去する工
程 (第2段階) latm以下のN2  分圧を有する減圧雰囲気で粉末
成形体表面の酸化膜を除去しながら焼結させる工程 (第3段階) latm以上のN2  分圧を有する加圧雰囲気で焼結
を進行させる工程 (第4・段階) 1000 atm以上のN2またはArまたはArとN
2の混合ガス加圧雰囲気で、さらに焼結体をち密化する
工程 の4段階を経ることを特徴とする窒化けい素の焼結方法
(1) When sintering a compact of silicon nitride powder to which a sintering aid has been added, in the same sintering furnace during the temperature raising process, (first step) molding in a vacuum atmosphere or reducing reduced pressure atmosphere. A process of evaporating or decomposing and removing oxygen or moisture adsorbed in the powder body (second stage) A process of sintering while removing an oxide film on the surface of the powder compact in a reduced pressure atmosphere with a N2 partial pressure of latm or less ( 3rd step) A step of proceeding with sintering in a pressurized atmosphere having a N2 partial pressure of latm or more (4th step) 1000 atm or more of N2 or Ar or Ar and N
2. A method for sintering silicon nitride, which is characterized by passing through four steps of further densification of the sintered body in a pressurized mixed gas atmosphere.
(2)第1段階を室温から1100°Cの範囲で、第2
段階を800〜1700°Cの範囲で、第3段階を15
00〜2000°Cの範囲で、第4段階を1600〜2
000°Cの範囲で行うことを特徴とする特許請求の範
囲第1項記載の窒化けい素の焼結方法。
(2) The first stage is carried out at a temperature ranging from room temperature to 1100°C, and the second stage
The temperature range is 800-1700°C, and the third stage is 15°C.
In the range of 00 to 2000 °C, the fourth stage is 1600 to 2
2. The method for sintering silicon nitride according to claim 1, wherein the sintering method is carried out at a temperature of 0.000°C.
JP57149382A 1982-08-28 1982-08-28 Method of sintering silicon nitride Granted JPS5939769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149382A JPS5939769A (en) 1982-08-28 1982-08-28 Method of sintering silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149382A JPS5939769A (en) 1982-08-28 1982-08-28 Method of sintering silicon nitride

Publications (2)

Publication Number Publication Date
JPS5939769A true JPS5939769A (en) 1984-03-05
JPS631273B2 JPS631273B2 (en) 1988-01-12

Family

ID=15473902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149382A Granted JPS5939769A (en) 1982-08-28 1982-08-28 Method of sintering silicon nitride

Country Status (1)

Country Link
JP (1) JPS5939769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206358A (en) * 1987-02-20 1988-08-25 日本碍子株式会社 Manufacture of silicon nitride sintered body
JPH01290561A (en) * 1988-05-18 1989-11-22 Nippon Cement Co Ltd Production of silicon nitride-based ceramic sintered body
US4892848A (en) * 1985-07-30 1990-01-09 Kyocera Corporation Silicon nitride sintered body and process for preparation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102320A (en) * 1977-01-03 1978-09-06 Gen Electric Silicon nitride sintered articles and manufacture thereof
JPS55116675A (en) * 1979-02-27 1980-09-08 Ngk Insulators Ltd Manufacture of silicon nitride sintered body
JPS57106574A (en) * 1980-12-19 1982-07-02 Kobe Steel Ltd Method of sintering silicon nitride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102320A (en) * 1977-01-03 1978-09-06 Gen Electric Silicon nitride sintered articles and manufacture thereof
JPS55116675A (en) * 1979-02-27 1980-09-08 Ngk Insulators Ltd Manufacture of silicon nitride sintered body
JPS57106574A (en) * 1980-12-19 1982-07-02 Kobe Steel Ltd Method of sintering silicon nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892848A (en) * 1985-07-30 1990-01-09 Kyocera Corporation Silicon nitride sintered body and process for preparation thereof
JPS63206358A (en) * 1987-02-20 1988-08-25 日本碍子株式会社 Manufacture of silicon nitride sintered body
JPH01290561A (en) * 1988-05-18 1989-11-22 Nippon Cement Co Ltd Production of silicon nitride-based ceramic sintered body

Also Published As

Publication number Publication date
JPS631273B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
EP0079678B1 (en) Method for sintering silicon nitride
JPS5939769A (en) Method of sintering silicon nitride
JPS60186480A (en) Manufacture of press processed matter
JPH021793B2 (en)
JPH01252581A (en) Production of nitride ceramics
JPS60151281A (en) Aluminum nitride sintered body
JP2603615B2 (en) Densification method for ceramic parts
JPS5918165A (en) Manufacture of silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JPH0242792B2 (en)
JPS6146431B2 (en)
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JPH02164773A (en) Production of silicon nitride-based sintered body
JPH0224790B2 (en)
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPH0431364A (en) Production of silicon carbide sintered compact
JPH0283270A (en) Glass capsule hip method of ceramic molded article
JPH0465362A (en) Method for manufacturing silicon nitride sintered body
JP2825691B2 (en) Method of removing binder from aluminum nitride ceramic
JPS646142B2 (en)
JPS63265865A (en) Production of aluminum nitride sintered body
JPS6252177A (en) Manufacture of silicon nitride base sintered body
JPS62252388A (en) Silicon nitride sintered body
JPS6141869B2 (en)
JPS6141870B2 (en)