[go: up one dir, main page]

JPS5938320B2 - Method for manufacturing heat exchanger tubes - Google Patents

Method for manufacturing heat exchanger tubes

Info

Publication number
JPS5938320B2
JPS5938320B2 JP14269377A JP14269377A JPS5938320B2 JP S5938320 B2 JPS5938320 B2 JP S5938320B2 JP 14269377 A JP14269377 A JP 14269377A JP 14269377 A JP14269377 A JP 14269377A JP S5938320 B2 JPS5938320 B2 JP S5938320B2
Authority
JP
Japan
Prior art keywords
tube
electrolyte solution
heat exchanger
electrolytic treatment
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14269377A
Other languages
Japanese (ja)
Other versions
JPS5476440A (en
Inventor
寛一 伊藤
昇 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP14269377A priority Critical patent/JPS5938320B2/en
Publication of JPS5476440A publication Critical patent/JPS5476440A/en
Publication of JPS5938320B2 publication Critical patent/JPS5938320B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は伝熱管の製造方法に関し、更に詳しくは電解処
理による伝熱管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a heat exchanger tube, and more particularly to a method for manufacturing a heat exchanger tube by electrolytic treatment.

伝熱管の伝熱面上に、例えば沸騰伝熱管においては管の
外面に、又ヒートパイプにおいては管の内面に多孔質層
を形成することにより高い熱交換率が得られることが知
られており、このような多孔質層を形成する方法として
例えば焼結法、塑性加工法、溶射法、メッキ法及び網巻
法、更にはエッチングにより粗面を形成する方法等多く
の方法が提案されているが、いずれも加工が煩雑で高価
であるとか又は機能的に充分でないなどの欠点があつた
。本発明者等はこの欠点を解決するために金属管又は表
面に金属をメッキした管を正極として電解質溶液中にお
いて該管を電解的に溶解し該管の表面層を多孔質とする
伝熱管の製造方法を開発した(特願昭52−5、374
0号)が、この方法においてオーステナイトステンレス
鋼管を素材とした場合、電解処理前に該管を400〜8
50℃に加熱後徐冷して粒界腐食感受性を与えた(鋭敏
化処理)場合でも、製品の均質性の管理が困難であり、
又均質化のためには電解処理時間が長くなるという問題
があることが認められた。
It is known that a high heat exchange rate can be obtained by forming a porous layer on the heat transfer surface of a heat transfer tube, for example on the outer surface of the tube in a boiling heat transfer tube or on the inner surface of the tube in a heat pipe. Many methods have been proposed for forming such a porous layer, such as sintering, plastic working, thermal spraying, plating, mesh wrapping, and etching to form a rough surface. However, all of them had drawbacks, such as being complicated and expensive to process, or lacking in functionality. In order to solve this drawback, the present inventors have developed a heat transfer tube in which a metal tube or a tube whose surface is plated with metal is used as a positive electrode, and the tube is electrolytically dissolved in an electrolyte solution to make the surface layer of the tube porous. Developed a manufacturing method (Patent Application No. 52-5, 374
No. 0), when an austenitic stainless steel pipe is used as the raw material in this method, the pipe is heated to a temperature of 400 to 8
Even when the product is heated to 50°C and then slowly cooled to make it susceptible to intergranular corrosion (sensitization treatment), it is difficult to control the homogeneity of the product.
It was also recognized that there is a problem in that the electrolytic treatment time becomes long for homogenization.

本発明は前記問題を解決するためになされたもので、そ
の目的は製品の均質化、処理時間の短縮が可能な伝熱管
の製造方法を提供することである。
The present invention has been made to solve the above problems, and its purpose is to provide a method for manufacturing heat exchanger tubes that can homogenize the product and shorten processing time.

本発明について概説すると、本発明はオーステナイトス
テンレス鋼管を正極として電解質溶液中において、電解
質溶液を攪拌しながら該管の表面を電解的に溶解し該管
の表面層を多孔質とすることを特徴とする伝熱管の製造
方法に関する。本発明はオーステナイトステンレス鋼管
を素材とする電解処理法による伝熱管の製造方法につい
て多角的に検討した結果、電解質溶液の組成、両極間の
電位差、電流密度、電解時間等の通常の電解条件のみを
一定にしても製品の均質性すなわち管表面に形成される
孔のサイズ及び孔の分布の均質性について再現性が乏し
いことが認められた。そしてこれらの電解条件が一定の
下で、再現性がありしかも均質な多孔質面を得るために
は、陰極表面に発生する気泡がその面から連続的に剥離
する程度以上に電解質溶液を攪拌することが必要な条件
であることを見出した。本発明は前述した鋭敏化処理を
予め行なつた該鋼管に適用されるが、更に電解処理前に
該鋼管を予め塩酸水溶液望ましくは12N塩酸20%の
水溶液を数時間望ましくは4〜6時間浸漬し、管表面に
極めて微少な凹凸状組織を形成し、その後電解処理を行
なうことにより一そう均質な多孔質面が得られることが
認められた。
To summarize the present invention, the present invention is characterized in that an austenitic stainless steel tube is used as a positive electrode in an electrolyte solution, and the surface of the tube is electrolytically dissolved while stirring the electrolyte solution to make the surface layer of the tube porous. The present invention relates to a method of manufacturing a heat exchanger tube. As a result of a multifaceted study on the manufacturing method of heat transfer tubes using an electrolytic treatment method using austenitic stainless steel tubes, the present invention was developed based on the results of a multifaceted study on the manufacturing method of heat exchanger tubes using an electrolytic treatment method using austenitic stainless steel tubes as a raw material. It was found that even if the temperature was constant, the reproducibility of the product homogeneity, that is, the size of the pores formed on the tube surface and the homogeneity of the pore distribution, was poor. Under certain electrolytic conditions, in order to obtain a reproducible and homogeneous porous surface, the electrolyte solution must be stirred to a degree that causes the bubbles generated on the cathode surface to continuously peel off from the surface. We found that this is a necessary condition. The present invention is applied to the steel pipe which has been previously subjected to the above-mentioned sensitization treatment, and furthermore, before the electrolytic treatment, the steel pipe is immersed in an aqueous solution of hydrochloric acid, preferably a 20% aqueous solution of 12N hydrochloric acid, for several hours, preferably 4 to 6 hours. However, it was found that a more homogeneous porous surface could be obtained by forming an extremely minute uneven structure on the tube surface and then performing electrolytic treatment.

電解処理時間の短縮を図る目的で両極間の電位差及び電
流密度を過度に上昇せしめても均質な多孔質組織を短時
間では得られないが、電解質溶液の攪拌及び塩酸水溶液
による前処理を併せて行なうことにより適用する電位差
及び電流密度の大巾な向上が可能になつた。
Even if the potential difference and current density between the two electrodes are excessively increased in order to shorten the electrolytic treatment time, a homogeneous porous structure cannot be obtained in a short time. By doing so, it became possible to greatly improve the applied potential difference and current density.

電解質溶液としては塩酸・硫酸等の無機酸又はこれと電
解質無機塩との水溶液が使用されるが塩化ナトリウムと
塩酸との混合水溶液(望ましくはNace2O%及び1
2NHC22%との混合水溶液)が好適である。
As the electrolyte solution, an inorganic acid such as hydrochloric acid or sulfuric acid or an aqueous solution of this and an electrolyte inorganic salt is used.
A mixed aqueous solution with 22% of 2NHC) is preferred.

電位差は0.6〜0.9V望ましくは0.8V1電流密
度は2.5〜7A/Dm2望ましくは4〜5A/Dm2
、電解時間は1.5〜4時間望ましくは約2時間であり
、これらの電解条件下で均質な多孔質層を有する伝熱管
が得られる。
Potential difference is 0.6-0.9V, preferably 0.8V1 Current density is 2.5-7A/Dm2, preferably 4-5A/Dm2
The electrolysis time is 1.5 to 4 hours, preferably about 2 hours, and a heat exchanger tube having a homogeneous porous layer can be obtained under these electrolysis conditions.

次に本発明を実施例について説明するが、本発明はこれ
によりなんら限定されるものではない。
Next, the present invention will be described with reference to Examples, but the present invention is not limited thereto in any way.

実施例本実施例では添付図面に示す電解槽を使用した。Example In this example, an electrolytic cell shown in the attached drawings was used.

第1図は電解槽の縦断面図、第2図はその平面図を示す
。素材のオーステナイトステンレス鋼管1としてJIS
−SUS3O4TPを使用し、鋭敏化処理として650
℃で1.5時間加熱した後約20時間炉中で徐冷を行な
つた。
FIG. 1 is a longitudinal sectional view of the electrolytic cell, and FIG. 2 is a plan view thereof. JIS as material austenitic stainless steel pipe 1
-Using SUS3O4TP, 650 as sensitization treatment
After heating at 0.degree. C. for 1.5 hours, the mixture was slowly cooled in a furnace for about 20 hours.

次にこれを12NHCe20%水溶液中に4〜6時間浸
漬した。この浸漬後管の外面は巨視的には白色となり、
微視的には極めて微細な凹凸状組織となつた。前記処理
後の鋼管1の上下をゴム栓2,2′により閉塞し、ゴム
製の支持環3,32により陰極となる銅製の円筒4と同
心的に固定し、これをゴム製着座5,55に架支し、電
解質溶液6を充填したガラス製容器7に浸漬した。
Next, this was immersed in a 20% aqueous solution of 12NHCe for 4 to 6 hours. After this immersion, the outer surface of the tube becomes white macroscopically.
Microscopically, it became an extremely fine uneven structure. After the treatment, the upper and lower ends of the steel pipe 1 are closed with rubber plugs 2, 2', and are fixed concentrically with the copper cylinder 4 that will serve as a cathode with rubber support rings 3, 32, which are attached to rubber seats 5, 55. It was immersed in a glass container 7 filled with an electrolyte solution 6.

なお支持環3,32及びゴム製着座52には電解質溶液
6の循環が可能となるようにそれぞれ孔及び切欠きが設
けられている。電解処理は定電位電解装置8によりステ
ンレス鋼管1を正極に、鋼製の円筒4を負極に接続する
と共に容器7中にモーター10により駆動される攪拌羽
根9を設けて矢印11の方向に溶液6を攪拌循環せしめ
ながら通電することにより行なつた。
Note that holes and notches are provided in the support rings 3, 32 and the rubber seat 52, respectively, so that the electrolyte solution 6 can be circulated. The electrolytic treatment is carried out by connecting the stainless steel tube 1 to the positive electrode and the steel cylinder 4 to the negative electrode using a constant potential electrolyzer 8, and providing a stirring blade 9 driven by a motor 10 in the container 7 to inject the solution 6 in the direction of the arrow 11. This was carried out by applying electricity while stirring and circulating.

溶液6の攪拌循環により円筒4の外面に発生する気泡は
連続的にその面から剥離された。電解処理は常温(20
〜27℃)の下で電解質溶液の組成、両極間の電位差、
電流密度、電解時間を種々変化させて行い、得られた沸
騰伝熱管の多孔質面の孔のサイズ及び均質性を顕微鏡で
観察したところ、いずれの条件においても撹拌を行なわ
ない対照実験に比較して優れた結果(孔のサイズ及び分
布の均質性)が得られた。
As the solution 6 was stirred and circulated, air bubbles generated on the outer surface of the cylinder 4 were continuously peeled off from that surface. Electrolytic treatment is performed at room temperature (20
~27℃), the composition of the electrolyte solution, the potential difference between the two electrodes,
The pore size and homogeneity of the porous surface of the resulting boiling heat exchanger tubes were observed under a microscope by varying the current density and electrolysis time. Excellent results (homogeneity of pore size and distribution) were obtained.

又沸騰伝熱管の多孔質面の均質性及び電解処理時間の短
縮ができる電解条件は次のとおりであつた。
Further, the electrolytic conditions that could achieve homogeneity of the porous surface of the boiling heat exchanger tube and shorten the electrolytic treatment time were as follows.

(a)電解質溶液の組成;NaC22O%と12NHC
e2%との混合水溶液(b)両極間電位差;0.6〜0
.9V(0.8Vが最良)(c)電流密度;2.5〜7
A/Dm2(4〜5A/Dm2が最良)(d)電解条件
;1.5〜4時間(B,cの最良条件で約2時間)前記
実施例では沸騰伝熱管の製造例を示したが、鋼管の内部
に銅製電極棒を同心的に固定して同様な条件で電解する
ことにより多孔質の内面を有するヒートパイプが得られ
る。
(a) Composition of electrolyte solution; NaC22O% and 12NHC
Mixed aqueous solution with e2% (b) Potential difference between the two electrodes; 0.6 to 0
.. 9V (0.8V is best) (c) Current density; 2.5-7
A/Dm2 (4 to 5 A/Dm2 is best) (d) Electrolysis conditions; 1.5 to 4 hours (about 2 hours under the best conditions of B and c) In the above example, an example of manufacturing a boiling heat exchanger tube was shown. A heat pipe with a porous inner surface can be obtained by fixing a copper electrode rod concentrically inside a steel pipe and electrolyzing it under similar conditions.

以上の説明から明らかなように、本発明によれば、電解
処理中電解質溶液を攪拌することにより多孔質層の孔の
サイズ及び分布が均質な沸謄伝熱管、ヒートパイプを短
時間で得ることができる。
As is clear from the above description, according to the present invention, by stirring the electrolyte solution during electrolytic treatment, it is possible to obtain a boiling heat exchanger tube or heat pipe in which the size and distribution of pores in the porous layer are uniform in a short time. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用した電解槽の縦断面図を
示し、第2図はその平面図を示す。 1・・・・・・ステンレス鋼管、2,22・・・・・・
ゴム栓、3,32・・・・・・支持環、4・・・・・・
銅製円筒(負極)、5,5′・・・・・・ゴム製着座、
6・・・・・・電解質溶液、7・・・・・・ガラス製容
器、8・・・・・・定電位電解装置、9・・・・・・攪
拌羽根、10・・・・・・モーター 11・・・・・・
電解質溶液の循環方向。
FIG. 1 shows a longitudinal sectional view of an electrolytic cell used in an example of the present invention, and FIG. 2 shows a plan view thereof. 1... Stainless steel pipe, 2, 22...
Rubber stopper, 3, 32...Support ring, 4...
Copper cylinder (negative electrode), 5,5'...Rubber seat,
6... Electrolyte solution, 7... Glass container, 8... Constant potential electrolyzer, 9... Stirring blade, 10... Motor 11...
Circulation direction of electrolyte solution.

Claims (1)

【特許請求の範囲】 1 オーステナイトステンレス鋼管を正極として電解質
溶液中において、電解質溶液を攪拌しながら該管の表面
を電解的に溶解し該管の表面層を多孔質とすることを特
徴とする伝熱管の製造方法。 2 電解処理前にオーステナイトステンレス鋼管を塩酸
水溶液に数時間浸漬する特許請求の範囲第1項記載の方
法。 3 電解質溶液としてNaClとHClの混合水溶液を
用い、両極間の電位差0.6〜0.9V、電流密度2.
5〜7A/dm^2、電解時間1.5〜4時間の条件下
で電解処理を行なう特許請求の範囲第1項又は第2項記
載の方法。
[Claims] 1. A transmission characterized in that an austenitic stainless steel tube is used as a positive electrode in an electrolyte solution, and the surface of the tube is electrolytically dissolved while stirring the electrolyte solution to make the surface layer of the tube porous. Method of manufacturing heat tubes. 2. The method according to claim 1, wherein the austenitic stainless steel pipe is immersed in an aqueous hydrochloric acid solution for several hours before electrolytic treatment. 3 Using a mixed aqueous solution of NaCl and HCl as the electrolyte solution, the potential difference between the two electrodes is 0.6 to 0.9 V, and the current density is 2.
The method according to claim 1 or 2, wherein the electrolytic treatment is carried out under conditions of 5 to 7 A/dm^2 and an electrolysis time of 1.5 to 4 hours.
JP14269377A 1977-11-30 1977-11-30 Method for manufacturing heat exchanger tubes Expired JPS5938320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14269377A JPS5938320B2 (en) 1977-11-30 1977-11-30 Method for manufacturing heat exchanger tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14269377A JPS5938320B2 (en) 1977-11-30 1977-11-30 Method for manufacturing heat exchanger tubes

Publications (2)

Publication Number Publication Date
JPS5476440A JPS5476440A (en) 1979-06-19
JPS5938320B2 true JPS5938320B2 (en) 1984-09-14

Family

ID=15321326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14269377A Expired JPS5938320B2 (en) 1977-11-30 1977-11-30 Method for manufacturing heat exchanger tubes

Country Status (1)

Country Link
JP (1) JPS5938320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134234U (en) * 1989-04-15 1990-11-07
KR20240034547A (en) * 2022-09-07 2024-03-14 국립창원대학교 산학협력단 leveling system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171599A (en) * 1982-04-01 1983-10-08 Agency Of Ind Science & Technol Manufacture of porous body
FR2895206B1 (en) * 2005-12-16 2008-03-21 Framatome Anp Sas HEATED ROD FOR PRIMARY CIRCUIT PRESSURIZER OF A PRESSURE WATER NUCLEAR REACTOR.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134234U (en) * 1989-04-15 1990-11-07
KR20240034547A (en) * 2022-09-07 2024-03-14 국립창원대학교 산학협력단 leveling system

Also Published As

Publication number Publication date
JPS5476440A (en) 1979-06-19

Similar Documents

Publication Publication Date Title
US3291714A (en) Electrodes
US2793179A (en) Method of recovering gallium from an alkali aluminate lye
JPS5938320B2 (en) Method for manufacturing heat exchanger tubes
GB1580994A (en) Material for selective absorption of solar energy and production thereof
WO2001018281A1 (en) Rapid colouring process for aluminum products
ATE34189T1 (en) METHOD FOR OBTAINING A METAL BY ELECTROLYSIS OF MOLTEN HALOGENS WITH SIMULTANEOUS AND CONTINUOUS DOUBLE PRECIPITATION AND APPARATUS THEREOF.
CN109234757B (en) Preparation method of uniform and stable ruthenium-iridium bimetallic doped titanium electrode
US1782909A (en) Apparatus for the electrodeposition of iron
CN110607548A (en) Preparation method of micro-arc oxidation film layer on surface of aluminum or aluminum alloy
EP0207244A2 (en) Electrodeposited copper foil
US4097351A (en) Preparation of metal alloy coatings on iron substrates
DE60010563T2 (en) Anodization method and device
CN110699720A (en) Gold electroforming solution, preparation method of gold electroforming solution and electroforming method
US3841989A (en) Electrolytic cell including a plurality of anodes grouped around each cathode for increased electrolyte circulation in the cell
CN110205658A (en) A kind of process of the porous nickel coating of the electro-deposition from ionic liquid at room temperature
JPH02197591A (en) Method for electroforming copper
SU145102A1 (en) The method of electrodeposition of indium-nickel alloys
CN119121351A (en) A method for preparing a self-cleaning titanium and titanium alloy filter screen for filtering moxa smoke
Ono et al. Electrolysis Using Composite Plated Electrodes. Preparation of a Binary Type Composite Plated Nickel Electrode with Poly (tetrafluoroethylene) and Silica Gel and Its Application in Electroreduction of Aldehydes.
CN211284587U (en) Air-cooled low-temperature anodic oxidation device
JP2017218631A (en) Air bubble removal method for precision electroforming method
GB523322A (en) Improvements in and relating to methods of and apparatus for coating stainless steelsurfaces
GB1294175A (en) Improvements in and relating to the electrolysis of a manganese salt to produce manganese dioxide
JPH0147560B2 (en)
JPS5922797B2 (en) Anode parts for aluminum anodizing electrolytic treatment