[go: up one dir, main page]

JPS5937520A - Wavelength multiplex demultiplexer - Google Patents

Wavelength multiplex demultiplexer

Info

Publication number
JPS5937520A
JPS5937520A JP14684582A JP14684582A JPS5937520A JP S5937520 A JPS5937520 A JP S5937520A JP 14684582 A JP14684582 A JP 14684582A JP 14684582 A JP14684582 A JP 14684582A JP S5937520 A JPS5937520 A JP S5937520A
Authority
JP
Japan
Prior art keywords
rod lens
wavelength
end surface
light
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14684582A
Other languages
Japanese (ja)
Inventor
Isatake Sawano
澤野 「ぎよう」武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP14684582A priority Critical patent/JPS5937520A/en
Publication of JPS5937520A publication Critical patent/JPS5937520A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29307Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide components assembled in or forming a solid transparent unitary block, e.g. for facilitating component alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To allow one wavelength multiplex demultiplexer to perform demultiplexing covering plural wavelengths, and to reduce its size and cost, by sticking an amorphous semiconductor film to one end surface of a convergent rod lens which varies in refractive index radially from the center part almost with a square distribution. CONSTITUTION:The amorphous semiconductor 7 vapor-deposited on one end surface 6 of the convergent rod lens 5 varies in refractive index when irradiated with light having wavelength close to absorption edge, forming a diffraction grating 8 of interference fringes. An incident wave 10 having wavelengths lambda1, lambda2, and lambda3 enters the rod lens 5 from an end surface 9 through a fiber 11 and is reflected by the diffraction grating 8. Its angle of reflection is different depending upon the wavelengths, and the light is focused on different positions on the end surface 9, thereby demultiplexing light signals with the wavelengths lambda1, lambda2, and lambda3 from fibers 21, 31, and 41 couled with the positions.

Description

【発明の詳細な説明】 本発明は、光通信システムに使用する波長多重分波器に
関する。なおここにいう波長多重分波器には波長多重合
波器も含むものとする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wavelength multiplexer/demultiplexer used in an optical communication system. Note that the wavelength multiplexer/demultiplexer referred to herein also includes a wavelength multiplexer/demultiplexer.

近年、光通信技術が発達するに伴って、伝送容量の大容
量化がますます重要視され、複数波長の光信号を1つの
伝送媒体(光ファイバ)で伝送する波長多重伝送が行な
われるようになった。そのためには、波長多重分波器(
合波器)が不可欠である。
In recent years, with the development of optical communication technology, increasing the transmission capacity has become increasingly important, and wavelength multiplexing transmission, which transmits optical signals of multiple wavelengths through one transmission medium (optical fiber), has begun to be implemented. became. To do this, a wavelength multiplexer/demultiplexer (
A multiplexer) is essential.

従来の波長多重分波器は、第1図に示すように特定波長
の光を反射させそれ以外の波長の光を透過させる分波・
多重ユニットを縦続接続して順次所望の波長光を分波し
て取出す構成である。すなわち、波長λ7.λ、、λ1
.λ4の光信号によって波長多重されている入射波10
は、ファイバ九を介して分波・多重ユニット1に入力さ
れる。分波・多重ユニット1は、ロッドレンズ61.6
2および誘電体多層膜IIM1から構成されていて、誘
電体多層膜HM、は波長λ3.λ、の光を反射し波長λ
5.λ、の光を透過させる。反射された波長λ、、λ、
の光は、さらに分波・多重ユニット2に入射させ、透過
した波長λ8.λ、の光は光路変換ユニット4によって
光路変換されたのち、分波・多重ユニット3に入射させ
る。分波・多重ユニット2はロッドレンズ51.52と
誘電体多層JIIHM2で構成され、波長λ1の光を透
過させてファイバf、に入射させ、波長λ2の光を反射
してファイバf、に入射させる。分波・多重ユニット3
は同様にロッドレンズ81.82と訪電体多層膜HM、
によって構成され、波長λ、の光を透過させてファイバ
f、を介して出力させ、波長λ4の光を反射させてファ
イバf4から出力させる。
As shown in Figure 1, conventional wavelength multiplexing/demultiplexing filters reflect light of a specific wavelength and transmit light of other wavelengths.
This is a configuration in which multiplex units are connected in cascade to sequentially demultiplex and extract light of desired wavelengths. That is, the wavelength λ7. λ,,λ1
.. Incoming wave 10 wavelength-multiplexed by optical signal of λ4
is input to the demultiplexing/multiplexing unit 1 via fiber 9. The demultiplexing/multiplexing unit 1 is a rod lens 61.6
2 and a dielectric multilayer film IIM1, the dielectric multilayer film HM has a wavelength λ3. λ, reflects the light of wavelength λ
5. Transmits light of λ. The reflected wavelength λ,, λ,
The light is further incident on the demultiplexing/multiplexing unit 2, and the transmitted wavelength λ8. After the optical path of the light λ is changed by the optical path changing unit 4, it is made to enter the demultiplexing/multiplexing unit 3. The demultiplexing/multiplexing unit 2 is composed of rod lenses 51 and 52 and dielectric multilayer JIIHM2, and transmits light with a wavelength λ1 and makes it enter the fiber f, and reflects light with a wavelength λ2 and makes it enter the fiber f. . Demultiplexing/multiplexing unit 3
Similarly, the rod lenses 81 and 82 and the current visiting body multilayer film HM,
It transmits light with wavelength λ and outputs it via fiber f, and reflects light with wavelength λ4 and outputs it from fiber f4.

上述の従来の分波器は、分波・多重ユニット1゜2.3
等を多段に接続することによって、順次所望の波長光を
摩り出す構成であるから、多重された光波の数が多くな
わば、分波・多重ユニットもそれに応じて多数個必要と
し、構造が複雑化するため、小型化、経済化ができない
という欠点がある。さらに、多重分波器の組立てに際し
て、各ユニットの位置精度を厳しくおさえる必要があり
、組立に多大な時間と労力を必要とし、量産化に適さな
いという欠点がある。
The conventional duplexer described above has a demultiplexing/multiplexing unit of 1°2.3
etc. are connected in multiple stages to sequentially extract the desired wavelength light, so if the number of multiplexed light waves is large, a correspondingly large number of demultiplexing/multiplexing units are required, making the structure complicated. The disadvantage is that it cannot be made smaller or more economical. Furthermore, when assembling the multiplexer and demultiplexer, it is necessary to strictly control the positional accuracy of each unit, and the assembly requires a great deal of time and effort, making it unsuitable for mass production.

本発明の目的は、上述の従来の欠点を解決し、1つの波
長多重分波器によって複数波長の分波(又は合波)を可
能とする小型かつ安価な波長多重分波器を提供すること
にある。
An object of the present invention is to solve the above-mentioned conventional drawbacks and to provide a small and inexpensive wavelength multiplexer/demultiplexer that enables multiple wavelengths to be demultiplexed (or multiplexed) using a single wavelength multiplexer/demultiplexer. It is in.

本発明Ω分波器は、屈折率が中心部より半径方向に2乗
分布近似で変化する集束型ロッドレンズと、該ロッドレ
ンズの一端面に付着されたアモルファス半導体膜と、前
記ロッドレンズの他端面に結合された複数の先入、出力
部とを備えて、前記アモルファス半導体膜に干渉縞等に
より回折格子を形成させて前記ロッドレンズの端面にお
ける光反射角を波長に対して異ならしめたことを特徴と
する。
The Ω demultiplexer of the present invention includes a focusing rod lens whose refractive index changes in the radial direction from the center in a square distribution approximation, an amorphous semiconductor film attached to one end surface of the rod lens, and other components of the rod lens. The rod lens is provided with a plurality of input and output parts coupled to the end face, and the amorphous semiconductor film is formed with a diffraction grating by interference fringes, etc., so that the light reflection angle at the end face of the rod lens is made different with respect to the wavelength. Features.

なお、ここにいう波長多重分波器には、複数波長光を合
波する波長多重合波器をも含むものとするQ 次に、本発明について、図面を参照して詳細に説明する
Note that the wavelength multiplexer/demultiplexer referred to herein also includes a wavelength multiplexer/demultiplexer that multiplexes light of multiple wavelengths.Next, the present invention will be described in detail with reference to the drawings.

第2図は、本発明の一実施例を示す斜視図であ面6に光
学的研磨を施こし、該端面6にアモルファス半導体膜7
が蒸着されている。アモルファス半導体膜7は、例えば
As −8系、 As −Se −8−(3e系の材料
で構成されていて、吸収端付近の波長の光が照射される
と、微視的な構造変化により、屈折率が変化する。そし
て、例えばArレーザ光の干渉縞を該アモルファス半導
体膜7上に書き込むことによって屈折率が一定間隔で変
化し回折格子8を形成することができる。そして、該回
折格子8により、ロッドレンズ5の端面6における反射
角が、波長に対して異なって来る。波長λ1.λ3.λ
、に対するブラック条件を満足する角度がそれぞれ異な
るからである。そして、波長λ1.λ2.λ、の3波長
からなる入射波10は、ファイバ11を介して前記ロッ
ドレンズ5の他方の端面9に入射させる。
FIG. 2 is a perspective view showing an embodiment of the present invention, in which a surface 6 is optically polished and an amorphous semiconductor film 7 is formed on the end surface 6.
is deposited. The amorphous semiconductor film 7 is made of, for example, an As-8-based material or an As-Se-8-(3e-based material), and when it is irradiated with light of a wavelength near the absorption edge, microscopic structural changes occur. The refractive index changes. For example, by writing interference fringes of Ar laser light onto the amorphous semiconductor film 7, the refractive index changes at regular intervals to form the diffraction grating 8. Therefore, the reflection angle at the end surface 6 of the rod lens 5 differs depending on the wavelength.Wavelength λ1.λ3.λ
This is because the angles that satisfy the black condition for , are different. And the wavelength λ1. λ2. The incident wave 10 having three wavelengths λ is made incident on the other end face 9 of the rod lens 5 via the fiber 11.

入射光波X2はロッドレンズ5を伝播する間、にビーム
径が拡がり回折格子B上の位置71と72の間を照射し
、該回折格子8によって反射する。その反射角は、波長
λ、、λ2.λ、の光波でそれぞれ異なるため、反射さ
れた光波22,32.42は図示のように端面9上の異
なる位置に集束される。
While the incident light wave X2 propagates through the rod lens 5, the beam diameter expands, irradiates the beam between positions 71 and 72 on the diffraction grating B, and is reflected by the diffraction grating 8. Its reflection angle is wavelength λ, λ2 . Since the light waves λ, are different from each other, the reflected light waves 22, 32, and 42 are focused at different positions on the end face 9 as shown.

それぞれの集束位置にはファイバ21,31゜41が結
合されていて、それぞれから波長λ1.λ、。
A fiber 21, 31° 41 is coupled to each focusing position, and a wavelength λ1 . λ,.

λ、の光信号が取り出される。すなわち、分波される。An optical signal of λ is extracted. In other words, it is demultiplexed.

各分波出力は、端面9上の異なる位置から並列的に取り
出されるから1つの分波器によって複数波長の分波が可
能であり、従来のように複数のユニットを多段に結合す
る必要がなく、m波長の多重光波はm本のファイバによ
って容易に分離される。本実施例の構成は簡単であり、
組立作業等に手数を要せず安価に提供可能である。なお
、複数波長の光を多重するためには、上述と全く同じ構
成によって逆の光路により実現出来る。すなわち波長多
重合波器としても使用できることは勿論である。また、
上記実施例では、先入、出力部はファイバ11,21,
31.41等をロッドレンズ端面9に結合させて構成し
たが、他の入出力手段、例えばレンズ等による入出力手
段を使用しても同様な効果を奏する。
Since each demultiplexed output is taken out in parallel from different positions on the end face 9, it is possible to demultiplex multiple wavelengths with a single demultiplexer, eliminating the need to combine multiple units in multiple stages as in the past. , m wavelengths are easily separated by m fibers. The configuration of this embodiment is simple;
It can be provided at a low cost without requiring any assembly work or the like. Note that in order to multiplex light of a plurality of wavelengths, it can be realized by using the exact same configuration as described above and using opposite optical paths. That is, it goes without saying that it can also be used as a wavelength multiplexer. Also,
In the above embodiment, the input and output sections are the fibers 11, 21,
31, 41, etc. are coupled to the rod lens end surface 9, the same effect can be achieved even if other input/output means, such as a lens, are used.

以上のように、本発明においては、ロッドレンズの一端
面にアモルファス半導体膜を付着させ、該アモルファス
半導体膜に回折格子を書込むことによって波長ごとに反
射角を異ならせるように構成し、前記ロッドレンズの他
端面に複数の人、出力部を設けて、複数の人、出力部間
でそれぞれ特定の波長光が授受されるように構成したか
ら、1つの部品によって複数波長の分波又は合波が可能
である。すなわち、小型、安価に提供することができ、
かつ、組立ての手数を減少させる効果がある0
As described above, in the present invention, an amorphous semiconductor film is attached to one end surface of the rod lens, and a diffraction grating is written on the amorphous semiconductor film to make the reflection angle different for each wavelength. Multiple people and an output section are provided on the other end of the lens, and the structure is configured so that light of a specific wavelength is transmitted and received between the multiple people and the output section, so it is possible to separate or combine multiple wavelengths with one component. is possible. In other words, it can be provided in a small size and at low cost.
Moreover, it has the effect of reducing the number of assembly steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の波長多重分波器の一例を示す側面図、第
2図は本発明の一実施例な示す斜視図である。 図において、1〜3・・・分σν・多重ユニット、4・
・・光路変換ユニット、5・・・ロッドレンズ、6,9
・・・ロッドレンズの端面、7・・・アモルファス半導
体膜、8・・・回折格子、10・・・入射波、11,2
1゜31.41・・・ファイバ。 代理人 弁理士 住 1)唆宗
FIG. 1 is a side view showing an example of a conventional wavelength multiplexing/demultiplexer, and FIG. 2 is a perspective view showing an embodiment of the present invention. In the figure, 1 to 3...min σν/multiple unit, 4/min.
... Optical path conversion unit, 5... Rod lens, 6, 9
... End face of rod lens, 7... Amorphous semiconductor film, 8... Diffraction grating, 10... Incident wave, 11, 2
1゜31.41...Fiber. Agent Patent Attorney Resident 1) Sosou

Claims (1)

【特許請求の範囲】[Claims] 屈折率が中心部より半径方向に2乗分布近似で変化する
集束型ロッドレンズと、該ロッドレンズの一端面に付着
されたアモルファス半導体膜と、前記ロッドレンズの他
端面に結合された複数の先入、出力部とを備えて、前記
アモルファス半導体膜に干渉縞等により回折格子を形成
させて前記ロッドレンズの端面における光反射角を波長
に対して異ならしめたことを特徴とする波長多重分波器
A focusing rod lens whose refractive index changes in the radial direction from the center in a square distribution approximation, an amorphous semiconductor film attached to one end surface of the rod lens, and a plurality of preconcentrations bonded to the other end surface of the rod lens. , and an output section, wherein a diffraction grating is formed on the amorphous semiconductor film by interference fringes or the like so that the light reflection angle at the end face of the rod lens is made different with respect to the wavelength. .
JP14684582A 1982-08-26 1982-08-26 Wavelength multiplex demultiplexer Pending JPS5937520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14684582A JPS5937520A (en) 1982-08-26 1982-08-26 Wavelength multiplex demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14684582A JPS5937520A (en) 1982-08-26 1982-08-26 Wavelength multiplex demultiplexer

Publications (1)

Publication Number Publication Date
JPS5937520A true JPS5937520A (en) 1984-03-01

Family

ID=15416829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14684582A Pending JPS5937520A (en) 1982-08-26 1982-08-26 Wavelength multiplex demultiplexer

Country Status (1)

Country Link
JP (1) JPS5937520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760569A (en) * 1985-12-10 1988-07-26 Siemens Aktiengesellschaft Integrated optical multiplex-demultiplex module for optical communications transmission
KR100437767B1 (en) * 2001-07-11 2004-06-26 엘지전자 주식회사 Rod lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114142A (en) * 1975-03-31 1976-10-07 Toshiba Corp Method of manufacturing diffraction grid
JPS5472068A (en) * 1977-11-18 1979-06-09 Mitsubishi Electric Corp Optical processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114142A (en) * 1975-03-31 1976-10-07 Toshiba Corp Method of manufacturing diffraction grid
JPS5472068A (en) * 1977-11-18 1979-06-09 Mitsubishi Electric Corp Optical processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760569A (en) * 1985-12-10 1988-07-26 Siemens Aktiengesellschaft Integrated optical multiplex-demultiplex module for optical communications transmission
KR100437767B1 (en) * 2001-07-11 2004-06-26 엘지전자 주식회사 Rod lens

Similar Documents

Publication Publication Date Title
US7843644B1 (en) Compact free-space WDM device with one-sided input/output ports
JP3662754B2 (en) Wavelength selective add-drop device
US20020154857A1 (en) Wavelength division multiplexing/demultiplexing systems
GB2096350A (en) Wavelength-selective optical coupling device
JPS60101508A (en) Light wavelength multiplexer and demultiplexer for bidirectional
JP2003505732A (en) Multiplexer and demultiplexer for single mode fiber optic communication links
JP2003114402A (en) Optical multiplexer / demultiplexer and adjustment method thereof
JPH11223745A (en) Apparatus with virtual image phase array (VIPA) in combination with a wavelength demultiplexer for demultiplexing wavelength multiplexed (WDM) light
JPS5937520A (en) Wavelength multiplex demultiplexer
JPS6046682B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
JPS5815926Y2 (en) Composite optical wavelength demultiplexing circuit
JPS59200210A (en) Optical demultiplexer
JP3486526B2 (en) WDM optical multiplexing / demultiplexing circuit
WO2023061024A1 (en) Optical receiving assembly and optical module
JPS5814112A (en) optical demultiplexer
JP3358947B2 (en) Optical multiplexer / demultiplexer and optical transmission system
CN1256821C (en) Holographic Fresnel congested wavelength division multiplexer and its making method and apparatus
JPS59198420A (en) Production of multilayered filter for optical multiplexer/demultiplexer
JPS6247005A (en) Diffraction grating for wavelength multiplexing and demultiplexing
JPH0990155A (en) Optical branching filter
JPH0690366B2 (en) Grating type optical demultiplexer
CN2585249Y (en) Fresnel holography and condensed type wave division multiplexer and its mfg. equipment
KR100310138B1 (en) Apparatus for separating and uniting optical signals
JPH01109311A (en) Optical multiplexer/demultiplexer
JPS5936222A (en) Optical demultiplexer