[go: up one dir, main page]

JPS5938282B2 - Slag coating method on bottom blowing converter furnace wall surface - Google Patents

Slag coating method on bottom blowing converter furnace wall surface

Info

Publication number
JPS5938282B2
JPS5938282B2 JP8993980A JP8993980A JPS5938282B2 JP S5938282 B2 JPS5938282 B2 JP S5938282B2 JP 8993980 A JP8993980 A JP 8993980A JP 8993980 A JP8993980 A JP 8993980A JP S5938282 B2 JPS5938282 B2 JP S5938282B2
Authority
JP
Japan
Prior art keywords
slag
furnace
coating
wall surface
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8993980A
Other languages
Japanese (ja)
Other versions
JPS5716111A (en
Inventor
仁 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8993980A priority Critical patent/JPS5938282B2/en
Publication of JPS5716111A publication Critical patent/JPS5716111A/en
Publication of JPS5938282B2 publication Critical patent/JPS5938282B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 この発明は、底吹き転炉炉壁面へのスラグコーティング
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of coating slag on the wall surface of a bottom-blown converter furnace.

従来、転炉などにおいて、その炉壁煉瓦を保護するのに
、スラグコーティングが施されている。
Conventionally, slag coating has been applied to protect the furnace wall bricks of converters and the like.

このスラグコーティングというのは、上吹き転炉にあっ
ては、精錬溶鋼を出鋼したのち、排滓に当って溶融スラ
グの一部を炉内に残し、その残留スラグ中にドロマイト
を添加することによって、該溶融スラグの融点を上げ、
所謂スラグが炉壁に付着しやすいようにする。
In a top-blown converter, after the refined molten steel is tapped, a portion of the molten slag is left in the furnace and dolomite is added to the remaining slag. to raise the melting point of the molten slag,
To make it easier for so-called slag to adhere to the furnace wall.

そして炉体をトラニオン軸を中心に±90°の範囲内で
揺動させ、主として炉内の装入側、出鋼口側に前記残留
スラグを付着させて、炉壁面を覆いその保護を図るよう
にした技術である。
Then, the furnace body is swung within a range of ±90° around the trunnion axis, and the residual slag is deposited mainly on the charging side and the tapping side of the furnace to cover and protect the furnace wall surface. This is the technology that made it possible.

ただ、この場合トラニオン側の炉壁面へのスラグコーテ
ィングが、他の出鋼口側等に比べると不充分で、煉瓦溶
損に片寄りを生じるという欠点があった。
However, in this case, the slag coating on the furnace wall surface on the trunnion side was insufficient compared to other areas such as the tapping port side, and there was a drawback that the bricks were eroded unevenly.

一方、底吹き転炉へのスラグコーティングにあっては、
出鋼後溶融スラグを残留させて、炉体を揺動し溶融スラ
グを炉壁面に付着させる点、前記上吹き転炉の場合と同
じであり、同じような欠点が見られた。
On the other hand, when applying slag coating to a bottom blowing converter,
This is the same as in the case of the above-mentioned top-blown converter in that the molten slag remains after tapping and the furnace body is rocked to cause the molten slag to adhere to the furnace wall surface, and the same drawbacks were observed.

その上、底吹き転炉の場合によっては、炉内に溶鋼や溶
融スラグ等が存在している間、炉底羽口の詰りを防止す
る必要上その羽口から大流速(約5.0 x 102m
/ see )の不活性ガス(Ar、N)を流さなけれ
ばならない。
Moreover, in some cases of bottom-blown converters, while molten steel, molten slag, etc. are present in the furnace, high flow rates (approximately 5.0 x 102m
/ see ) inert gas (Ar, N) must be flowed.

ところが、従来の炉底羽口系の配管設計は、操業の単純
化のために定流速で流すようにしているため、スラグコ
ーティングの際も、かかる流速に規制されることになる
However, the conventional piping design for the bottom tuyere system allows the flow to flow at a constant rate in order to simplify operations, so the flow rate is also regulated during slag coating.

その結果、図面の第1図に示すようにスラグ飛散の程度
が大きく一定しているから、炉口および炉口絞り部の付
近に片寄って付着する。
As a result, as shown in FIG. 1 of the drawings, the degree of slag scattering is large and constant, so that the slag is concentrated near the furnace mouth and the throat constriction.

そして、次第に炉口付近の付着が嵩み、地金等も堆積し
て炉内容積を小さくする。
Then, the adhesion near the furnace mouth gradually increases, and metal, etc., accumulates, reducing the internal volume of the furnace.

そのため、出鋼に当って炉体を傾けると溶融スラグが炉
口より溢れ出るため炉傾動が不十分となり、鉄分が炉内
に残り、その結果製出鋼歩走りの低下という常置を生む
:しかi、炉上部に多量の付着物が形成されると、炉体
の傾動トルクが増大し、モーターが過負荷状態になって
寿命を短くする欠点があった。
Therefore, when the furnace body is tilted during tapping, the molten slag overflows from the furnace mouth, resulting in insufficient tilting of the furnace, and iron remains in the furnace, resulting in a permanent decline in the steel production rate. i. If a large amount of deposits were formed on the upper part of the furnace, the tilting torque of the furnace body would increase, causing the motor to be overloaded and shortening its life.

この発明は、上述の除来スラグコーティング方法の欠点
を克服することを目的として開発した方法であって、底
吹き転炉の炉底羽口から吹込むガスに着目し、これを積
極的に利用することによって、炉壁ヘスラグコーティン
グを行うようにした方法である。
This invention is a method developed with the aim of overcoming the drawbacks of the above-mentioned slag removal coating method, and focuses on the gas blown from the bottom tuyere of a bottom blowing converter, and actively utilizes this. This method coats the furnace wall with slag.

すなわち、スラグコーティングに際し、炉体1を揺動さ
せて主に装入側・出鋼側炉壁へのスラグコーティングを
実現し、一方それだけでは不足するトラニオン側炉壁面
については炉底の羽口からのガス吹込み速度を残留スラ
グ量とそのスラグ粘度に応じかつ狙った位置に応じてガ
ス吹込み速度を制御して所定厚のスラグを付着させコー
ティングする技術である。
That is, during slag coating, the furnace body 1 is oscillated to mainly achieve slag coating on the charging side and tapping side furnace walls, and on the other hand, the trunnion side furnace wall surface, which is insufficient by itself, is coated with slag from the tuyeres at the bottom of the furnace. This is a technique to deposit and coat slag with a predetermined thickness by controlling the gas blowing speed according to the amount of residual slag and its slag viscosity and according to the targeted position.

当然のことながら、吹込みガス流速を大きくすれば、ス
ラグは炉口絞り部4に近い炉の上部にスラグが付着し、
吹込みガスの流速を小さくすれば炉底絞り部5に近い炉
壁へのコーティングが行われ、流速の変化によって任意
の位置に付着させることができる。
Naturally, if the flow rate of the blown gas is increased, the slag will adhere to the upper part of the furnace near the throat constriction part 4.
By reducing the flow rate of the blown gas, the coating can be applied to the furnace wall near the bottom constriction part 5, and by changing the flow rate, the coating can be applied to any desired position.

とくに、この方法の場合、両トラニオンサイドへのスラ
グコーティングができる。
In particular, with this method, slag coating can be applied to both trunnion sides.

なお、スラグ飛散高さき羽口よりの吹込みガス流速との
関係を調査したところ、第2図に示すような結果が得ら
れた。
When the relationship between the slag scattering height and the flow rate of the gas blown from the tuyere was investigated, the results shown in Figure 2 were obtained.

この図から判るように、コーティングガス流速が大きく
なればなる程、飛散の距離が高くなり、全く流速に比例
しているこさが明らかである。
As can be seen from this figure, the greater the flow rate of the coating gas, the greater the distance of scattering, and it is clear that the distance is completely proportional to the flow rate.

また吹込みガスの流速については、炉内に残すスラグ量
およびスラグ粘度に応じて制御する。
The flow rate of the blown gas is controlled depending on the amount of slag left in the furnace and the viscosity of the slag.

スラグ量が多くスラグ粘度が大きいときは、所定位置に
付着させるのには上記流速を太きくしなければならない
し、逆に残留スラグ量が少なくスラグ粘度が小さいとき
は流速が小さくても狙った位置に付着させることができ
る。
When the amount of slag is large and the slag viscosity is high, the flow velocity described above must be increased in order to make it adhere to the specified location.On the other hand, when the amount of residual slag is small and the slag viscosity is low, even if the flow velocity is low, the flow velocity must be increased. can be attached to.

例えば、本発明者の行った例で好ましい結果が得られた
条件を示すと、230トン転炉で、炉内にスラグ約5〜
6を残し、ドロマイt−1,5を投入し、炉体を±30
°の範囲内で揺動させた状態で実施した。
For example, to show the conditions under which favorable results were obtained in an example conducted by the present inventor, in a 230-ton converter, approximately 5 to 50% of slag was
Remaining 6, put dolomite T-1,5, and reduce the furnace body to ±30
The test was carried out in a state where the test was oscillated within a range of °.

この発明において、炉底からのガス吹込みさともに炉体
を揺動するのは、主として転炉内の装入側・出鋼側炉壁
へのスラグコーティングを図ることであり、またそれに
加えて残留スラグ量が少ないときガスの吹抜けが起り、
スラグの飛散量が少なくなると効果的なコーティングが
できなくなるので、炉体を揺動することによって補うよ
うにしたのである。
In this invention, the purpose of shaking the furnace body together with gas injection from the bottom of the furnace is mainly to coat the furnace walls on the charging and tapping sides of the converter with slag. When the amount of residual slag is small, gas blow-through occurs,
If the amount of slag scattered decreases, effective coating becomes impossible, so the idea was to compensate by shaking the furnace body.

揺動の角度はガス吹抜けを防止するのに必要な適宜の角
度が選ばれる。
The swing angle is selected to be an appropriate angle necessary to prevent gas blow-through.

実施例 1 230を底吹き転炉に、スラグ約61を残し、ドロマイ
ト1.5tを投入した。
Example 1 1.5 tons of dolomite was charged into a bottom blowing converter, leaving about 61 tons of slag.

このときの炉壁の状況は、炉口絞1000回位から、炉
底がら約1.5〜3m位置の溶損が著しく進行していた
At this time, the condition of the furnace wall was that after about 1000 strokes of the furnace mouth, the melting damage at a position of about 1.5 to 3 m from the furnace bottom had progressed significantly.

吹込みガス流速を2.5 X 102m/ secで吹
ききばしガスとして空気を用いた。
Air was used as the blowing gas at a blowing gas flow rate of 2.5×102 m/sec.

この吹き飛ばしの結果1.0〜3.5m間に集中的に耐
着させるこさができた。
As a result of this blowing, it was possible to achieve intensive adhesion between 1.0 and 3.5 m.

このときの揺動角度は±5°で行なった。実施例 2 炉口絞2000回で炉底を取替えたため、炉底から2〜
4m位置の溶損が著しい状態のコーティング処理を行っ
た。
The swing angle at this time was ±5°. Example 2 Since the hearth bottom was replaced after 2000 times of hearth throttling, 2~
Coating treatment was carried out in a state where there was significant erosion at the 4 m position.

そこで、炉内にスラグを約5を残し、ドロマイト1.5
を投入した。
Therefore, we left about 5% of the slag in the furnace and 1.5% of the dolomite.
was introduced.

そして、炉底羽口からのガス吹込みの流速は3.5X1
02m/secで、窒素ガスの吹込みを行った。
The flow rate of gas injection from the hearth bottom tuyere is 3.5X1
Nitrogen gas was blown at a rate of 0.2 m/sec.

揺動角度は±10°である。The swing angle is ±10°.

この結果、炉底から1.5〜4.5m間に集中的にスラ
グコーティングをすることができた。
As a result, it was possible to intensively apply slag coating between 1.5 and 4.5 m from the bottom of the furnace.

以上説明したように、本発明によればガス吹込み速度を
変化させることにより、炉内壁の任意の部位にスラグコ
ーティングを施すことが可能となった。
As explained above, according to the present invention, by changing the gas blowing speed, it has become possible to apply slag coating to any part of the furnace inner wall.

しかも、底吹き転炉での従来のスラグコーティングと比
較し、炉内上部への耐着が減少し、操業への悪影響が全
くなくなるとともに、上吹転炉ではできなかったトラニ
オンサイドへの耐着も可能となった。
Moreover, compared to conventional slag coating for bottom-blown converters, the resistance to adhesion on the upper part of the furnace is reduced, eliminating any negative impact on operation, and it also prevents adhesion on the trunnion side, which was not possible in top-blowing converters. is now also possible.

その結果、炉寿命向上に非常に有益である。As a result, it is very beneficial for improving the life of the furnace.

なお、本発明は、底吹き転炉で説明したが、最近開発さ
れているところの上吹き底吹きの転炉でも、炉底から吹
込まれるガス流速を変化させて、スラグを吹きとばし、
任意の位置にスラグコーティングすることができる。
Although the present invention has been explained using a bottom-blowing converter, even in a top-blowing and bottom-blowing converter that has recently been developed, the slag can be blown away by changing the gas flow rate blown from the bottom of the furnace.
Slag coating can be applied to any position.

【図面の簡単な説明】 第1図は、従来の底吹き転炉のスラグコーティング状態
を示す断面図、第2図は本発明方法の実施によるスラグ
吹き飛び高さと羽目ガス流速との関係を示す図である。 1・・・・・・炉体、2・・・・・・炉底羽口、3・・
・・・・炉壁、4・・・・・・炉口絞り部、5・・・・
・・炉底絞り部。
[Brief Description of the Drawings] Fig. 1 is a sectional view showing the state of slag coating in a conventional bottom-blown converter, and Fig. 2 is a view showing the relationship between the slag blow-off height and the slag gas flow rate when the method of the present invention is implemented. It is. 1...Furnace body, 2...Furnace bottom tuyere, 3...
...Furnace wall, 4...Furnace throttle part, 5...
... Hearth bottom throttle part.

Claims (1)

【特許請求の範囲】[Claims] 1 転炉の炉壁面に対し、精錬溶鋼の出鋼後にその炉内
に残したスラグをガス噴射手段を介して付着させる方法
において、該転炉を転倒することなくその炉体をトラニ
オンを中心にして揺動させることにあわせて炉底に設け
た羽口からガスを吹込み、かつその吹込みガスの流速を
炉内に残したスラグ量および粘度に応じて変化させるこ
とによりかかる残留スラグを所望位置の炉壁面に回着さ
せることを特徴とする底吹き転炉炉壁面へのスラグコー
ティング方法。
1. A method in which slag left in the furnace after tapping refined molten steel is attached to the wall surface of a converter via gas injection means, in which the furnace body is centered around the trunnion without overturning the converter. The remaining slag can be removed as desired by blowing gas through the tuyere provided at the bottom of the furnace and changing the flow rate of the blown gas according to the amount and viscosity of the slag left in the furnace. A method for coating a slag on a wall of a bottom blowing converter, characterized by coating the slag on the wall of a bottom blowing converter.
JP8993980A 1980-07-03 1980-07-03 Slag coating method on bottom blowing converter furnace wall surface Expired JPS5938282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8993980A JPS5938282B2 (en) 1980-07-03 1980-07-03 Slag coating method on bottom blowing converter furnace wall surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8993980A JPS5938282B2 (en) 1980-07-03 1980-07-03 Slag coating method on bottom blowing converter furnace wall surface

Publications (2)

Publication Number Publication Date
JPS5716111A JPS5716111A (en) 1982-01-27
JPS5938282B2 true JPS5938282B2 (en) 1984-09-14

Family

ID=13984662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8993980A Expired JPS5938282B2 (en) 1980-07-03 1980-07-03 Slag coating method on bottom blowing converter furnace wall surface

Country Status (1)

Country Link
JP (1) JPS5938282B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525633A1 (en) * 1982-04-22 1983-10-28 Siderurgie Fse Inst Rech METHOD FOR IMPROVING THE LIFETIME OF PERMEABLE REFRACTORY ELEMENTS LODGED IN THE BOTTOM OF METALLURGIC REFINING CONTAINERS, IN PARTICULAR OXYGEN-BLOW-CONTAINING OXYGEN STEEL CONVERTERS
JPS5993816A (en) * 1982-11-17 1984-05-30 Nippon Steel Corp Slag coating method for converter inner wall surface
JPS5996209A (en) * 1982-11-26 1984-06-02 Nippon Steel Corp Slag coating method of trunnion wall using converter bottom tuyeres
IT1261929B (en) * 1993-09-20 1996-06-04 Sviluppo Materiali Spa PROCESS AND PLANT FOR THE REPAIR OF THE INTERNAL SURFACE OF STEEL CONVERTERS.
US6627256B1 (en) * 1998-10-05 2003-09-30 Kawasaki Steel Corporation Method for slag coating of converter wall
KR100399308B1 (en) * 1998-12-21 2004-02-05 주식회사 포스코 A method of slag splash coating in an oxygen converter
KR101207702B1 (en) 2010-08-20 2012-12-03 주식회사 포스코 Method for repairing bottom section of furnace

Also Published As

Publication number Publication date
JPS5716111A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
US6627256B1 (en) Method for slag coating of converter wall
JPS5938282B2 (en) Slag coating method on bottom blowing converter furnace wall surface
JP2000178631A (en) Slag coating method for converter furnace wall and converter hearth management method when slag coating is performed
RU2128714C1 (en) Method of skull application to converter lining
JP6888477B2 (en) Top bottom blown converter type refining equipment and hot metal refining method
JP2003193123A (en) Repair method of refractory lining of converter
JP4455791B2 (en) Coating method for refractories in the furnace
US4409024A (en) Top-and-bottom blown converter steel making process
JP6874904B2 (en) Top bottom blown converter type refining container
US4047707A (en) Process and converter for refining liquid metals
JPH05331518A (en) Method for hot-repairing converter
JPS63266015A (en) How to repair the inner wall refractories of a converter
JP3794048B2 (en) Hot metal desiliconization method
JP3225747B2 (en) Vacuum degassing of molten steel
KR100225249B1 (en) Remaining slag control method of of slopping control
JPS62196314A (en) Converter operating method
JPH09279217A (en) Slag coating method for molten metal container
JP6327304B2 (en) Shutter door of converter refining furnace and method of operating converter refining furnace
JP3242300B2 (en) Slag forming suppression method in hot metal processing
JPH08246018A (en) Slag coating method for melting or refining vessels
JP2917848B2 (en) Converter blasting and furnace mouth metal melting lance
JPH01252717A (en) Hot metal dephosphorization method
JP2789259B2 (en) Secondary refining process operation method using kiln or vessel with oxygen top blowing
JPH01263214A (en) Construction of non-tilting furnace steel tapping type converter
JPH11140534A (en) Method of blowing acid decarburization of molten steel under vacuum