[go: up one dir, main page]

JPS5936803A - Method for correcting feedforward model - Google Patents

Method for correcting feedforward model

Info

Publication number
JPS5936803A
JPS5936803A JP14715582A JP14715582A JPS5936803A JP S5936803 A JPS5936803 A JP S5936803A JP 14715582 A JP14715582 A JP 14715582A JP 14715582 A JP14715582 A JP 14715582A JP S5936803 A JPS5936803 A JP S5936803A
Authority
JP
Japan
Prior art keywords
signal
output
static characteristic
feedforward model
feedforward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14715582A
Other languages
Japanese (ja)
Other versions
JPH0642161B2 (en
Inventor
Kazuo Hiroi
広井 和男
Kojiro Ito
伊藤 光二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14715582A priority Critical patent/JPH0642161B2/en
Priority to US06/477,384 priority patent/US4563735A/en
Priority to FR8304921A priority patent/FR2524169B1/en
Priority to DE3311048A priority patent/DE3311048C2/en
Publication of JPS5936803A publication Critical patent/JPS5936803A/en
Priority to US06/698,791 priority patent/US4714988A/en
Publication of JPH0642161B2 publication Critical patent/JPH0642161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve the quality of process control by correcting a factor or a bias intermittently so that an operation signal and an output signal from a static characteristic compensating feedforward model coincide with each other at the time of stable state reducing external disturbance. CONSTITUTION:A static characteristic compensating signal Dn being an output from the feedforward model 38, is applied to a differential part 51 to find the difference and turns the signal to a speed type. The signal Dn is successively inputted to an adder 33 through a contact 62b, so that the signal Dn is added with an output from a control part 32 and returned to a position type by a conversion part 34 to form a signal A. On the other hand, the signal Dn is added with the signal A by an adder 35 through an imperfect differentiation part 42 and a contact 62b'. The signal A is applied to a subtractor 43 to find the difference between the signal A and the signal Dn, the differential signal is integrated by an integration part 44 through a contact 62a and the integrated signal is applied to a multiplying part 40. The factor of the multiplying part 40 is adjusted so that the integrated value becomes zero to correct the feedforward model 38 so that the signal A and the static characteristic compensating part Dn after correction coincide with each other.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はフィードバック制御とフィードフォワード制御
とを組合わせたプロセス制御装置において、外乱特性の
変化に対応してフィードフォワードモデルを自動修正す
る方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for automatically correcting a feedforward model in response to changes in disturbance characteristics in a process control device that combines feedback control and feedforward control. It is.

〔発明の技術的背景〕[Technical background of the invention]

プロセス制御においては、フィードバック制御が重要な
役割を果しているが、この制御方式は結果のみに注目し
ており、結果が目標匝に合致していないとき修正制御を
行なう。従つ【、ゆっくりした変動の場合には問題はな
いが、急激な外乱に対しても結果が目標値からずれ【は
じめて修正制御をするCとになるので、負荷変動、外乱
なと急変に対する過渡応答は遅れてしまうという大きな
欠点を付っている。そこで、外乱を測定して、外乱の影
響が制御量に現われる前に先回りして外乱の影響を補償
するフィードフォワード制御をフィードバック制御と組
合わせて適用することにより、制御性の向上を図ってい
る。
Feedback control plays an important role in process control, but this control method focuses only on results, and performs corrective control when the results do not match the target. Therefore, there is no problem in the case of slow fluctuations, but the results deviate from the target value even in the case of sudden disturbances. A major drawback is that the response is delayed. Therefore, we aim to improve controllability by applying feedforward control in combination with feedback control, which measures the disturbance and proactively compensates for the effect of the disturbance before it appears on the control amount. .

第1図はフィードバック制御とフィードフォワード1呻
とを組合わせた基本的な系を示すブロック図である。同
図圧おいて、比較部1で目標値と制御量を比較してその
偏差なPIDID調節釦2れ、調節演算を行なった鏝、
加算部3に導く。一方。
FIG. 1 is a block diagram showing a basic system that combines feedback control and feedforward control. At the same figure pressure, the comparator 1 compares the target value and the control amount, and the PIDID adjustment button 2 determines the deviation, and the trowel performs the adjustment calculation.
It leads to the adding section 3. on the other hand.

外乱りは、伝達関数GDを持つ外乱の伝達経路7を通っ
て、制御量Xに影響を及ぼす。そこで、この影響を打ち
消して補償するため伝達関数GFを持つフィードフォワ
ードモデル8を経由して、外乱補償信号を加算部3で、
調節部2の出力信号と加算し、これを操作信号として制
御対象7に加えて制御し、この制御対象の伝達関数GP
 を持つブロック4の出力と外乱の影響とが加算された
もの(この加算を加算部5で行なわれるものとして表わ
す)が制御量Xとなる。
The disturbance affects the control amount X through a disturbance transmission path 7 having a transfer function GD. Therefore, in order to cancel and compensate for this influence, the disturbance compensation signal is sent to the adder 3 via the feedforward model 8 having the transfer function GF.
This is added to the output signal of the adjustment section 2, and this is added to the controlled object 7 as an operation signal to control it, and the transfer function GP of this controlled object is determined.
The control amount X is the sum of the output of the block 4 having the value and the influence of the disturbance (this addition is expressed as being performed by the adding section 5).

従って、調節計2の出力信号をYとすると。Therefore, if the output signal of controller 2 is Y.

X=4Y+1)XUF)XGP+DXGD=YXGP+
DX(GD十GFXGP)  ・・・・・・ 11)(
1)式から、外乱りがどんなに変動しても、制御量XK
影響を及はさない1こめには G l) −F G )、X GP= 0が成立しなけ
ればならない。従つ゛〔、フイードフオワ−)゛モデル
8の伝達関数GFは、と尾める必要がある。GDI G
、は一般にむだ時間と一次遅れの複合したもので近似で
きろ。
X=4Y+1)XUF)XGP+DXGD=YXGP+
DX (GD 1 GFXGP) ...... 11) (
From equation 1), no matter how the disturbance changes, the control amount XK
For the first time that has no influence, G l) - F G ), X GP = 0 must hold. Accordingly, the transfer function GF of the feed forward model 8 needs to be determined as follows. GDI G
, can generally be approximated by a combination of dead time and first-order delay.

ここで、K、 、 K、)はゲインだ数、Tp * T
l)は時定叡、I、P、LDはむだF1川をボす。従っ
て、フィードフォワードモデル8の伝:+4閣数G、は
、・・・・・・ (3) となる。また、G、とGDのおくれ時間がはy等しい場
合には、 となり、簡単な式となる。実用的にはこの簡単な式で充
分である。このようVc、従来は、制御対象の外乱に対
する伝達関数GDの係数KDが一定であるとしフィード
フォワードモデルの係数KF=KD/KPも一定として
い1こ。しかし、実際σ)プロセスにおいては、Cの外
乱係数KDは定値テはなく、間接的外乱要素、経時的特
性変化、内外の物理量の変化、化学成分麺の変化、周囲
温度の変化、測定していない外乱要素の影響により、不
規則に大きく変化する。CO) f、−めフィードフォ
ワード制御の効果がなくなったり、逆に害を与えたりす
るという問題があった。
Here, K, , K,) is the gain number, Tp * T
l) is Tokisada Akira, I, P, LD is Muda F1 Kawabo. Therefore, the history of feedforward model 8: +4 cabinet number G, becomes... (3). Also, if the delay times of G and GD are equal to y, then the equation becomes as follows, which is a simple formula. For practical purposes, this simple formula is sufficient. Conventionally, the coefficient KD of the transfer function GD with respect to the disturbance of the controlled object is constant, and the coefficient KF=KD/KP of the feedforward model is also constant. However, in the actual σ) process, the disturbance coefficient KD of C does not have a fixed value, but includes indirect disturbance elements, changes in characteristics over time, changes in internal and external physical quantities, changes in chemical components, changes in ambient temperature, and changes in the measured temperature. It changes irregularly and significantly due to the influence of external disturbance elements. CO) f, -me There is a problem in that the effect of feedforward control is lost, or on the contrary, it causes harm.

特に最近は、ゾロセスで用いられる原料、燃料の多(1
)化、製品の多様化、経済環境の変化による操業率の変
化に伴なう負荷変化、多目的化などのため、プロセスの
フレキシビリティ、従って制御装置のフレキシビリティ
を高めることが強く要求されるようになってきた。
Especially recently, the raw materials and fuel used in Zorocess are increasing (1
), product diversification, load changes due to changes in operating rates due to changes in the economic environment, multi-purpose use, etc., there is a strong need to increase the flexibility of processes and, therefore, the flexibility of control devices. It has become.

以下、上記の点について、熱交換器口温度制御を例にと
って更に詳しく説明する。第2図において、原料11を
配管12を通して熱交換器14に導き、ここで蒸気によ
り加熱して取出す。熱交換器14の出口温度T。を温度
検出器15で検出し、温度調節計19に入れて、出口温
度T。が所定値となるように、調節演算する◎ 一方、原料泥量Fi を原料流量検出器13で検出し、
これをフィードフォワードモデル21に入れ、その出力
を、調節計19の出力と加算部側で加算して、加昇結果
を蒸気流量調節計四に設定値として与える。蒸気泥蹴調
節計nでは、蒸気流量検出器17で検出された蒸気流鉦
信号をフィードバック信号として、上Re設定値と等し
くなるように調節演算して、その出力48号で、調節弁
18の開度を制御1する。このようにして、熱交換器1
4の出口温度T。
The above points will be explained in more detail below, taking heat exchanger mouth temperature control as an example. In FIG. 2, a raw material 11 is led through a pipe 12 to a heat exchanger 14, where it is heated with steam and taken out. The outlet temperature T of the heat exchanger 14. is detected by the temperature detector 15 and entered into the temperature controller 19, and the outlet temperature T is determined. Adjust and calculate so that it becomes a predetermined value ◎ On the other hand, the raw material mud amount Fi is detected by the raw material flow rate detector 13,
This is input into the feedforward model 21, and its output is added to the output of the controller 19 on the adder side, and the increase result is given to the steam flow rate controller 4 as a set value. In the steam kick regulator n, the steam flow control signal detected by the steam flow rate detector 17 is used as a feedback signal to perform adjustment calculations so as to be equal to the upper Re setting value, and the output No. 48 is used to control the control valve 18. Control the opening degree. In this way, heat exchanger 1
4 outlet temperature T.

を一定に保つための制御を行なう。control to keep it constant.

上記の例のフィードフォワードモデル22の伝達関数G
Fについて検討する。まず、プロセスの定常状態におけ
る熱収支Qを求める。
Transfer function G of feedforward model 22 in the above example
Consider F. First, the heat balance Q in the steady state of the process is determined.

■ Q”FsXHs=HXFIXCHX(TS’ri) ”
”・・(5)ここで、F8は蒸気重量流量、H8は蒸気
潜熱、Fiは原料車l、Ciは原料比熱、Tsは熱交換
器出口温度設定温度、Ti は原料の熱交換器入口温度
、ηは熱又換器効率である。
■ Q"FsXHs=HXFIXCHX(TS'ri)"
(5) Here, F8 is the steam weight flow rate, H8 is the steam latent heat, Fi is the raw material car l, Ci is the specific heat of the raw material, Ts is the heat exchanger outlet temperature setting temperature, and Ti is the heat exchanger inlet temperature of the raw material , η is the heat exchanger efficiency.

(5)式から操作量である蒸気流量F8 を求めると。The steam flow rate F8, which is the manipulated variable, is calculated from equation (5).

となる。(6)式からフィードフォワードモデル22の
伝達関数の静特性補償分GFSは、 となり、動特性補償分を付加したフィードフォワードモ
デル四の伝達関数GFは となる。ここでTDは原料流量検出器13から出口温度
検出器15までの時定数、TPは蒸気流量の設定(加9
部印の出力)からこの効°果が熱交換器出口温度に及ぶ
壕での時定数である。
becomes. From equation (6), the static characteristic compensation component GFS of the transfer function of the feedforward model 22 is as follows, and the transfer function GF of the feedforward model 4 to which the dynamic characteristic compensation component is added is as follows. Here, TD is the time constant from the raw material flow rate detector 13 to the outlet temperature detector 15, and TP is the steam flow rate setting (adjustment
This is the time constant at the trench where this effect reaches the heat exchanger outlet temperature.

上記の例では、原料流量Fi  の変化のみを外乱とし
“(フィードフォワード制御をしζおり、なる係数■り
、、は定θとしているが、実際には次のような要因、つ
まり、 (1)原許[温度の変化 (11)熱父換効率の変化 (ill)  蒸気保、W熱橡の変化 (1■)周囲温度の変・比 M  JiC料比熱の変化 などにより、KFは不規則に大きく変化する。このため
、フィードツメワード制御の効果が十分に発揮されず、
原料流量変化時の制御性が低下し、製品の品質が乱れる
In the above example, only the change in the raw material flow rate Fi is assumed to be a disturbance, and the coefficient ζ is constant θ, but in reality, the following factors, that is, (1 ) Original [Change in temperature (11) Change in heat exchange efficiency (ill) Change in steam retention, W heat exchange (1) Change in ambient temperature/ratio M Due to changes in specific heat of JiC material, KF is irregular As a result, the effect of feed-to-word control is not fully demonstrated, and
Controllability when changing the raw material flow rate deteriorates, and product quality is disturbed.

このように、従来の制御方法には、フィードフォワード
制御の効果が発揮されず、場合によっては逆効果となる
という問題があり、その問題はプロセスのフレキシビリ
ティに対する要求力強まるに伴って、一層厘大なものと
なっていた。
As described above, conventional control methods have the problem that feedforward control is not effective and may have the opposite effect in some cases, and this problem is becoming more severe as the demand for process flexibility becomes stronger. It had become something big.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、フィードフォワード補償を常に最適な
状態に保持して、プロセス制御の質を向上させることが
できるフィードフォワードモデルの自動修正方法を提供
することにある。
An object of the present invention is to provide a method for automatically correcting a feedforward model that can constantly maintain feedforward compensation in an optimal state and improve the quality of process control.

〔発明の概要〕[Summary of the invention]

本発明は外乱の少ない安定状態の時に操作端の調節に用
いるか、凍1こは二次調節ループの設定信号として用い
る操作信号とフィードフォワードモデルで演算された静
特性補償分とが互いに一致するようにフィードフォワー
ドモデルの係数またけバイアスを体重するようにしたこ
とを%徴と″fろものである。
The present invention can be used to adjust the operating end in a stable state with little disturbance, or when the operating signal used as a setting signal for the secondary adjustment loop and the static characteristic compensation calculated by the feedforward model match each other. The coefficient straddle bias of the feedforward model was weighted down as shown in the figure.

〔発明の実施例〕[Embodiments of the invention]

以下第3図を参照して本発明の一夫施例を説明する。こ
の実施例は、フィートノクック制御系の#4節出力信号
が速度形の場合のものである。
A Kazuo embodiment of the present invention will be described below with reference to FIG. In this embodiment, the #4 node output signal of the foot knock control system is of the speed type.

制御系Xを測定して得られるプロセス変数Pvを比較部
31で目標値SVと比較し、その偏差enを調節部32
に導く。調節部32は、P(比例)、■(積分)、D(
微分)動作のいずれか、または組合せの調節演算を行な
う。調節部32の出力信号32aは加算部33、速度形
−位置影信号変換部34゜加算部35を経由して操作信
号Mとして制御対象36に印加される。このように、制
御lxをフィードバックして制御するフィードバック制
御系を構成する。
The process variable Pv obtained by measuring the control system
lead to. The adjustment section 32 has P (proportional), ■ (integral), D (
(differential) operation, or a combination of adjustment operations. The output signal 32a of the adjustment section 32 is applied to the controlled object 36 as an operation signal M via an addition section 33, a velocity type-position shadow signal conversion section 34, and an addition section 35. In this way, a feedback control system is configured that controls by feeding back the control lx.

一方、フィード7オソード制御のため、外乱信号りを演
算部39に入れて、ここで静特性補償分を求めるための
演算を行なう。演算部4oの出力は乗算部40に送られ
、乗算部4oで係数を掛けられて静特性補償信号Dn 
 となる。このように、演算部39と乗算部40とで静
特性補償フィードフォワードモデル38が形成されてい
る。
On the other hand, for the feed 7 source control, the disturbance signal is input to the calculation section 39, where calculations are performed to obtain the static characteristic compensation. The output of the calculation unit 4o is sent to the multiplication unit 40, where it is multiplied by a coefficient to produce the static characteristic compensation signal Dn.
becomes. In this way, the static characteristic compensation feedforward model 38 is formed by the calculation section 39 and the multiplication section 40.

即ち、(4)式を変形すると となるが、このうち右辺の第1項が静特性補償分であり
、#特性補償フィードフォワードモデル38ではこれを
求めているのである。一方、上記右辺の第2項は動/i
性補償分であり、静特性補償分にを掛けたものとなって
いる。そこでuo)式で表わされる伝達関数を持つ、後
述の不完全微分部42に、静特性補償フィードフォワー
ドモデル謔の出方を入力することにより、動特性補イハ
分を得ることとしている。
That is, when formula (4) is modified, the first term on the right side is the static characteristic compensation component, which is sought in the #characteristic compensation feedforward model 38. On the other hand, the second term on the right-hand side above is dynamic/i
This is the static characteristic compensation component multiplied by the static characteristic compensation component. Therefore, the dynamic characteristic compensation component is obtained by inputting the output of the static characteristic compensation feedforward model to an incomplete differentiator 42 (to be described later) having a transfer function expressed by the equation (uo).

静特性補償信号Dnは1位置形−速度形侶号震換部を4
・1り成する差分部51で、各サンプリング時における
静I侍性補償分D11 と1つ前のサンプリング時にお
ける静特性補償分Dn−1との差を求め、即ちCのよう
にして静特性補償分を速度形に変換される。そして、そ
の後、接点62bを介して加算部33に与えられ、加算
部33で調節出力信号32aと加算され、次いで変換部
34で位置形に戻され、信号Aとなる。
The static characteristic compensation signal Dn is a 1-position type-velocity type vibration converter.
・The difference unit 51 forming one component calculates the difference between the static characteristic compensation D11 at each sampling time and the static characteristic compensation Dn-1 at the previous sampling time, that is, calculates the static characteristic as shown in C. The compensation amount is converted into velocity form. Thereafter, the signal is applied to the adder 33 via the contact 62b, where it is added to the adjustment output signal 32a, and then returned to the position form by the converter 34, resulting in signal A.

静!侍性補償分Dnはまた、不完全微分部42.接点6
2b′を経由して、加算部35で、信号Aと加算される
Silence! The samurai compensation portion Dn is also the incomplete differential portion 42. Contact 6
2b', and is added to the signal A in the adder 35.

一方、減算部43で、加算部33からの信号Aと静特性
補償分Dn との差が求められて、この差が接点62a
を介して積分部44に与えられ、接点62aが閉じてい
る間上記の差が積分部44で積分され、積分値44aが
乗算部40に加えられる。そして、上記の積分値が零に
なるように乗算部40の係数が調整される。このように
1.信号Aと、修正後の静特性補償分り。とが一致する
ようにフィードフォワードモデル38の修正が行なわれ
る。、 判別部54は、制御系が安定状態にある時接点62aを
閉じて修正を行なわせるとともに、接点62b 、 6
2b’を開くこととしている。制tn系が安定状態にあ
るかどうかの判定は次のようにして行なわれる。
On the other hand, the subtractor 43 calculates the difference between the signal A from the adder 33 and the static characteristic compensation Dn, and this difference is calculated at the contact 62a.
While the contact point 62a is closed, the above difference is integrated by the integrating section 44, and the integral value 44a is added to the multiplying section 40. Then, the coefficient of the multiplier 40 is adjusted so that the above integral value becomes zero. In this way 1. Signal A and static characteristic compensation after correction. The feedforward model 38 is modified so that the values match. , the determination unit 54 closes the contact 62a to perform correction when the control system is in a stable state, and also closes the contact 62a and causes the contact 62b, 6 to perform correction.
2b' is to be opened. Whether or not the tn system is in a stable state is determined as follows.

即ち、まず減算部43の出力信号を信号レベル検出器5
5に入れ、この信号が所定の範囲外のものとなると、レ
ベル検出器55の出力をオンとし、タイマ56に入れる
。この時から所定の設定時間が経過すると、タイマ56
の出力信号がオンとなる。タイマ団の出力は論理積部6
1に入力される。
That is, first, the output signal of the subtraction section 43 is sent to the signal level detector 5.
5, and when this signal falls outside the predetermined range, the output of the level detector 55 is turned on and the signal is input to the timer 56. When a predetermined set time has elapsed from this time, the timer 56
The output signal of is turned on. The output of the timer group is the logical product section 6
1 is input.

一方、変換部51から出力される静特性補償分の変化分
は信号レベル検出部57に入れられ、それが所定の範囲
内にある時、検出部57の出力11号がオンとなる。箇
た、不完全微分部42の出力信号は信号レベル検出部5
8に導かれ、該不完全部分部42の出力信号が所定の範
囲内にある時、検出部諮り出カイ1号がオンとなる。さ
らに、比較部31から出力される偏差信号は4ぎ号しベ
ル検出郡59に導かれ、偏差が所定の範囲内にある時検
出部59の出力信−号がオンとなる。検出部57 、5
8および59の出力1号は論理積部印に導かれる。従っ
て、論理積部ωの出力信号は、外乱の変化が所定の範囲
内にあるとき、即ち外乱の変化が少ないときにオンとな
り、論理積部61に加えられる。
On the other hand, the static characteristic compensation change output from the conversion section 51 is input to the signal level detection section 57, and when it is within a predetermined range, output No. 11 of the detection section 57 is turned on. In addition, the output signal of the incomplete differentiator 42 is sent to the signal level detector 5.
8, and when the output signal of the incomplete portion 42 is within a predetermined range, the detector output signal No. 1 is turned on. Further, the deviation signal outputted from the comparator 31 is guided to a four-signal bell detection group 59, and when the deviation is within a predetermined range, the output signal of the detection section 59 is turned on. Detection units 57, 5
Output No. 1 of 8 and 59 is led to the logical product mark. Therefore, the output signal of the AND section ω is turned on and applied to the AND section 61 when the change in the disturbance is within a predetermined range, that is, when the change in the disturbance is small.

論II JJt部61の出力はメモリ62のセット信号
として使用される。従って外乱補償の静時1主補償分と
操作信号との間に所定以上の偏差が継続的に出ており(
タイマ56の出力)かつ外乱の変化が少ないときに(論
理7@部印の出力)、論理積部61の出力によりメモリ
62はセットされる。セットされるとメモリ62の出力
はオンとなり、その接点62aは導通状態となり、接点
62b 、 62b’は非導通状態となる。この結果、
減n部43の出力(偏差)は積分部44に供給されて4
賃分される。積分部44の出力は乗舞部40に導かれ、
外乱補償のフィードフォワードモデルの係数を修LE−
1−るのに用いられる。一方。
Theory II The output of the JJt section 61 is used as a set signal for the memory 62. Therefore, there is a continuous deviation of more than a predetermined value between the static time 1 main compensation part of the disturbance compensation and the operation signal (
The memory 62 is set by the output of the AND section 61 when the output of the timer 56) and the change in the disturbance is small (the output of the logic 7@ section). When set, the output of the memory 62 is turned on, its contact 62a becomes conductive, and its contacts 62b and 62b' become non-conductive. As a result,
The output (deviation) of the reduction n section 43 is supplied to the integration section 44.
The rent will be divided. The output of the integrating section 44 is led to the riding section 40,
Modify the coefficients of the feedforward model for disturbance compensationLE-
1- Used for on the other hand.

この間変換部51、不完全微分部42から加算?@S 
:33 。
During this time, is the addition from the conversion unit 51 and the incomplete differentiation unit 42? @S
:33.

あぺの信号の供給は非導通状態の接点52b 、 62
b’により阻止され、外乱のフィードフォワードが禁止
される。
The Ape signal is supplied to the non-conducting contacts 52b and 62.
b', and the feedforward of the disturbance is prohibited.

このようにしてフィードフォワードモデルQノ係数を自
動修正して、その偏差が所定値内となると信号レベル検
出部犯の出力信号はオフとなり、その瞬間、タイマ56
の出力信号もオフとなり、論理積部61の出力信号もオ
フとなる。一方、信号反転部63の出力はオンとなり、
タイマ64の設定時間が経過すると、クイマロ4の出力
がオンとなり、メモリ62はリセットされる。この結果
、接点62aは非導通となり”、フィードフォワードモ
デルの係数修正(乗算部40の係数の修正)を中止する
。一方。
In this way, the feedforward model Q coefficient is automatically corrected, and when the deviation is within a predetermined value, the output signal of the signal level detector turns off, and at that moment, the timer 56
The output signal of the AND section 61 also turns off. On the other hand, the output of the signal inverter 63 is turned on,
When the set time of the timer 64 has elapsed, the output of the Kuimaro 4 is turned on and the memory 62 is reset. As a result, the contact 62a becomes non-conductive, and correction of the coefficients of the feedforward model (correction of the coefficients of the multiplier 40) is stopped.On the other hand.

接点62b 、 62b’は導通状態になり、フィード
フォワード制御が再開される。
The contacts 62b and 62b' become conductive, and feedforward control is restarted.

以上のようにして、フィードフォワードモデルの自動修
正を行なう。
As described above, the feedforward model is automatically corrected.

上記の実施例は調節出力信号3加が速度形の嚇合である
が、位置形の場合には第3図のうち速度形−位置影信号
変換部あ、差分部51を省き、加舅部33の出力をその
ま筐信号Aとして用い、また静特性補償弁Dn をその
まま接点62bを介して加詳部33に加える4こととす
ればよい。
In the above embodiment, the adjustment output signal 3 is a combination of velocity type, but in the case of position type, the velocity type-position shadow signal conversion part A and the difference part 51 in FIG. 33 may be used as is as the housing signal A, and the static characteristic compensation valve Dn may be directly applied to the detailing section 33 via the contact 62b.

また、上卿の実施例においては制++11偏Men、比
例補償弁の変化および位相補償分がそれぞれ所定値より
小さい時に制御系が外乱の少ない制御安定状態にあるも
のとして、その時フィードフォワードモデルの修正を行
なっているが、第4図に示すように変換部14の出力信
号を不完全微分部35で不完全微分し、これが所定値よ
り小さい時に制御安定状態にあるとして修正を行なうこ
ととしてもよい。
In addition, in the example of the superior, the control system is assumed to be in a stable control state with few disturbances when the control ++11 bias Men, the change in the proportional compensation valve, and the phase compensation are each smaller than a predetermined value, and the feedforward model is then corrected. However, as shown in FIG. 4, the output signal of the converter 14 may be incompletely differentiated by an incomplete differentiator 35, and when this is smaller than a predetermined value, the control may be considered to be in a stable state and the correction may be made. .

上記の各実施例において、制御系の各構成部は、アナロ
グ形のものでもよく、デジタル形のものでもよく、1だ
個別部品によって形成してもよく、さらにプログラムさ
れ1こコンピュータで形成してもよい。
In each of the embodiments described above, each component of the control system may be of an analog type or a digital type, and may be formed by one or more individual parts, and may be programmed and formed by one computer. Good too.

また、上記の各実施例では、フィードフォワード制御卸
により静特性補償のみならず、動特性補償をも行なう場
合のものであるが、本発明は静特性補償のみを行なう場
合にも適用できる。この場合、第3図の不完全微分部4
2、加算部35等を除去すればよい。
Further, in each of the above embodiments, not only static characteristic compensation but also dynamic characteristic compensation is performed by feedforward control, but the present invention can also be applied to a case where only static characteristic compensation is performed. In this case, the incomplete differential part 4 in FIG.
2. The adder 35 and the like may be removed.

さらに、フィードフォワードモデルの係数を修正する代
りにノ々イアスを修正することとしてもよ−1゜ 〔発明の効果〕 以上のように本発明によれば、外乱の少ない安定状態の
時、操作信号と静特性補償フィードフォワードモデルの
出力信号とが互いに一致するよ5に、フィードフォワー
ドモデルの係数またはバイアスを間欠的に修正するよう
にしたので、フィードフォワード補償を最適状態に維持
することができ、プロセス制御の質を向上させることが
できる。
Furthermore, instead of correcting the coefficients of the feedforward model, the noise coefficient may be corrected. Since the coefficients or biases of the feedforward model are intermittently corrected so that the output signal of the static characteristic compensation feedforward model and the output signal of the static characteristic compensation feedforward model match each other, it is possible to maintain the feedforward compensation in an optimal state. The quality of process control can be improved.

また、時間的にゆるやかに変動する外乱要素は検出しな
くても自動修正されるので、外乱要素の検出も少なくて
すみ、システムを簡単に安価に構築できる利点がある。
Furthermore, since disturbance elements that vary slowly over time are automatically corrected even if they are not detected, there is an advantage that fewer disturbance elements need to be detected, and the system can be constructed easily and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

れる制御装置を示すブロック図、第4図は本発明の他の
実施例、!7)実施に用いられるi+1JII11装置
の一部を示すブロック図である。 12・・・調節部、14・・・速度影信号−位置形信号
変換部、16・・・制御対象、19・・・演算部、 2
0・・・乗算部。 21・・・位置影信号−速度形信号変換部、22・・・
不完全微分部、23・・・減鼻部、24・・・積分部。
FIG. 4 is a block diagram showing a control device according to another embodiment of the present invention. 7) It is a block diagram showing part of the i+1 JII11 device used in the implementation. 12...Adjustment unit, 14...Velocity shadow signal-position signal conversion unit, 16...Controlled object, 19...Calculation unit, 2
0... Multiplication section. 21...Position shadow signal-velocity type signal converter, 22...
Incomplete differential part, 23... Nose reduction part, 24... Integral part.

Claims (1)

【特許請求の範囲】 ■、外乱の影響を先まわりして抑制するためのフィード
フォワード制御機構を、フィードバック制御系に付加し
て成るプロセス制御装置において、外乱となる要素を検
出して、外乱の影響を打ち消す1こめの静/i性フィー
ドフォワードモデルに与え、該モデルで演算された静特
性補償信号またはCれを変換した信号をフィートノζツ
ク制御系の調節出力信号と加算し、加算結果もしくはこ
れを変換したイロ号、またはこれらに基いて定められた
信号を操作信号として操作端の調節に用いるかまたは二
次調節ループの設定信号として用い、外乱の少ない安定
状態の時、前記操作信号と前記フィードフォワードモデ
ルから出力される前記?7?特性補償分とが互いに一致
するよ5に前記フィードフォワードモデルの係数または
ノマイアスを間欠的に修正するようにしたことを特徴と
するフィードフォワードモデルの自動修正方法。 2、特許請求の範囲第1項記載の方法において。 フィードバック制御系の調節出力信号が位置形の場合に
は、前記静特性補償フィードフォワードモデルの出力信
号をそのままフィードバック制御系の調節出力信号と加
算したものを操作信号として用い、一方フイードバック
制御系の調節出力信号が速度形の場合には、前記静特性
浦偵フィードフォワードモデルの出力16号を一旦速度
形信号に変換した後、フィードバック制御系の調節出力
信号と加算し、加算結果を位置形4rR号に変換した信
号を操作信号として用いることを特徴とする方法。 3、 を旨fff請求の範囲第1項記載の方法において
。 前記静特性補償フィードフォワードモデルの出力を不完
全微分し、前記靜特跣補償分と前記フィートノζツク制
御系の調節出力信号との和、1たはこれを変換した信号
に前記不完全微分の結果を加算し、この加算結果を前記
操作信号として用いることを特徴とする方法。
[Claims] (1) A process control device in which a feedforward control mechanism for proactively suppressing the influence of disturbance is added to a feedback control system, which detects an element that becomes a disturbance and suppresses the disturbance. The static characteristic compensation signal calculated by the model or the signal obtained by converting the C error is added to the adjustment output signal of the foot control control system, and the addition result or The Iro number converted from this, or a signal determined based on these, is used as an operating signal to adjust the operating end, or as a setting signal for the secondary adjustment loop, and when in a stable state with little disturbance, the operating signal and The above output from the feedforward model? 7? 5. A method for automatically correcting a feedforward model, characterized in that coefficients or nominals of the feedforward model are intermittently corrected so that characteristic compensation components and characteristic compensation components coincide with each other. 2. In the method according to claim 1. When the adjustment output signal of the feedback control system is of the position type, the output signal of the static characteristic compensation feedforward model is directly added to the adjustment output signal of the feedback control system, and the result is used as the operation signal. When the output signal is a velocity type signal, the output No. 16 of the static characteristic Ura feedforward model is once converted into a speed type signal, and then added to the adjustment output signal of the feedback control system, and the addition result is converted into a position type signal No. 4rR. A method characterized in that a signal converted into is used as an operation signal. 3. In the method according to claim 1. The output of the static characteristic compensation feedforward model is incompletely differentiated, and the incompletely differentiated value is converted into the sum of the static characteristic compensation component and the adjustment output signal of the foot control system, or a signal obtained by converting this. A method characterized by adding the results and using the addition result as the operation signal.
JP14715582A 1982-03-26 1982-08-25 How to modify a feedforward model Expired - Lifetime JPH0642161B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14715582A JPH0642161B2 (en) 1982-08-25 1982-08-25 How to modify a feedforward model
US06/477,384 US4563735A (en) 1982-03-26 1983-03-21 Process controlling method and system involving separate determination of static and dynamic compensation components
FR8304921A FR2524169B1 (en) 1982-03-26 1983-03-25 PROCESS AND SYSTEM FOR CONDUCTING PROCESSES
DE3311048A DE3311048C2 (en) 1982-03-26 1983-03-25 Institution for procedural regulation
US06/698,791 US4714988A (en) 1982-03-26 1985-02-06 Feedforward feedback control having predictive disturbance compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14715582A JPH0642161B2 (en) 1982-08-25 1982-08-25 How to modify a feedforward model

Publications (2)

Publication Number Publication Date
JPS5936803A true JPS5936803A (en) 1984-02-29
JPH0642161B2 JPH0642161B2 (en) 1994-06-01

Family

ID=15423826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14715582A Expired - Lifetime JPH0642161B2 (en) 1982-03-26 1982-08-25 How to modify a feedforward model

Country Status (1)

Country Link
JP (1) JPH0642161B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121505A (en) * 1984-07-09 1986-01-30 Toshiba Corp Process controller
JPS6123207A (en) * 1984-06-30 1986-01-31 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Turbulence compensation method and apparatus during control
JPS6325906A (en) * 1986-07-18 1988-02-03 Furukawa Electric Co Ltd:The Manufacture of saddle type superconducting coil
JPH01238919A (en) * 1988-03-22 1989-09-25 Mitsubishi Heavy Ind Ltd Method for controlling injection molder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123207A (en) * 1984-06-30 1986-01-31 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Turbulence compensation method and apparatus during control
JPS6121505A (en) * 1984-07-09 1986-01-30 Toshiba Corp Process controller
JPS6325906A (en) * 1986-07-18 1988-02-03 Furukawa Electric Co Ltd:The Manufacture of saddle type superconducting coil
JPH01238919A (en) * 1988-03-22 1989-09-25 Mitsubishi Heavy Ind Ltd Method for controlling injection molder

Also Published As

Publication number Publication date
JPH0642161B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US4714988A (en) Feedforward feedback control having predictive disturbance compensation
US4319320A (en) System and method for adaptive control of process
US4563735A (en) Process controlling method and system involving separate determination of static and dynamic compensation components
CA2033223C (en) Compound control method for controlling a system
EP0180292B1 (en) Process control apparatus
JPS60243402A (en) Maximum efficiency steam temperature controller
JPS5936803A (en) Method for correcting feedforward model
US4151589A (en) Decoupled cascade control system
RU2211470C2 (en) Adaptive digital combined control system of unsteady technological objects
Ansay et al. Model uncertainties in GPC: A systematic two-step design
US5995532A (en) Method using fuzzy logic for controlling a furnace
JPS60218105A (en) Control device
JP2009076098A (en) Closed loop system process controller including pid controller
JPH01150742A (en) Control device for hot water feeder
JPS5936804A (en) Automatic correcting method of feedforward model
JPS63165903A (en) Adaptive controller
JPS6312650B2 (en)
JPH10222207A (en) Feedforward controller
SU1149215A1 (en) Adaptive control
JPH05108110A (en) Feedback loop compensator
RU2066471C1 (en) Adaptive balance for controlled excitation
CN117193085A (en) A compensated predictive control system for systems with inertial delays and pure delays
JP3125807B2 (en) Fuel supply control device for instantaneous water heater
CN118034195A (en) Method and device for controlling water addition to materials during material flow through production equipment
JPH04295901A (en) State feedback controller