[go: up one dir, main page]

JPS5938714A - Reinforcing method of juncture of optical fibers - Google Patents

Reinforcing method of juncture of optical fibers

Info

Publication number
JPS5938714A
JPS5938714A JP15023082A JP15023082A JPS5938714A JP S5938714 A JPS5938714 A JP S5938714A JP 15023082 A JP15023082 A JP 15023082A JP 15023082 A JP15023082 A JP 15023082A JP S5938714 A JPS5938714 A JP S5938714A
Authority
JP
Japan
Prior art keywords
stage
resin
optical fiber
initiator
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15023082A
Other languages
Japanese (ja)
Inventor
Shigeru Tategami
舘上 滋
Takehiro Hayashi
武弘 林
Akihiro Otake
大竹 明博
Michito Matsumoto
松本 三千人
Shinichi Furukawa
真一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP15023082A priority Critical patent/JPS5938714A/en
Publication of JPS5938714A publication Critical patent/JPS5938714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To improve the strength in the juncture of optical fibers and to make the juncture withstandable substantially external bending force, etc. by providing a stage for setting the juncture and a tensile body, a stage for filling a curable resin and a stage for applying a curing initiator. CONSTITUTION:This invention relates to a method of melt sticking and connecting the covering removed parts 3A, 3B of a pair of covered optical fibers 1A, 1B having said parts 3A, 3B on the connecting end side. Said method is provided with a setting stage for setting the juncture of the optical fibers and a tensile body 11 to be placed alongside said part in molding dies 4M, 4N, a resin filling stage for filling a curable resin 13 of a radical reaction type in the molding dies, and an initiator applying stage for applying an initiator 12 for curing said resin in the molding dies. Said setting stage is accomplished in precedence to the resin filling stage, and the initiator applying stage is accomplished in synchronization with either of the setting stage or the resin filling stage or before or after the same.

Description

【発明の詳細な説明】 本発明は光フアイバ接続部の補強方法に関する。[Detailed description of the invention] The present invention relates to a method for reinforcing optical fiber connections.

光ファイバの接続手段として採用されている融着接続法
(加熱融着法)は、その接続部での伝送損失がきわめて
小さくできるまでに進歩しており、これよりも接続後の
補強に多くの技術的課題が残されている。
The fusion splicing method (thermal fusion splicing method) used as a means of connecting optical fibers has progressed to the point where the transmission loss at the splice can be extremely small. Technical issues remain.

まず、光ファイバの融着接続法を第1図により説明する
と、光フアイバ心線とも称されている1対の被覆光ファ
イバtl)A、 tllBはそれぞれコーティング層や
1吹被覆などを含めた被覆層+21A、 (21Bを有
しており、これらにはその端部かも被覆層(2)A、(
2)Bが除去されて被覆除去部[31A 、 +31 
Bが形成され、さらに被覆除去部(3)A、(31Bの
先端側が切断された後、両被覆除去部(31A 、 +
31 B端が突き合わされて放電加熱またはレーザ加熱
などにより融着接続される。
First, to explain the fusion splicing method of optical fibers with reference to Fig. 1, a pair of coated optical fibers tl)A and tllB, also called optical fiber cores, are each coated with a coating layer, a single coat, etc. layers +21A, (21B), and these have coating layers (2)A, (21B) at their ends.
2) B is removed and the coating removed part [31A, +31
B is formed, and after the tip sides of the coating removal parts (3) A and (31B are cut off, both coating removal parts (31A, +
31 B ends are butted together and fusion spliced by discharge heating, laser heating, or the like.

こうしてつくられた光フアイバ接続部は、モールド成形
法による被覆、熱収縮性チューブによる被覆などにより
補強されることとなっているが、この種の補強手段は接
続部を覆っている被覆材が温度変化番こより膨張収縮し
た際、不均一な側圧が発生するとか、当該接続部をうね
り曲がりさせるとか、よくいわれている接続部での突き
出し現象に対処できないとか、基本的に機械的強度が不
足しているなど、光フアイバ接続部の伝送ロス増や破断
原因をかなり多く内蔵している。
The optical fiber connection made in this way is reinforced by coating by molding, heat-shrinkable tube, etc., but this type of reinforcement means that the coating material covering the connection When expanding and contracting from the change number, uneven lateral pressure is generated, the connection part undulates, and the connection part is not able to cope with the protrusion phenomenon that is often said to occur. Basically, the mechanical strength is insufficient. It has many built-in causes of increased transmission loss and breakage at optical fiber connections.

1だ、これに対処すべく上記被覆時に抗張力体を併用す
る提案があり、これの場合は先に述べたものよりも補強
効果が高いが、該抗張力体の断面形状に工夫がないもの
は上記の問題点を多角的に解消することができないとと
もに作業性も悪くなる。
1. To deal with this, there is a proposal to use a tensile strength member in combination with the above-mentioned coating, and in this case, the reinforcing effect is higher than the one mentioned above, but if the cross-sectional shape of the tensile strength body is not devised, the above It is not possible to solve the problems from various angles, and the workability becomes worse.

それに既述のものは補強時にいずれも熱源を必要とする
から、単に不経済であるだけでなく電源設備のない作業
現場を考慮した場合には装置電源としてバッテリを常備
しなければならず、このため当該装置が大型化し、また
、補強に要する熱処理も数分を要するので作業性が悪い
In addition, all of the above-mentioned methods require a heat source during reinforcement, which is not only uneconomical, but also requires batteries to be kept on hand as a power source when considering work sites without power supply equipment. This increases the size of the device, and the heat treatment required for reinforcement takes several minutes, resulting in poor workability.

本発明は上記の諸問題点に鑑み、伝送ロス増の防止、機
械的強度の確保、作業性、熱源省略の諸点を主たる目的
として光フアイバ接続部の補強方法を改善したものであ
り、以下その具体的方法を図示の実施例により説明する
In view of the above-mentioned problems, the present invention improves a method for reinforcing optical fiber connections, with the main objectives of preventing an increase in transmission loss, ensuring mechanical strength, workability, and eliminating a heat source. A specific method will be explained using illustrated examples.

第2図は本発明方法に用いる上下1対の開閉自在な成形
型T4+ M 、 (41Nの1例を示したものであり
、これら成形型(41M、 (41Nの型合面には、前
記光フアイバ接続部および後記抗張力体を収納状態とし
て樹脂を注入充填すべき成形空間(5] M 、 [5
1Nが形成されており、さらにこれら成形空間i51 
M 、 (5,I Nの両端には抗張力体の保持部(6
) a 、 (61a ’ 、i6] b 、 (61
b ’ と光フアイバ被覆部+21A、 +2)Bの保
持部(71a 、 L71a’ 、L71b。
Fig. 2 shows an example of a pair of upper and lower molds T4+M, (41N) which can be opened and closed, and which are used in the method of the present invention. Molding space (5) M, [5] into which resin is to be injected and filled with the fiber connection part and the tensile strength body described below in a stored state.
1N is formed, and these molding spaces i51
M, (5, IN) At both ends of N there are holding parts (6
) a, (61a', i6] b, (61
b' and the optical fiber covering part +21A, +2)B holding part (71a, L71a', L71b).

+71 b ’ とか形成されているととも(こ上記一
方の成形型(4)Nにはその成形空間(5)Nと連通ず
る注入孔(8)、抜気孔+9+ +9)が穿設されてお
り、その他、筒成形型(4)M、(4)Nの型合面には
互いに吸着自在な埋めこみマグネットによる閉型手段Q
O)001が備えつけられている。
+71b' (one mold (4)N above has an injection hole (8) communicating with the molding space (5)N, and a vent hole +9+ +9). , In addition, there is a mold closing means Q using embedded magnets that can be freely attracted to each other on the mold mating surfaces of the cylindrical molds (4)M and (4)N.
O)001 is provided.

なお、上記の成形型(41M、(4)Nは金属製であっ
てももちろんよいが、型内部を外部から透視可能とする
場合には透明な合成樹脂製、透明な強化ガラス製とする
The molds (41M, (4)N) may of course be made of metal, but if the inside of the mold can be viewed from the outside, they should be made of transparent synthetic resin or transparent tempered glass.

つぎに第3図に示した各種抗張力体Uυについて説明す
ると、同図←)の抗張力体qυは角形のチャンネル形状
となっており、その上端および上面ζこは1対の内向片
OD+ 、QDl とこれら両内向片0υ、 、Qll
、間のスリット(Il12とを備えている。
Next, to explain the various tensile strength members Uυ shown in Fig. 3, the tensile strength member qυ shown in the figure ←) has a rectangular channel shape, and its upper end and upper surface ζ are a pair of inwardly directed pieces OD+, QDl and Both of these inward pieces 0υ, , Qll
, and a slit (Il12) between them.

さらに同図(ロ)の抗張力体qυは円形の筒状であり、
一方、同図(ハ)の抗張力体圓はこうした筒形のものが
複数の節制片003 、O’)3により講成されており
、該各部割片αυ3、αI13には多数の透孔tl11
. 、IJυ411υ4・・・・・が穿設されている。
Furthermore, the tensile strength member qυ in the same figure (b) has a circular cylindrical shape,
On the other hand, the tensile strength body shown in FIG.
.. , IJυ411υ4... are drilled.

tちろんこのような透孔(1114、Qυ4 、(IL
・・・・・は第3図(イ)(ロ)のものにも設けられて
いてよく、さらに該透孔が長孔状であっても不都合はな
い。
Of course, such a hole (1114, Qυ4, (IL
. . . may be provided in those shown in FIGS. 3(a) and 3(b), and there is no problem even if the through hole is in the shape of a long hole.

残る第3図に)の抗張力体圓は棒状からなっている。The remaining tensile strength body (see Fig. 3) is rod-shaped.

なお、上記における各抗張力体圓は主にステンレスなど
の金属製とし、場合によってはF R,P製のものも採
用する。
In addition, each tensile strength body circle mentioned above is mainly made of metal such as stainless steel, and in some cases, one made of FR or P is also adopted.

第4図は本発明方法が第2図の成形型(4)M、(4)
Nを介して行なわれる例をその工程順に示したものであ
り、この実施例では、上記第2図の成形型(41M 、
 (41Nが第3図(イ)の抗張力体01+と対応する
成形空間(51M 、 +51 Nを有しているのでそ
の抗張力体圓が用いられる。
Figure 4 shows that the method of the present invention is applied to the molds (4) M and (4) of Figure 2.
This example shows an example in which the process is carried out using the molding die (41M, 41M,
(Since 41N has a molding space (51M, +51N) corresponding to the tensile strength body 01+ in FIG. 3(A), that tensile strength body circle is used.

また、第4図の実施例および後述する他の実施例をも含
め、本発明方法に用いられる樹脂はラジカル反応系の硬
化性樹脂であり、具体的にはアクリル樹脂、ポリエステ
ル樹脂でもよいが、可撓性や接着性を望むときは、ポリ
ビニルヒドロキノン、ヒドロキノンホルムアルデヒド樹
脂、ジオキシフェニルアラニン重合体などのレドックス
樹脂がよく、当該硬化性樹脂の開始剤として、過酸化エ
チルメチルケトン(MBKP)、過酸化ベンゾイル(B
PO)などが用いられる。
In addition, the resin used in the method of the present invention, including the example shown in FIG. 4 and other examples described later, is a radical reaction type curable resin, and specifically, it may be an acrylic resin or a polyester resin, but When flexibility and adhesiveness are desired, redox resins such as polyvinylhydroquinone, hydroquinone formaldehyde resin, and dioxyphenylalanine polymer are good, and as an initiator for the curable resin, ethyl methyl ketone peroxide (MBKP), peroxide Benzoyl (B
PO) etc. are used.

第4図(イ)において、上下1対の成形型(4) M 
In Figure 4 (a), a pair of upper and lower molds (4) M
.

(4)Nは互いに開放され、下位の成形型(4)M内に
は第3図(イ)の抗張力体0υがセットされ、この状態
において該抗張力体I内外面の一部または全部に、イン
ジェクタによる注液手段とか、ブラシ塗布手段とか、ス
プレー法など、適宜の手段により前述した開始剤α2が
供与されるのであり、第4図(イ)の場合は該開始剤θ
2が抗張力体(il+の内面に塗布されている。
(4) N are opened to each other, and the tensile strength member 0υ shown in FIG. The above-mentioned initiator α2 is supplied by an appropriate means such as injection means using an injector, brush application means, spraying method, etc. In the case of FIG. 4(a), the initiator θ
2 is applied to the inner surface of the tensile strength member (il+).

つき゛に第4図(ロ)のごとく成形型(4)M内には光
フアイバ接続部がセットされ、その後、同図())のご
とく成形型(4)Mには成形型(4)Nが閉じ合わされ
る。
Therefore, the optical fiber connection part is set in the mold (4)M as shown in FIG. are closed together.

この閉型状態のとき、両成形型(4)M、(4)Nのい
ずれか一方または両方が透明であると、抗張力体aDや
光フアイバ接続部のセット状態が外部から透視でき、し
たがって当該セット状態の適音が外部から確認できる。
In this closed mold state, if either or both of the molds (4)M and (4)N are transparent, the set state of the tensile strength member aD and the optical fiber connection part can be seen from the outside, and therefore the relevant The appropriate sound of the set condition can be confirmed from the outside.

また、この際の閉型状態は前述したマグネットによる閉
型手段QO)00を介して保持される。
Further, the closed state at this time is maintained via the aforementioned mold closing means QO)00 using a magnet.

上記閉型後、両成形型(4)M、(4)Nの成形空間(
5)M、(5)N内ζこは注入孔(8)からラジカル反
応系の硬化性樹脂Q3+が注入充填される。
After the mold is closed, the molding spaces of both molds (4)M and (4)N (
5) M and (5) N are injected with a radical reaction type curable resin Q3+ from the injection hole (8).

こうして成形型(4)M、(4)N内に硬化性樹脂0題
が注入かつ充填され、該樹脂03)が開始剤(IZと接
触ないし混合(粗略な混合でよい)されると、同樹脂0
3)は直ちに遊離ラジカルを生成して連鎖的かつ瞬間的
に硬化する。
In this way, the curable resin 0 is injected and filled into the molds (4)M and (4)N, and when the resin 03) comes into contact with or mixes with the initiator (IZ) (rough mixing is fine), the same Resin 0
3) immediately generates free radicals and cures in a chain and instantaneously.

当該硬化後、これζこより補強された光フアイバ接続部
は成形型+41M、 (41N内から取り出され、第4
図((ホ)の状態となる。
After curing, the optical fiber connection part reinforced by this ζ is taken out from the mold +41M, (41N)
The state shown in the figure ((E) is reached.

なお、上記では第4図(イ)のセット状態とした抗張力
体Ql)に開始剤α2を供与したが、このセット前にお
ける抗張力体(111にあらかじめ開始剤QZを供与し
ておいてもよく、こうした場合には、抗張力体0υのセ
ントとともに開始剤O3が成形型(4)M内へ供与でき
る。
In the above, the initiator α2 was supplied to the tensile strength member Ql) set in the set state of FIG. In such a case, the initiator O3 can be provided into the mold (4)M together with the tensile strength member 0υ.

もちろん第4図(ロ)の時点、同図ぐX)の時点でもイ
ンジェクタなどを介して開始剤03を抗張力体圓表面に
供与することはでき、さらに開始剤(Iりの供与箇所は
両成形型(4)M、(4)Nの内面とか、光フアイバ接
続部の表面としてもよいし、これらの複数箇所に開始剤
α2を供与してもよく、こうした場合の供与時期も第4
図(ハ)の時点、あるいはそれよりも以前など、任意に
選定できる。
Of course, the initiator 03 can be applied to the surface of the tensile strength body through an injector etc. even at the time shown in FIG. 4 (B) and the time shown in FIG. The initiator α2 may be provided on the inner surface of the molds (4)M and (4)N, or on the surface of the optical fiber connection portion, or may be provided on multiple locations of the molds (4)M and (4)N.
The time can be arbitrarily selected, such as at the time shown in Figure (c) or earlier.

また、開始剤0zを供与しないで第4図に)の樹脂充填
工程までを終え、その後インジェクタを介して開始剤O
2を成形型(4)M、(4)N内へ注入するとか、ある
いは該充填工程と同期した開始剤注入も行なえ、同期注
入のときは型内への注入孔を複数設ける。
In addition, the resin filling step (see Fig. 4) is completed without supplying the initiator Oz, and then the initiator O is supplied through the injector.
2 into the molds (4)M and (4)N, or the initiator can be injected in synchronization with the filling process.For synchronous injection, a plurality of injection holes are provided in the mold.

つぎに第5図、第6図の実施例について説明すると、第
5図は第3図(ロ)の抗張力体圓を採用した実施例であ
り、さらに第6図は第3図に)の抗張力体a0を採用し
た実施例であり、これら両実施例も前記第4図の場合と
同様にして光フアイバ接続部の補強を行なう。
Next, the embodiments shown in Figs. 5 and 6 will be explained. Fig. 5 is an embodiment that adopts the tensile strength body shown in Fig. 3 (b), and Fig. 6 shows the tensile strength of Fig. 3 (b). In both of these embodiments, the optical fiber connection portion is reinforced in the same manner as in the case of FIG. 4.

第3図(ロ)の抗張力体uDを採用した第5図の場合、
該抗張力体圓の周壁に少なくとも1つの透孔または切欠
を設けておくことにより樹脂は抗張力体圓内にも進入す
るようになり、第3図(ハ)の抗張力体0υを採用した
場合も概ね第5図のようになる。
In the case of Fig. 5, which adopts the tensile strength member uD shown in Fig. 3 (b),
By providing at least one through hole or notch in the peripheral wall of the tensile strength body, the resin can also enter into the tensile strength body, and even when the tensile strength body 0υ shown in FIG. It will look like Figure 5.

なお、上記において抗張力体11)の形状構造が変わる
とき、各保持部f6) a % t6) a ’ 、(
Gl b %(61b’ 、(71a、(71a’ 、
(71b、(71b’ の形状も必要に応じて変わるこ
とになる。
In addition, when the shape structure of the tensile strength member 11) changes in the above, each holding part f6) a% t6) a', (
Glb % (61b', (71a, (71a',
The shapes of (71b, (71b') will also change as necessary.

つぎに第7図の実施例について説明すると、この実施例
では、抗張力体圓の両端部をも樹脂で被包するようにし
ており、そのため同図(イ)のごとく成形型(4)M、
 (4)Nには、その成形空間(5)M、(5)Nの端
部に隣接して小形の成形空間(51M’ 、(51N 
’が形成されている。
Next, the embodiment shown in FIG. 7 will be explained. In this embodiment, both ends of the tensile strength body circle are also covered with resin, so that the mold (4) M, as shown in FIG.
(4)N has molding spaces (5)M, and small molding spaces (51M', (51N) adjacent to the ends of (5)N).
' is formed.

この第7図(イ)の場合もAil述したいずれかの手段
で光フアイバ接続部が補強されることとなり、こうして
補強された接続部は同図(ロ)のようになる0 以上説明した通り、本発明方法は接続端側に被覆除去部
を有する1対の被覆光ファイバが該各被覆除去部の先端
を互いに突き合わせ状態として融着接続されている光フ
アイバ接続部の補強方法において、上記光フアイバ接続
部と該接続部に添えるべぎ抗張力体とを成形型内にセッ
トするセット工程と、成形型内にラジカル反応系の硬化
性樹脂を充填する樹脂充填工程と、該樹脂硬化用の開始
剤を成形型内に供与する開始剤供与工程とを備えており
、上記セット工程は樹11R充填工程よりも先行して行
ない、上記開始剤供与工程はセット工程、樹脂充填工程
のいずれか一方と同期または前後して行なうことを特徴
としている。
In the case of Fig. 7 (a), the optical fiber connection part is also reinforced by any of the means described above, and the thus reinforced connection part becomes as shown in Fig. 7 (b). , the method of the present invention is a method for reinforcing an optical fiber splicing portion in which a pair of coated optical fibers having a sheath removed portion on the splicing end side are fusion spliced with the tips of the sheath removed portions abutted against each other. A setting process in which the fiber connection part and a tensile strength member attached to the connection part are set in the mold, a resin filling process in which the mold is filled with a radical reaction type curable resin, and a start for curing the resin. The above-mentioned setting step is performed prior to the resin filling step, and the initiator providing step is performed in conjunction with either the setting step or the resin filling step. It is characterized by being performed synchronously or one after the other.

したがって本発明方法により補強された光フアイバ接続
部は被覆除去部が単に樹脂により被覆されたにとどまら
ず、該樹脂をバインダーとして上記接続部と抗張力体と
が一体化されることになり、その結果、当該接続部の強
度は抗張力体に依存して格段向上し、光フアイバ接続部
に曲げなどの外力が作用しても破断などを来すことなく
これに耐えるようになる。
Therefore, in the optical fiber connection reinforced by the method of the present invention, the removed portion is not only covered with resin, but also the connection and the tensile strength body are integrated using the resin as a binder. The strength of the connecting portion is greatly improved depending on the tensile strength member, and even if an external force such as bending is applied to the optical fiber connecting portion, it can withstand it without causing breakage or the like.

もちろん上記抗張力体は樹脂が温度変化にょ膨張収縮す
るのをほぼ完全に阻止するから、光フアイバ接続部のう
ねり曲がりの問題、側圧不均一の問題はないことになり
、したがって伝送ロス増の問題がない上、破断の問題が
ここでも解消されたことになる。
Of course, the above-mentioned tensile strength member almost completely prevents the resin from expanding and contracting due to temperature changes, so there is no problem of undulations or uneven lateral pressure at the optical fiber connection, and therefore there is no problem of increased transmission loss. Not only that, but the problem of breakage is also solved here.

さらに上記抗張力体は前述した膨張収縮を阻止している
ことにより突き出し現象をも抑えているのであり、それ
故強度に関した問題は殆どないことになり、光フアイバ
接続部の長期にわたる信頼性が確保できる。
Furthermore, the above-mentioned tensile strength member suppresses the extrusion phenomenon by preventing the aforementioned expansion and contraction, so there are almost no problems with strength, ensuring long-term reliability of the optical fiber connection. can.

しかも上記のごとき有効な光フアイバ接続部の補強をな
し得るの番こ、ラジカル反応系の硬化性樹脂をその開始
剤により連鎖的かつ瞬間的に硬化させているのでこの際
の硬化は従来:3〜5分要していたものが30秒以下で
足りるようになり、その成形時の型締め圧もO〜5 K
q / crAのように従来例を2桁減じられるから作
業易度の向上は大きく、現場での実施が簡易に行なえる
Moreover, in order to be able to effectively reinforce the optical fiber connection as described above, the radical reaction type curable resin is chained and instantaneously cured by its initiator, so the curing in this case is conventional: 3 What used to take ~5 minutes now takes less than 30 seconds, and the mold clamping pressure during molding is O~5K.
As q/crA can be reduced by two digits compared to the conventional example, the workability is greatly improved and can be easily implemented on site.

もちろん樹脂硬化のための熱源は不要であり、型締めを
殆ど要しないから強度上の観点から高価な成形型を用い
るといったこともなく、シたがってこれを実施する装置
の経済的効果も高められ、電源などの付帯設備が省略で
きる点でも現場作業時の簡便な実施がはかれる。
Of course, there is no need for a heat source for curing the resin, and there is almost no need for mold clamping, so there is no need to use expensive molds from the viewpoint of strength, and the economic effectiveness of the equipment that performs this is therefore increased. , it is also easy to carry out on-site work in that it can omit incidental equipment such as a power supply.

特に強度が要求されないことから成形型は透明な合成樹
脂、例えばアクリル、ポリカーボネイト、シリコーンな
どの樹脂製とすることができ、こうした場合は型内部の
セット状態、樹脂の硬化状態が確認できてより都合よく
なる。
Since no particular strength is required, the mold can be made of transparent synthetic resin, such as acrylic, polycarbonate, silicone, etc. In such cases, it is more convenient to be able to check the set state inside the mold and the hardened state of the resin. get well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバ接続部の説明図、第2図(イ)(ロ
)は本発明方法に用いる成形型の1例を示した縦断正面
図と縦断側面図、第3図は本発明方法に用いる各種抗張
力体の斜視図、第4図(イ)〜(ホ)は本発明方法の1
実施例を工程順に示した説明図、第5図、第6図、第7
図(イ)(ロ)は本発明方法の他実施例を示した説明図
である。 (1)A、(IjB・・・・・被覆光ファイノ(+2)
A、 +2)B・・・・−被覆部+3) A 、 +3
1 B・・・・・被覆除去部(4)M 、 +4)N・
・・・・成形型(5)M、(5)M’ 、 (5)N、
(51N ’・・・・・成形空間aυ・・・・・抗張力
体 αり・・・・・開始剤 0・・・・・硬化性樹脂 第18 第3図 第4図 (AI) 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電気通信研究所内 ■出 願 人 日本電信電話公社 65−
Fig. 1 is an explanatory diagram of an optical fiber connection part, Fig. 2 (a) and (b) are longitudinal sectional front views and vertical sectional side views showing an example of a mold used in the method of the invention, and Fig. 3 is an illustration of the method of the invention. Perspective views of various tensile strength members used in the method 1 of the present invention, FIGS.
Explanatory diagrams showing examples in order of process, Figures 5, 6, and 7
Figures (a) and (b) are explanatory diagrams showing other embodiments of the method of the present invention. (1) A, (IjB...Coated optical fiber (+2)
A, +2) B...-covering part +3) A, +3
1 B...Coating removal part (4)M, +4)N・
...Molding mold (5)M, (5)M', (5)N,
(51N'...Molding space aυ...Tensile strength body αri...Initiator 0...Curing resin 18 Figure 3 Figure 4 (AI) Naka, Ibaraki Prefecture Ibaraki Telecommunications Research Institute, Nippon Telegraph and Telephone Public Corporation, 162 Shirane, Oaza, Shirakata, Tokai-mura, Gun Applicant: Nippon Telegraph and Telephone Public Corporation 65-

Claims (3)

【特許請求の範囲】[Claims] (1)接続端側に被覆除去部を有する1対の被覆光ファ
イバが該各被覆除去部の先端を互いに突き合わせ状態と
して融着接続されている光フアイバ接続部の補強方法に
おいて、上記光フアイバ接続部と該接続部に添えるべぎ
抗張力体とを成形型内にセットするセット工程と、成形
型内にラジカル反応系の硬化性樹脂を充填する樹脂充填
工程と、該樹脂硬化用の開始剤を成形型内に供与する開
始剤供与工程とを備えており、上記セット工程は樹脂充
填工程よりも先行して行ない、上記開始剤供与工程はセ
ント工程、樹脂充填工程のいずれか一方と同期または前
後して行なうことを特徴とした光フアイバ接続部の補強
方法。
(1) In the method for reinforcing an optical fiber joint, in which a pair of coated optical fibers having a sheath removed portion on the splicing end side are fusion spliced with the tips of the sheath removed portions abutted against each other, the optical fiber splice is A setting step in which the connecting portion and a tensile strength member to be attached to the connecting portion are set in a mold, a resin filling step in which a radical reaction type curable resin is filled into the mold, and an initiator for curing the resin is added. The setting process is performed before the resin filling process, and the initiator feeding process is performed at the same time or before or after either the cent process or the resin filling process. 1. A method for reinforcing an optical fiber joint, characterized in that the method comprises:
(2)成形型が透明である特許請求の範囲第1項記載の
光フアイバ接続部の補強方法。
(2) The method for reinforcing an optical fiber connection portion according to claim 1, wherein the mold is transparent.
(3)抗張力体が溝形、筒形、節制形のいずれかからな
る特許請求の範囲第1項記載の光フアイバ接続部の補強
方法。
(3) The method for reinforcing an optical fiber connection portion according to claim 1, in which the tensile strength member has a groove shape, a cylindrical shape, or a restrained shape.
JP15023082A 1982-08-30 1982-08-30 Reinforcing method of juncture of optical fibers Pending JPS5938714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15023082A JPS5938714A (en) 1982-08-30 1982-08-30 Reinforcing method of juncture of optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15023082A JPS5938714A (en) 1982-08-30 1982-08-30 Reinforcing method of juncture of optical fibers

Publications (1)

Publication Number Publication Date
JPS5938714A true JPS5938714A (en) 1984-03-02

Family

ID=15492385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15023082A Pending JPS5938714A (en) 1982-08-30 1982-08-30 Reinforcing method of juncture of optical fibers

Country Status (1)

Country Link
JP (1) JPS5938714A (en)

Similar Documents

Publication Publication Date Title
US5803963A (en) Smart-fiber-reinforced matrix composites
IT8047685A1 (en) HOT MODELABLE LAMINATE AND PROCEDURE FOR MODELING IT
CN103526947B (en) Slow-bonding prestress construction method suitable for staged construction of different structural parts
JP2003524200A (en) Coupler that transmits and distributes light to multiple locations with uniform color and intensity
EP0057828A1 (en) A reinforced optical fiber splice
AU2002357993A1 (en) Telecommunication cable comprising a jointed optical core and method for jointing said core
JPS5938714A (en) Reinforcing method of juncture of optical fibers
JP2927730B2 (en) Glass wall panel for building structure and method of manufacturing the same
JP2783438B2 (en) Manufacturing method of optical fiber cable
JP2016098563A (en) Tension fixation method for precast concrete girder using pre-grout pc steel material
US4678272A (en) Optical fiber splice
JPS63158384A (en) Shaft coupling and manufacture thereof
JPS5938715A (en) Method for reinforcing juncture of optical fibers and its reinforcing member
CA1165604A (en) Optical fiber splice
CN218454532U (en) Glass fiber plate with high strength and good wear resistance
DK1483068T3 (en) Process for the manufacture of plated steel reinforcing wires for flexible tubular wires for transport of hydrocarbons and a thus reinforced wire
TW200508682A (en) Method for producing optical waveguide module and optical waveguide module
KR101040656B1 (en) Composite structures sprayed with FRP on concrete beams and manufacturing method
JP2004317565A (en) High strength plastic optical fiber tape and method of manufacturing the same
JPS58100111A (en) Reinforcing method for optical fiber connection part
CN108775160B (en) Glue injection device and method for post-tensioning method
CN2465370Y (en) Reinforced connector for communication pipe
JP2001150587A (en) Laminated panel
JPS53139546A (en) Reinforcing method of connection part of optical fibers
US20190153671A1 (en) Synthetic fiber cable