[go: up one dir, main page]

JPS5935573A - Constant margin angle control system for multistage cascade thyristor converter - Google Patents

Constant margin angle control system for multistage cascade thyristor converter

Info

Publication number
JPS5935573A
JPS5935573A JP57146451A JP14645182A JPS5935573A JP S5935573 A JPS5935573 A JP S5935573A JP 57146451 A JP57146451 A JP 57146451A JP 14645182 A JP14645182 A JP 14645182A JP S5935573 A JPS5935573 A JP S5935573A
Authority
JP
Japan
Prior art keywords
angle
margin angle
control
value
commutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57146451A
Other languages
Japanese (ja)
Inventor
Yukio Aoyama
青山 行夫
Hideo Hoshino
星野 栄雄
Kesao Hashima
橋間 今朝夫
Kazuo Inoue
井上 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57146451A priority Critical patent/JPS5935573A/en
Publication of JPS5935573A publication Critical patent/JPS5935573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は交流電気車において、主電動機駆動用電力変換
装置を他励インバータ運転して回生運転を行う場合の電
力変換器の定余裕角制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant margin angle control method for a power converter in an AC electric vehicle when a power converter for driving a main motor is operated by a separately excited inverter to perform regenerative operation.

この種の電動変換器としてサイリスタ均一ブリッジを用
いれば、他励インバータ動作が可能となシ回生ブレーキ
が実現できる。この交流回生ブレーキを採用することは
発電制動方式に比べてブレーキ装置の小形、軽量化2回
生電力による電力の有効利用など省エネルギー化の観点
から大きな利点が得られる。
If a thyristor uniform bridge is used as this type of electric converter, a regenerative brake capable of separately excited inverter operation can be realized. Adopting this AC regenerative braking has major advantages over the dynamic braking method from the viewpoint of energy saving, such as a smaller brake device, lighter weight, and more effective use of electric power through secondary regenerative power.

第1図(α)はサイリスク均一ブリッジの他励インバー
タ動作時の直流出力電圧波形を示したものであり、一般
に最小制御進み角βmのため順変換動作時に比べ力率お
よび直流出力電圧が低下し、交流側の高調波電流が増加
する。また、同図において最小制御進み角βmから転流
型シ角Uを差し引いた転流余裕角δに相当する時間がサ
イリスクのターンオフ時間以上になると転流失敗を起こ
し直流短絡となる。従って、転流余裕角δの大きさが、
常にサイリスクのターンオフ時間以上になるように制御
する必要がある。一方、交流電気車の場合電源側リアク
タンスの大きさはき電線長によって変化し、変電所より
最遠地点ではパーセントインピーダンスが20係にも達
することがあシ、この大きなりアクタンスのために転流
型シ角は非常に大きくなる。
Figure 1 (α) shows the DC output voltage waveform during operation of a separately excited inverter with a Sirisk uniform bridge, and generally the power factor and DC output voltage are lower than during forward conversion operation due to the minimum control advance angle βm. , the harmonic current on the AC side increases. In addition, in the same figure, if the time corresponding to the commutation margin angle δ obtained by subtracting the commutation type angle U from the minimum control advance angle βm exceeds the turn-off time of the side risk, commutation failure occurs and a DC short circuit occurs. Therefore, the magnitude of the commutation margin angle δ is
It is necessary to control so that the turn-off time of Cyrisk is always exceeded. On the other hand, in the case of AC electric vehicles, the magnitude of the reactance on the power supply side changes depending on the length of the feeder wire, and the percent impedance can reach as much as 20 factors at the farthest point from the substation. The angle becomes very large.

最小制御進み角βmを常に一定値に固定して制御するい
わゆる最小制御進み角一定制御方式では、転流重り角U
が最大となる運転条件時に、必要な転流余裕角が得られ
るように最小制御進み角βmを設定しなければならず、
このため第1図fbJK示すように転流重シ角が小さい
、運転条件時には転流余裕角δの大きさが必要以上に太
きくなυ回生力率が非常に悪くなり、十分な回生電力が
得られないという不都合を生ずる。在米線などのように
比較的運転速度の低い交流電気車では回生制動運転にお
いて電気ブレーキ力が不足すると空気による機(戒ブレ
ーキで補足しているが、高速車両においては機械ブレー
キで補足することは摩耗が激しく実用上無理である。
In the so-called constant minimum control advance angle control method in which the minimum control advance angle βm is always fixed at a constant value, the commutation weight angle U
The minimum control advance angle βm must be set so that the necessary commutation margin angle can be obtained under the operating conditions where
For this reason, as shown in Fig. 1 fbJK, under operating conditions where the commutation margin angle is small, the commutation margin angle δ is larger than necessary and the regenerative power factor becomes extremely poor, resulting in insufficient regenerative power. This causes the inconvenience of not being able to obtain the required amount. In AC electric cars that operate at relatively low speeds, such as those on American lines, if the electric braking force is insufficient during regenerative braking operation, it is supplemented by pneumatic brakes, but in high-speed cars it is supplemented by mechanical brakes. is impractical due to severe wear.

このため、特に新幹線電車などの高速車両への交流回生
ブレーキシステムの実用化にあたっては高速から十分な
回生ブレーキ力を得るため常に余裕角を一定に制御する
ことが望まれる。
For this reason, especially when putting AC regenerative braking systems into practical use in high-speed vehicles such as Shinkansen trains, it is desirable to always control the margin angle to a constant value in order to obtain sufficient regenerative braking force from high speeds.

次に、かかる転流余裕角一定制御方式について説明する
Next, such a constant commutation margin angle control method will be explained.

転流余裕角δと最小制御進み角β約関係式は次式で与え
られる。
The relational expression between the commutation margin angle δ and the minimum control advance angle β is given by the following equation.

δ = βm −u = c−os−’(c’6sβm
 十(’2  ・ Xp・Id/E7))・= (+1
但し、U二転流重シ角、Ep:交流電源電圧冥効値、 
Id:直流電流(完全平滑時)。
δ = βm −u = c−os−′(c′6sβm
10('2・Xp・Id/E7))・=(+1
However, U2 commutation angle, Ep: AC power supply voltage value,
Id: Direct current (when completely smooth).

Xp:交流側リアクタンスを示す。Xp: Indicates AC side reactance.

最小制御進み角一定制御方式では(1)式においてco
sβmが一定であシ、Xp・Idが増加すると余裕角δ
は減少する。従って前記のごとく転流重シ角Uが最大と
なる条件で余裕角δの値が規定値以上になるように最小
制御進み角声の値を設定しなければならずXd−Idl
愕つ値が小さい状態(変電所直下通過時やIdが小さい
速度領域など)においては余裕角δの値が必要以上に太
きくなシ出力電圧および力率の低下を招くおそれがある
In the minimum control advance angle constant control method, co
If sβm is constant and Xp・Id increases, the margin angle δ
decreases. Therefore, as mentioned above, the value of the minimum control advance angle must be set so that the value of the margin angle δ is greater than the specified value under the condition that the commutation angle U is maximum.Xd-Idl
In a state where the start value is small (such as when passing directly under a substation or in a speed range where Id is small), the value of the margin angle δ becomes unnecessarily large, which may cause a decrease in the output voltage and power factor.

この対策として、Xp・Id/Epの変化すなわち転流
重り角の変化に応じて最小制御進み角βmの値を制御し
て余裕角δの大きさを常に一定値になるように制御すれ
は運転状態によらずほぼ一定の力率が得られる。この場
合、余裕角δの設定値をサイリスクのターンオフ時間以
上で、できる限り小さくすることによシ大幅な力率の改
善が期待でき、同時に架線の高調波電流の低減が図れる
As a countermeasure for this, it is possible to control the value of the minimum control advance angle βm according to changes in Xp・Id/Ep, that is, changes in the commutation weight angle, so that the size of the margin angle δ is always kept at a constant value. A nearly constant power factor can be obtained regardless of the state. In this case, by making the set value of the margin angle δ as small as possible and greater than the turn-off time of the sirisk, a significant improvement in the power factor can be expected, and at the same time, it is possible to reduce the harmonic current of the overhead wire.

一方、交流電気車の主回路を第2図について説明すると
、交流電源1を入力する主変圧器2の電源側の高調波電
流の削減のために分割した二次巻線21〜26にサイリ
スク均一ブリッジからなる各単位変換器61〜66をそ
れぞれ接続し、この各単位変換器61〜66を相互に縦
続接続して主変換器6を構成する。生変換器6に平滑り
アクドル3を介して直流電動機の電機子51−54を接
続する。図中41〜44は電動機の界磁巻線を示し、こ
れは主変圧器2の二次巻線に接続する図示しない界磁用
変換器で制御される。
On the other hand, to explain the main circuit of an AC electric vehicle with reference to Fig. 2, the secondary windings 21 to 26 are divided to reduce harmonic currents on the power supply side of the main transformer 2 that inputs the AC power supply 1, and the si-risk is uniform. The main converter 6 is constructed by connecting the unit converters 61 to 66 formed of bridges, and cascading the unit converters 61 to 66 to each other. Armatures 51 to 54 of a DC motor are connected to the raw converter 6 via a flat sliding axle 3. In the figure, 41 to 44 indicate field windings of the motor, which are controlled by a field converter (not shown) connected to the secondary winding of the main transformer 2.

前記主変換器6は位相制御を行う1つの単位変換器66
のバーニア段と、位相制御を行わずON〜OFF制御の
みを行う複数個の単位変換器61〜65のスイッチ段と
で構成しており、主変換器6の制御はバーニア制御法で
ある。
The main converter 6 is one unit converter 66 that performs phase control.
The main converter 6 is controlled by a vernier control method.The main converter 6 is controlled by a vernier control method.

このような回路での多段縦続サイリスタブリッジ構成の
主変換器6に前記余裕角一定制御方式を適用する場合、
余裕角制御系が電流制御系に及ぼす影響が問題となる。
When applying the constant margin angle control method to the main converter 6 having a multi-stage cascaded thyristor bridge configuration in such a circuit,
The problem is the influence of the margin angle control system on the current control system.

第3図は他励インバータ動作時の変換器の直流電圧波形
を示すもので、今、余裕角制御系からの指令により最小
制御進み角がβmから△θだけ増加すると斜線部分に相
当する△Eが減少する。この間主電動機の発生電圧はほ
ぼ一定であシ半すイクル後には、△Eに相当する分直流
電流が増加することになシ同時に△θ変化されるブリッ
ジの数が増える程その増加も大きくなる。
Figure 3 shows the DC voltage waveform of the converter when the separately excited inverter is operating.If the minimum control advance angle increases by △θ from βm due to the command from the margin angle control system, △E corresponds to the shaded area. decreases. During this period, the voltage generated by the main motor is almost constant, and after half a cycle, the DC current increases by an amount equivalent to △E.The more bridges that are changed at the same time by △θ, the larger the increase becomes. .

この直流電流の増加が大きい場合には余裕角の値が逆に
小さくなることがあシ、この場合最小制御進み角は更に
大きくなるように制御されるため、余裕角制御系が発散
し直流電流は増加を続は転流失敗に至る危険性がある。
If this increase in DC current is large, the value of the margin angle may become smaller, and in this case, the minimum control advance angle is controlled to become even larger, so the margin angle control system diverges and the DC current If the amount continues to increase, there is a risk of commutation failure.

前記直流電流の増加に対してはバーニア制御段による通
常の電流制御系が働くが主変換器6は第2図に示したよ
うに多段縦続接続されておシ、前記△θの変化による直
流電圧の変化量は主変換器全体としては相当大きくなシ
余裕角制御系から生するこの直流電流の変化量をバーニ
ア段で補正しようとすると十分な応答性が得られないと
いう問題が生ずる。
In response to the increase in the DC current, a normal current control system using a vernier control stage works, but the main converter 6 is cascaded in multiple stages as shown in FIG. The amount of change in the DC current generated by the margin angle control system is quite large for the main converter as a whole.When attempting to correct the amount of change in the DC current generated from the margin angle control system using the vernier stage, a problem arises in that sufficient responsiveness cannot be obtained.

本発明の目的は前記従来例の不都合を解消し、多段縦続
接続されたサイリス゛り変換器を他励インバータ動作で
運転する場合において、転流余裕角の値を常にある一定
値になるように最小制御進み角を変化させ、しかも最小
制御進み角を制御するため生ずる直流電圧の変化により
通常の電流制御系が外乱を受けず、その結果回生力率2
回生率の向上が図れ同時に交流側の低減や直流側の脈流
率の低減効果もある多段縦続接続サイリスク変換器の転
流余裕角一定制御方式を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example, and to minimize the value of the commutation margin angle so that it always remains a certain constant value when operating thyristor converters connected in series in multiple stages with separately excited inverter operation. The normal current control system is not disturbed by the change in DC voltage that occurs because the control advance angle is changed and the minimum control advance angle is controlled, and as a result, the regenerative power factor is 2.
It is an object of the present invention to provide a constant commutation margin angle control method for multi-stage cascade-connected sirisk converters, which improves the regeneration rate and at the same time has the effect of reducing the AC side and the DC side pulsation rate.

この目的は本発明によれば、単位変換器を多段縦続接続
したサイリスク変換器の他励インバータ運転時において
、定余裕角制御のために最小制御進み角βmを変化させ
る際に、同−電源半サイクル内で最示制御進み角βmを
変化させる単位変換器数を規定値に制限することにより
達成される。
According to the present invention, when changing the minimum control advance angle βm for constant margin angle control during separately excited inverter operation of a Sirisk converter in which unit converters are connected in cascade in multiple stages, This is achieved by limiting the number of unit converters that change the optimum control advance angle βm within a cycle to a specified value.

以下、図面について本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1に5最小制御進み角βmの制御として、あらかじめ
βmの位相角に応じてβmの変化量を設定しておくステ
ップ進段制御を用い趣の変化による直流電圧の変化量/
サイクルを規定値内に抑えるようにした。
First, to control the minimum control advance angle βm, step advance control is used in which the amount of change in βm is set in advance according to the phase angle of βm.
The cycle was kept within the specified value.

第4図はこのステップ進段制御のブロック図を示した園
で、余裕角検出回路8は転流余裕角の値を検出する回路
で、各ブリッジの余裕角の値を検出する。βm演算部2
00は次のサイクルの最小制御進み角β2そ演算出力す
る機能を有し、比較部io。
FIG. 4 shows a block diagram of this step progression control, and the margin angle detection circuit 8 is a circuit that detects the value of the commutation margin angle, and detects the value of the margin angle of each bridge. βm calculation unit 2
00 has a function of calculating and outputting the minimum control advance angle β2 of the next cycle, and is a comparison unit io.

での余裕角検出値δと余裕角設定値δ0の比較結果に応
じて、次のサイクルの声の値を現在の値よシあらかじめ
設定された角度△θだけ1ステツプ加算もしくは減算す
る機能を有する。
It has a function to add or subtract one step from the current value to the voice value of the next cycle by a preset angle △θ, according to the comparison result between the margin angle detection value δ and the margin angle setting value δ0. .

例えば、検出値δ〉設定値δ0ならばβmの変化量は−
Δθ、δ〈δ0ならば+△θとし余裕角を設定値δ。に
近づけるように制御する。ここで、△θの値としては小
さい方が電圧変化量は少なくなるが反面、制御応答性が
遅くなるため通常の電流制御系に対して外乱とならな1
./1@囲内では△θの値は大きい方が好ましい。
For example, if detected value δ>set value δ0, the amount of change in βm is -
If Δθ, δ<δ0, set it to +Δθ and set the margin angle to the set value δ. control so that it approaches . Here, the smaller the value of △θ, the smaller the amount of voltage change, but on the other hand, the control response becomes slower, so it does not cause disturbance to the normal current control system.
.. /1@, the larger the value of Δθ, the better.

第2に、同−電源半サイクル内にβmを変化させるブリ
ッジの数を1段に制限した。第2図に示すように単位変
換器61〜66が縦続接続されている場合には、全ブリ
ッジが同時に同一方向に上述の△θを変化させた時に、
直流電圧変化量を規定値内に抑える必要があり、縦続段
数が増えるほど△θの値は小さくしなければならない。
Second, the number of bridges that change βm within the same power supply half cycle is limited to one stage. When the unit converters 61 to 66 are connected in cascade as shown in FIG. 2, when all the bridges change the above-mentioned Δθ in the same direction at the same time,
It is necessary to suppress the amount of change in DC voltage within a specified value, and the value of Δθ must be made smaller as the number of cascaded stages increases.

従って、ブリッジの縦続段数が多い場合瞭mの進段ステ
ップを相当小さくする必要があり制御上かなシの精度が
要求され実現がむずかしくなる。
Therefore, when the number of cascaded bridge stages is large, it is necessary to make the stage advancement step of the stage m considerably small, and a certain level of accuracy is required in terms of control, which is difficult to realize.

また、各ブリッジの転流型シ角Uは巻線間の相互誘導作
用によシかなり影響しあうため、多段のブリッジの最小
制御進み角βmの饋を各々独立に変化させると、各巻線
間の干渉にょ9余裕角制御系が不安定となるおそれがあ
る。
In addition, since the commutation angle U of each bridge is significantly affected by the mutual induction between the windings, if the minimum control advance angle βm of the multi-stage bridge is varied independently, There is a risk that the margin angle control system may become unstable due to interference.

そこで本発明方式では、比較部100とβm演算部20
0の間に制御するブリッジを選択する機能を設けて1サ
イクルに/3ケを制御するブリッジの数を制限すること
によシ余裕角制御系の安定化を図る。
Therefore, in the method of the present invention, the comparison section 100 and the βm calculation section 20
The margin angle control system is stabilized by providing a function to select the bridge to be controlled between 0 and 3 to limit the number of bridges to be controlled in one cycle.

例えば、第5図に示すように主変換器6が4個の単位変
換器61〜64の縦続接続で構成される場合、第6図に
示すようにδ1〜δ4およびβm1〜β??Z4は各単
位変換器61〜64の第1ブリツジ〜第4ブリツジに対
応した余裕角検出回路 御進み角の演算結果である。余裕角検出値δl〜δ4は
比較@101〜104でそれぞれ設定値δ0と大小比較
され各ブリッジの最小制御進み角のステップ増減の判定
がなされる。制御段選択部300では各ブリッジの余裕
角δl〜δ4の大小関係に応じて最小制御進み角βmの
制御をするブリッジを1段だけ選択し、選択されたブリ
ッジに対応する比較器の判定結果をβmステップ進段部
に伝える。選択されない他のすべてのブリッジの最小制
御進み角の値は前サイクルと同じに保たれる。
For example, when the main converter 6 is configured by cascading four unit converters 61 to 64 as shown in FIG. 5, as shown in FIG. 6, δ1 to δ4 and βm1 to β? ? Z4 is the calculation result of the advance angle of the margin angle detection circuit corresponding to the first to fourth bridges of each unit converter 61 to 64. The margin angle detection values δl to δ4 are compared in magnitude with the set value δ0 in comparisons @101 to 104, respectively, to determine whether the minimum control advance angle of each bridge is increased or decreased in steps. The control stage selection unit 300 selects only one stage of the bridge that controls the minimum control advance angle βm according to the magnitude relationship of the margin angles δl to δ4 of each bridge, and selects the determination result of the comparator corresponding to the selected bridge. βm Notify the step advancement section. The minimum control advance angle values of all other bridges that are not selected are kept the same as in the previous cycle.

従って、本方式によれば1サイクルに生ずる直流電圧の
変動量は1つのブリッジのβm’ilステップ変化させ
た時に生ずる値となる。
Therefore, according to this method, the amount of variation in the DC voltage that occurs in one cycle is the value that occurs when one bridge is changed by βm'il steps.

次に制御段選択部300について説明する。制御段30
0でなされるβm制御段の選択方法としては、例えば、
余裕角検出値δl〜δ4のうち1つでも余裕角設定値以
下のブリッジがあれば隈先的にそのブリッジを選択する
よ5Kする。2つ以上ある場合は余裕角の小さいブリッ
ジを毎サイクル選んで制御する。逆に全ブリッジがすべ
て設定値δ0より大きい場合には余裕角の大きい順に選
ぶようにする。
Next, the control stage selection section 300 will be explained. control stage 30
For example, the method for selecting the βm control stage with 0 is as follows:
If there is a bridge whose margin angle detection value δl to δ4 is equal to or less than the margin angle setting value, that bridge is selectively selected. If there are two or more bridges, the one with the smallest margin angle is selected and controlled every cycle. Conversely, if all the bridges are larger than the set value δ0, the bridges are selected in descending order of margin angle.

また、各ブリッジの転流リアクタンスの差が大きく、同
じβmの位相で点弧しても転流重り角に大きな差が生ず
る場合、巻線間の転流干渉が大きい場合にid:それら
の転流動作に及pγす影響をできるだけ抑えるようにあ
らかじめ各ブリッジのβmの点弧順序を設定しておく制
御方法がある。第7図はこ゛の場合の各ブリッジの転流
動作時の電流波形を示した図で、i1〜$4は各ブリッ
ジの巻線電流を示している。Idは直流電流の値で完全
平滑の場合である。同図においてβmの点弧順序は大き
い方から第1.第4.第3.第2ブリツジとなっている
In addition, if there is a large difference in the commutation reactance of each bridge and a large difference in commutation weight angle occurs even if firing is performed with the same phase of βm, or if commutation interference between windings is large, id: There is a control method in which the firing order of βm of each bridge is set in advance so as to suppress the influence of pγ on the flow operation as much as possible. FIG. 7 is a diagram showing the current waveform during commutation operation of each bridge in this case, and i1 to $4 indicate the winding current of each bridge. Id is the value of the direct current in the case of complete smoothness. In the figure, the firing order of βm is from the largest to the first. 4th. Third. It is the second bridge.

同図はi2がi3の転流によシ干渉を受は転流期間が延
びている場合を示す。かかる場合には各ブリッジの声の
点弧順序をくずさないようにβmを制御した方が余裕角
制御系からみて安定ぞあシ、例えば余裕角検出値がすべ
て設定値δ0よシ大きい時は第1〜第4〜第6〜第2ブ
リツジの順にステップ戻しを行い、逆に1つでもδ0以
下のブリッジがある時は例えば第2〜第3〜第4〜第1
ブリツジのI幀にステップ進段を行えばβmの順序を変
えないままで制御できる。この制御段選択部300の具
体的な実現方法としては、例えばマイコン等を用いて余
裕角検出値の大小関係を判断させればよい。
This figure shows a case where i2 receives interference from the commutation of i3 and the commutation period is extended. In such a case, it is more stable from the viewpoint of the margin angle control system to control βm so as not to disturb the firing order of the voices of each bridge.For example, when the margin angle detection values are all larger than the set value δ0, Step back is performed in the order of 1st to 4th to 6th to 2nd bridges, and conversely, if even one bridge is less than δ0, for example, 2nd to 3rd to 4th to 1st bridges are returned.
If step progression is performed on the bridge's I stage, control can be performed without changing the order of βm. As a specific method for implementing this control stage selection section 300, for example, a microcomputer or the like may be used to determine the magnitude relationship of the detected margin angle values.

なお、前記実施例は交流電源が単相交流の場合につ旨て
説明したが三相交流の場合でも同様に応用できる。
Although the above embodiment has been described in the case where the AC power source is single-phase AC, it can be similarly applied to the case where the AC power source is three-phase AC.

以上述べたように本発明方式は、多段縦続接続されたサ
イリスク変換器を他励インバータ動作で運転する場合に
おいて、最小制御進み角βmを変化させるため生ずる直
流出力電圧の変動量を規定値内に抑えるため、同−電源
半丈イクル内で最小制御進み角βmの゛制御をする単位
変換器の台数を制限することによシ、通常の電流制御系
を乱すことなく余裕角を一定値に制御でき、その結果回
生力率。
As described above, the method of the present invention is capable of keeping the amount of fluctuation in the DC output voltage that occurs due to changing the minimum control advance angle βm within a specified value when operating multi-stage cascade-connected Sylrisk converters with separately excited inverter operation. In order to suppress the margin angle, the margin angle can be controlled to a constant value without disturbing the normal current control system by limiting the number of unit converters that control the minimum control advance angle βm within the same power supply half cycle. The result is a regenerative power factor.

回tH率の向上が図れ、同時に交流側の高調波電流の低
減や、直流側の脈流率の低減できるものである。
It is possible to improve the rotation tH rate, and at the same time reduce the harmonic current on the AC side and the pulsating current rate on the DC side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサイリスタ均一ブリッジ変換器の他励インバー
タ動作時の出力電圧波形図、第2図は交流電気車の主回
路を示す回路図、第3図は第2図の変換器の他励インバ
ータ動作時の直流電圧波形図、第4図は本発明方式の実
施例でのステップ進段制御を示すブロック図、第5図は
主変換装置部分のブロック回路図、第6図は本発明方式
の実施例でH7υ陣ナベき単位変換器を制限する場合を
示すブロック図、第7図は本発明方式での各単位変換器
の転流動作時の電流波形図である。 1・・・・・・交流電源 2・・・・・・主変圧器21
〜26・・・・・・二次巻線 3・・・・・・平滑リア
クトル41〜44・・・・・・界磁巻線 51〜54・
・・直流電動機電機子6・・・・・・主変換器  61
〜66・・・・・・単位変換器8.81〜84・・・・
・・余裕角検出回路100〜104・・・・・・比較器
 200〜204・・・・・・βm演算部300・・・
・・・制御段選択部 出願人  富士電機製造株式会社
Figure 1 is an output voltage waveform diagram of the thyristor uniform bridge converter during separately excited inverter operation, Figure 2 is a circuit diagram showing the main circuit of an AC electric vehicle, and Figure 3 is the separately excited inverter of the converter in Figure 2. Figure 4 is a block diagram showing step advancement control in an embodiment of the method of the present invention, Figure 5 is a block circuit diagram of the main converter section, and Figure 6 is a diagram of the DC voltage waveform during operation. FIG. 7 is a block diagram showing a case in which H7υ unit converters are restricted in the embodiment, and is a current waveform diagram during commutation operation of each unit converter in the method of the present invention. 1... AC power supply 2... Main transformer 21
~26... Secondary winding 3... Smoothing reactor 41-44... Field winding 51-54.
...DC motor armature 6...Main converter 61
~66...Unit converter 8.81~84...
... Margin angle detection circuits 100 to 104 ... Comparators 200 to 204 ... βm calculation section 300 ...
...Control stage selection section Applicant: Fuji Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 単位変換器を多段縦続接続したサイリスタ変換器の他励
インバータ運転時において、定余裕角制御のために最小
制御進み角βmを変化させる際に、同−電源半サイクル
内で最小制御進み角βmを変化1へ単位変換器数を規定
値に制限することを特徴とする多段縦続サイリスタ変換
器の定余裕角制御方式。
When changing the minimum control advance angle βm for constant margin angle control during separately excited inverter operation of a thyristor converter in which unit converters are connected in cascade in multiple stages, the minimum control advance angle βm must be changed within the same power supply half cycle. Change 1 A constant margin angle control method for multi-stage cascaded thyristor converters, characterized by limiting the number of unit converters to a specified value.
JP57146451A 1982-08-23 1982-08-23 Constant margin angle control system for multistage cascade thyristor converter Pending JPS5935573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146451A JPS5935573A (en) 1982-08-23 1982-08-23 Constant margin angle control system for multistage cascade thyristor converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146451A JPS5935573A (en) 1982-08-23 1982-08-23 Constant margin angle control system for multistage cascade thyristor converter

Publications (1)

Publication Number Publication Date
JPS5935573A true JPS5935573A (en) 1984-02-27

Family

ID=15407931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146451A Pending JPS5935573A (en) 1982-08-23 1982-08-23 Constant margin angle control system for multistage cascade thyristor converter

Country Status (1)

Country Link
JP (1) JPS5935573A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655432A (en) * 1979-10-11 1981-05-16 Mitsubishi Monsanto Chem Co Surface-modifying composition and synthetic resin film coated therewith
JPS5876440A (en) * 1981-10-30 1983-05-09 Achilles Corp Covering material for horticulture under structure
JPS63312361A (en) * 1987-06-15 1988-12-20 Mitsubishi Kasei Vinyl Co Agricultural covering material made of synthetic resin
JPH01256553A (en) * 1988-04-05 1989-10-13 Achilles Corp Fog-preventing agricultural covering material
JPH03180334A (en) * 1989-12-08 1991-08-06 Mitsubishi Kasei Vinyl Co Flexible vinyl chloride resin film for agriculture
US5110860A (en) * 1989-10-06 1992-05-05 Sumitomo Chemical Company, Limited Agricultural film
JPH04272946A (en) * 1991-02-27 1992-09-29 Mitsubishi Kasei Vinyl Co Agricultural polyolefin resin film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655432A (en) * 1979-10-11 1981-05-16 Mitsubishi Monsanto Chem Co Surface-modifying composition and synthetic resin film coated therewith
JPH0127094B2 (en) * 1979-10-11 1989-05-26 Mitsubishi Monsanto Kasei Kk
JPS5876440A (en) * 1981-10-30 1983-05-09 Achilles Corp Covering material for horticulture under structure
JPS6050378B2 (en) * 1981-10-30 1985-11-08 アキレス株式会社 Covering material for greenhouse horticulture
JPS63312361A (en) * 1987-06-15 1988-12-20 Mitsubishi Kasei Vinyl Co Agricultural covering material made of synthetic resin
JPH0536461B2 (en) * 1987-06-15 1993-05-31 Mitsubishi Kasei Vinyl
JPH01256553A (en) * 1988-04-05 1989-10-13 Achilles Corp Fog-preventing agricultural covering material
JPH0518345B2 (en) * 1988-04-05 1993-03-11 Achilles Corp
US5110860A (en) * 1989-10-06 1992-05-05 Sumitomo Chemical Company, Limited Agricultural film
JPH03180334A (en) * 1989-12-08 1991-08-06 Mitsubishi Kasei Vinyl Co Flexible vinyl chloride resin film for agriculture
JPH0624798B2 (en) * 1989-12-08 1994-04-06 三菱化成ビニル株式会社 Agricultural soft vinyl chloride resin film
JPH04272946A (en) * 1991-02-27 1992-09-29 Mitsubishi Kasei Vinyl Co Agricultural polyolefin resin film

Similar Documents

Publication Publication Date Title
US4327313A (en) Control apparatus for electric car
JPS5935573A (en) Constant margin angle control system for multistage cascade thyristor converter
JP3351631B2 (en) Electric car control device
JPS59159602A (en) Thyristor firing angle controller for ac electric rolling stock
JPH04322107A (en) Controller for ac electric vehicle
JP2845093B2 (en) AC electric vehicle control device
JPS63283493A (en) Controller for elevator
JPH0732607B2 (en) Control device for electric vehicle power converter
JPS6173591A (en) Controlling method of induction main motor
JPS5976183A (en) Constant margin angle control method for multi-stage cascaded thyristor converter
JPH0568305A (en) Controller for ac electric vehicle
JP3153655B2 (en) Electric car control device
JPS6198191A (en) AC motor control device
JPH0365086B2 (en)
JPH0866055A (en) Power converter
JPS6289493A (en) AC motor control device
JPS5932367A (en) Controlling ling system for constant marginal angle of multistaged cascade-connected thyristor converter
JPS59188301A (en) Controller of electric railcar
JPS62225103A (en) Regenerative braking control device for electric rolling stock
JPS624922B2 (en)
JPS58108909A (en) Speed controller for electric motor vehicle
JPS605794A (en) Controlling method of dc motor for vehicle
JPH02241301A (en) Minimum control lead angle variable control method for AC electric vehicle
JPS61132002A (en) Controller for electric railcar
JPH0438192A (en) Apparatus for controlling motor