JPS5935333B2 - Method for manufacturing polyester containers - Google Patents
Method for manufacturing polyester containersInfo
- Publication number
- JPS5935333B2 JPS5935333B2 JP53050599A JP5059978A JPS5935333B2 JP S5935333 B2 JPS5935333 B2 JP S5935333B2 JP 53050599 A JP53050599 A JP 53050599A JP 5059978 A JP5059978 A JP 5059978A JP S5935333 B2 JPS5935333 B2 JP S5935333B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- parison
- heat
- stretching
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000728 polyester Polymers 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 238000000071 blow moulding Methods 0.000 claims description 29
- 238000009835 boiling Methods 0.000 claims description 19
- 238000009826 distribution Methods 0.000 claims description 15
- 229920001169 thermoplastic Polymers 0.000 claims description 7
- 239000004416 thermosoftening plastic Substances 0.000 claims description 7
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical group C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 claims description 5
- 238000009998 heat setting Methods 0.000 description 34
- 238000010438 heat treatment Methods 0.000 description 34
- 238000011049 filling Methods 0.000 description 14
- 238000001816 cooling Methods 0.000 description 13
- -1 polyethylene terephthalate Polymers 0.000 description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 description 12
- 239000005020 polyethylene terephthalate Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 238000007664 blowing Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 230000002087 whitening effect Effects 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004660 morphological change Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101000744152 Naja oxiana Cytotoxin 2 Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
- B65D1/0261—Bottom construction
- B65D1/0276—Bottom construction having a continuous contact surface, e.g. Champagne-type bottom
Landscapes
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Description
【発明の詳細な説明】
本発明はエチレンテレフタレートを主たる繰返し単位と
する熱可塑性ポリエステルから成形された二軸配向した
ポリエステル容器の製造方法に関するものであり、更に
詳しくは優れた機械的性質、ガス遮断性、耐薬品性など
を有し、内容物に対する優れた保護性能をもつと同時に
、高温内容物の充填時の変形、収縮などの極めて少ない
熱安定性の優れた透明ポリエステル容器の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a biaxially oriented polyester container molded from a thermoplastic polyester having ethylene terephthalate as the main repeating unit, and more particularly relates to a method for manufacturing a biaxially oriented polyester container having excellent mechanical properties, gas barrier properties, The present invention relates to a method for producing a transparent polyester container which has excellent heat stability, has excellent properties such as durability and chemical resistance, and has excellent protection performance for contents, and has extremely low deformation and shrinkage when filled with high-temperature contents.
従来からポリエチレンテレフタレートを主体とする熱可
塑性ポリエステルはその素材の優れた機械的性質、ガス
遮断性、耐薬品性、保香性、透明性、衛生性などに着目
されて、各種の容器、フィルム、シートなどに加工され
、包装材料として広範に利用されている。Thermoplastic polyester, which is mainly composed of polyethylene terephthalate, has been attracting attention for its excellent mechanical properties, gas barrier properties, chemical resistance, fragrance retention, transparency, hygiene, etc., and has been used for various containers, films, It is processed into sheets and is widely used as packaging material.
びんや缶などに代表される中空容器への利用も、ブロー
成形技術、ことに二軸延伸ブロー成形技術の向上により
最近特に目覚しいものがある。ポリエチレンテレフタレ
ートを用いた二軸延伸ブロー成形においては一般に非晶
質からなる膨張可能な上端部開口で有底の円筒形を有す
る幾可学的形態(以下パリソンと呼ぶ)を射出成形また
は押出成形等により形成し、次いでパリソンを配向可能
な温度範囲、たとえばガラス転移温度(Tg)以上、融
点(Tm)以下の温度範囲に加熱し、所望の容器の体積
構造を有するブロー金型内でスピンドルに連結された押
出ロッドによる軸方向の延伸と圧縮気体の吹込みによる
円周方向の延伸が行われている。Recent advances in blow molding technology, especially biaxial stretch blow molding technology, have made remarkable progress in the use of hollow containers such as bottles and cans. In biaxial stretch blow molding using polyethylene terephthalate, a geometric form (hereinafter referred to as a parison) having a cylindrical shape with an expandable upper end opening and a bottom (hereinafter referred to as a parison) made of amorphous material is generally formed by injection molding or extrusion molding. The parison is then heated to a temperature range that allows orientation, e.g., above the glass transition temperature (Tg) and below the melting point (Tm), and connected to a spindle in a blow mold having the desired volumetric structure of the container. Stretching is carried out in the axial direction using an extruded rod and in the circumferential direction by blowing compressed gas.
この延伸過程で結晶性重合体の分子鎖は軸方向と円周方
向に伸長され、それに伴う配向結晶化物の発生によりび
んの物理的性質たとえば引張強度、衝撃強度等の機械的
特性や耐気体透過性等が著しく改善される。しかしなが
ら、通常の延伸成形法によつて得られた二軸配向びんに
おいては、延伸過程で発生する歪のために種々の問題が
生じてくる0たとえが成形後のポリエステルびんを夏季
のような高温多湿雰囲気下に保管する場合にびんが徐々
に収縮を生じて内容積が変動したり、あるいはポリエス
テルのガラス転移温度近傍たとえば60℃以上の高温内
容物を充填する場合に、光填中または光填後に収縮が生
じて内容物の正確な充填ができなかつたり、びんが変形
を生じ、びん本来の形状すら保持することができないと
いう致命的欠点を有しており、びんとしての商品価値を
大きく低下させることから、用途範囲も著しく制約され
ているのが現状である。一般に、一次元的構造の糸や二
次元的構造のフイルムのようなポリエチレンテレフタレ
ート成形品においては、耐熱性向±のため延伸成形後に
熱固定といわれる加熱処理が行われている。During this stretching process, the molecular chains of the crystalline polymer are stretched in both the axial and circumferential directions, and the accompanying generation of oriented crystallized substances improves the physical properties of the bottle, such as mechanical properties such as tensile strength and impact strength, and gas permeation resistance. Sexuality etc. are significantly improved. However, in biaxially oriented bottles obtained by ordinary stretch-molding methods, various problems arise due to the distortion generated during the stretching process. When stored in a humid atmosphere, the bottle may gradually shrink and its internal volume may fluctuate, or when filled with high-temperature contents near the glass transition temperature of polyester, e.g. 60°C or higher, during light filling or light filling. This has the fatal disadvantage of shrinking afterwards, making it impossible to fill the contents accurately, and causing deformation of the bottle, making it impossible to maintain its original shape, which greatly reduces the commercial value of the bottle. As a result, the range of applications is currently severely restricted. Generally, in polyethylene terephthalate molded products such as threads with a one-dimensional structure or films with a two-dimensional structure, a heat treatment called heat setting is performed after stretching and forming to improve heat resistance.
これは延伸時に発生した微結晶を熱に対してより安定な
結晶構造へ変化させ、その配列状態に固定させると共に
延伸時の残留歪を緩和させるのが目的であり、この処理
を施した成形品の耐熱性は著しく向\上する。The purpose of this is to change the microcrystals generated during stretching into a crystalline structure that is more stable against heat, fixing it in that alignment state, and alleviating residual strain during stretching. Molded products subjected to this treatment The heat resistance of is significantly improved.
これと同じような考えから延伸配向した容器に対しても
耐熱性を向上させるために熱固定を行う方法力\特公昭
49−3073号公報、特開昭52−126376号公
報、特開昭53−264号公報等に開示されている。し
かし、通常の吹込み成形方法によつて成形された延伸配
向容器はどのような形状の容器に成形したとしても容器
全体を均一な延伸倍率に仕上げることは不可能であつて
、全く延伸されない口栓部分、低延伸倍率の首部から肩
部の部分および底部分、高延伸倍率の胴部分からなる一
体の成形品であり、このような容器は特公昭49−30
73号公報に記載の140〜220℃の熱固定では、高
延伸部からなる胴部は何ら美観を損うことなく熱固定さ
れるが、未延伸部および低延伸部からなる口栓部および
首部から肩部にかけての部分や底部は140〜220℃
という温度下で熱結晶化による白化現象を起こしやすく
、容器の美観を損なうという致命的欠点を生じることに
なる。Based on the same idea, a method for heat-setting a stretched or oriented container in order to improve its heat resistance has been developed. It is disclosed in Publication No.-264 and the like. However, with a stretch-oriented container molded by the normal blow molding method, it is impossible to finish the entire container with a uniform stretching ratio no matter what shape the container is formed into, and it is impossible to finish the entire container with a uniform stretching ratio. It is a one-piece molded product consisting of a plug part, a neck to shoulder part and a bottom part with a low stretching ratio, and a body part with a high stretching ratio.
In the heat setting at 140 to 220°C described in Publication No. 73, the body consisting of the highly stretched portion is heat set without any loss of aesthetic appearance, but the spout and neck portion consisting of the unstretched and low stretched portions are heat set. The temperature from 140 to 220 degrees Celsius for the area from the top to the shoulders and the bottom.
At such temperatures, whitening due to thermal crystallization is likely to occur, resulting in a fatal drawback of impairing the aesthetic appearance of the container.
また、特開昭52−126376号公報記載の方法は各
部分の延伸倍率に応じ、温度分布を与えることができる
ような金型を用いて熱固定、すなわち低延伸部分は低温
で、高延伸部分は高温で熱固定することにより白化現象
を防止しようとしたものであるが、複雑な特殊金型を必
要とするばかりかとくに低延伸部分が光分な耐熱性を与
えるだけの熱処理効果を得ようとすれば該部分は白化す
るし、逆に該部分の白化を避けようとすれば光分な効果
が得られないことから、この方法を用いても満足すべき
耐熱性良好な透明ポリエステル容器は得られない。In addition, the method described in JP-A-52-126376 uses a mold that can provide temperature distribution according to the stretching ratio of each part to heat fixation, that is, low-stretched parts are set at a low temperature, and high-stretched parts are set at a low temperature. attempts to prevent the whitening phenomenon by heat-setting at high temperatures, but not only does it require a complicated special mold, but it is also difficult to obtain a heat treatment effect that will give the low-stretched areas sufficient heat resistance. If this method is used, the area will turn white, and conversely, if an attempt is made to avoid the whitening of the area, the light effect will not be obtained, so even if this method is used, a transparent polyester container with satisfactory heat resistance cannot be obtained. I can't get it.
本発明者等はこのような実状に鑑み、容器としての美観
、透明性を有し、かつ優れた耐熱性を有するポリエステ
ル容器について鋭意研究の結果、本発明のポリエステル
容器の製造方法を開発するに至つた。In view of these circumstances, the inventors of the present invention have conducted extensive research on polyester containers that have good appearance, transparency, and excellent heat resistance, and have developed the method for manufacturing polyester containers of the present invention. I've reached it.
すなわち、本発明はエチレンテレフタレートを主たる繰
返し単位とする熱可塑性ポリエステルからなる有底パリ
ソンを、該ポリエステルの延伸温度で圧流気体および延
伸ロツドを用いて二軸延伸ブロー形成することにより未
延伸部分、延伸部分および未延伸部から延伸部にかけて
延伸比が連続して変化する部分からなる容器を成形し、
次いで熱固定するポリエステル容器の製造方法において
、該パリソンを延伸温度にする際、目的とする容器の首
部または首部から肩部、および底部に相当するパリソン
部分の温度を容器の胴部に相当するパリソン部分の温度
よりも1〜20℃高くなるように温度分布を与えた後、
延伸温度よりも低い温度の金型、延伸ロツド及び圧流気
体を用いて二軸延伸ブロー成形した後、ポリエステルの
ガラス転移温度より20℃以上高く、融点より20℃以
上低い温度範囲で熱処理することを特徴とする沸とう水
光填による容積収縮率が2%以下である透明ポリエステ
ル容器の製造方法。本発明の方法によつて得られるポリ
エステル容器は従来公知の延伸ブロー成形金型の改良お
よび成形条件の変更によつて得られる特定のポリエステ
ル容器を熱固定処理することによつて容易に得られるこ
とから経済的であり、しかも優れた透明性および高温光
填に対する耐熱安定性を有すると共に著しく改良された
機械的性質、ガス遮断性、充填される内容物に対する保
護性、耐薬品性等を併せて有するという実用上における
多くの優れた特徴を有する画期的な容器である。That is, in the present invention, a bottomed parison made of a thermoplastic polyester having ethylene terephthalate as a main repeating unit is biaxially stretched and blown using a compressed gas and a stretching rod at the stretching temperature of the polyester, thereby removing the unstretched portion and the stretched parison. Forming a container consisting of a portion and a portion in which the stretching ratio changes continuously from the unstretched portion to the stretched portion,
In the method for producing a polyester container that is then heat-set, when the parison is brought to a stretching temperature, the temperature of the parison portion corresponding to the neck or the shoulder and bottom of the target container is lowered to the temperature of the parison corresponding to the body of the container. After giving the temperature distribution so that it is 1 to 20 degrees Celsius higher than the temperature of the part,
After biaxial stretch blow molding using a mold, stretching rod, and compressed gas at a temperature lower than the stretching temperature, heat treatment is performed at a temperature range that is 20°C or more higher than the glass transition temperature of polyester and 20°C or more lower than the melting point. A method for producing a transparent polyester container characterized by a volumetric shrinkage rate of 2% or less when filled with boiling water. The polyester container obtained by the method of the present invention can be easily obtained by heat-setting a specific polyester container obtained by improving a conventionally known stretch blow molding mold and changing the molding conditions. It is economical and has excellent transparency and heat resistance stability against high-temperature light filling, as well as significantly improved mechanical properties, gas barrier properties, protection against the contents to be filled, chemical resistance, etc. This is an innovative container with many excellent practical features.
本発明の方法によつて得られるポリエステル容器の構造
的および形状的特徴を詳しく説明すると、容器は未延伸
部分、延伸部分および未延伸部から延伸部にかけて延伸
比が連続して変化する部分からなる。To explain in detail the structural and shape characteristics of the polyester container obtained by the method of the present invention, the container consists of an unstretched part, a stretched part, and a part in which the stretching ratio changes continuously from the unstretched part to the stretched part. .
そして、未延伸部から延伸部にかけて延伸比が連続して
変化する部分において、密度ρ。(9/C7l)を有す
る未延伸部の延伸開始点から最初に密度ρ(9/d)を
越える延伸部の位置までの距離d(CIIL)とその間
の密度土昇(ρ−ρo)との比が下記〔1〕式で示され
る容器を容易に提供することができる。d/ρ−ρo〈
25・・・・・・・・・〔1〕但し ρ≧ρo+0.0
36たとえば実施例で製造された細口びんを例にとつて
説明すると、細口びんをブロー金型のパーテイングライ
ンに沿つて軸方向に切開した縦断面概略図(第1図)に
おいて、びんの大部分は肩部から底部にかけての熱的に
安定な構造からなる延伸部分aおよび口栓部と底部中心
部の未延伸部分cからなり、びんの首部から肩部にかけ
ての極く僅かな部分と底部の中心部からコーナーにかけ
ての極く僅かな部分に未延伸部分と延伸部分の境界部分
すなわち延伸比の連続して変化する部分bが存在する構
造からなる。Then, in a portion where the stretching ratio changes continuously from the unstretched portion to the stretched portion, the density ρ. The distance d (CIIL) from the stretching start point of the unstretched part with (9/C7l) to the position of the stretched part whose density ρ(9/d) is exceeded for the first time and the density rise (ρ-ρo) between A container having a ratio expressed by the following formula [1] can be easily provided. d/ρ−ρo〈
25・・・・・・・・・[1] However, ρ≧ρo+0.0
36 For example, taking the narrow-mouth bottle manufactured in Example as an example, in the longitudinal cross-sectional schematic diagram (Fig. 1) cut in the axial direction along the parting line of the blow mold, the size of the bottle is The part consists of a stretched part a with a thermally stable structure from the shoulder to the bottom, an unstretched part c at the spout and the center of the bottom, and a very small part from the neck to the shoulder of the bottle and the bottom. It has a structure in which a boundary part b between an unstretched part and a stretched part, that is, a part b where the stretching ratio changes continuously, exists in a very small part from the center to the corner.
未延伸部分cは実質的に無配向の部分であり、ポリエチ
レンテレフタレートを例にとると通常1.342〜1.
3449/d程度の密度島を有する部分である。The unstretched portion c is a substantially non-oriented portion, and when polyethylene terephthalate is taken as an example, it usually has a thickness of 1.342 to 1.
This part has density islands of about 3449/d.
また、延伸部分aは延伸ブロー成形における配向、結晶
比および成形後の熱固定処理によつて高密度を有する部
分である。延伸部分aは通常ρ。より0.0369/C
fll以上、好ましくは0.0389/へ以上高い密度
ρを有し、X線回折を行うと配向したパターンが見られ
る部分であり、熱的に安定な部分である。更にポリエチ
レンテレフタレート容器における延伸部分aの密度ρは
1.3809/〜以上であることが特に好ましい。更に
延伸比が連続して変化する部分bは厚み変化等の形態的
変化を伴つた部分をいい、X線回折により配向したパタ
ーンが見られない部分である。本発明の方法によつて得
られる容器においてはこの部分が未延伸部と延伸部の境
界をつくり、極く僅か存在するだけである。本発明のポ
リエステル容器はエチレンテレフタレートを主たる繰返
し単位とする熱可塑性ポリエステルからなり、かつ未延
伸部分、延伸部分および未延伸部から延伸部にかけて延
伸比が連続して変化する部分からなるポリエステル容器
であつて、該延伸比が変化する部分において、密度ρ(
5(fl/CTit)を有する未延伸部の延伸開始点か
ら最初に密度ρ″(9/〜)を越える延伸部の位置まで
の距離d(Cm)とその間の密度上昇(ρ″−ρ6)と
の比が下記〔〕式で示される容器をポリエステルのガラ
ス転移温度より20℃以上高く、融点より20℃以上低
い温度範囲で熱処理することによつて得られる。Further, the stretched portion a has a high density due to the orientation in stretch blow molding, the crystal ratio, and the heat setting treatment after molding. The stretched portion a is usually ρ. From 0.0369/C
This is a portion that has a density ρ higher than fll, preferably 0.0389/ or higher, and an oriented pattern can be seen when subjected to X-ray diffraction, and is a thermally stable portion. Furthermore, it is particularly preferable that the density ρ of the stretched portion a in the polyethylene terephthalate container is 1.3809/~ or more. Further, the portion b where the stretching ratio continuously changes refers to a portion accompanied by a morphological change such as a change in thickness, and is a portion where no oriented pattern is observed by X-ray diffraction. In the container obtained by the method of the present invention, this part forms the boundary between the unstretched part and the stretched part, and is only present in a very small amount. The polyester container of the present invention is made of thermoplastic polyester having ethylene terephthalate as a main repeating unit, and is composed of an unstretched part, a stretched part, and a part in which the stretching ratio changes continuously from the unstretched part to the stretched part. Then, in the part where the stretching ratio changes, the density ρ(
Distance d (Cm) from the stretching start point of the unstretched part with 5 (fl/CTit) to the position of the stretched part that first exceeds the density ρ'' (9/~) and the density increase (ρ'' - ρ6) therebetween. It can be obtained by heat-treating a container whose ratio of
d/ρ7一ρら〈100・・・・・・・・・〔](但し
、ρ5≧ρら+0.008)従来公知の成形方法によつ
て得られたポリエステル容器においては、胴部に代表さ
れるような延伸効果の高い部分は高温下の熱処理に対し
ても白化することはないが、容器の首部や底部のような
延伸比の連続して変化する部分に存在する低延伸部分は
低温の熱処理によつても簡単に白化することから、透明
性と耐熱性を兼備したポリエステル容器を得ることは不
可能である。d/ρ7-ρ et al.〈100......[] (However, ρ5≧ρ et al. + 0.008) In polyester containers obtained by conventionally known molding methods, Areas with a high stretching effect, such as those shown in the drawings, do not whiten even when heat treated at high temperatures; It is impossible to obtain a polyester container that has both transparency and heat resistance because it easily whitens even when subjected to heat treatment.
また白化部分はガス透過性が大きく、機械的性質も劣る
ことから容器としての性能を著しく低下させる原因とな
る。熱固定処理により容器の美観を損わずに耐熱性を向
上させるためには、熱固定処理前の容器の性状が特に重
要である。すなわち、本発明においては、容器の首部や
底部における延伸比の連続して変化する部分に存在する
低延伸部分(熱固定処理により白化し易い部分)をでき
るだけ少なくし、かつ首部や底部といつた限定された部
分に固定することによつて初めて熱固定処理における白
化を防止し、すぐれた透明性および耐熱性を有する本発
明のポリエステル容器を得ることに成功したものである
。なお、d/ρ5−ρらは更に85以下であることが特
に好ましい。また、d/ρ5−ρ6の下限は通常パリソ
ンの加熱条件、延伸速度等とも関係するが、通常25以
下にすることは困難となる。熱固定処理前の容器におけ
る未延伸部分はもちろん実質的に未配向の部分であり、
ポリエチレンテレフタレートを例にとると密度ρらは通
常1,340〜13429/C7rLである。また延伸
部分は未延伸部分の密度ρらより0.008g/d以上
、好ましくは0.0139/CTII以上高い密度を有
し、X線回折を行うと配向したパターンが得られる部分
である。更に延伸比が連続して変化する部分は厚み変化
等の形態的変化を伴つた部分をいい、X線回折を行うと
配向パターンが見られない部分であり、密度がρS+0
.008未満で熱的に不安定な低延伸部分である。本発
明においては上記の性状を有する特定のポリエステル容
器を熱固定処理する。In addition, the whitened portion has high gas permeability and poor mechanical properties, which causes a significant deterioration in the performance of the container. In order to improve heat resistance without impairing the appearance of the container by heat setting, the properties of the container before heat setting are particularly important. That is, in the present invention, the low-stretched portions (areas that are likely to whiten due to heat-setting treatment) that exist in the neck and bottom of the container where the stretching ratio changes continuously are minimized, and the By fixing the polyester in a limited area, whitening during the heat fixing treatment can be prevented and the polyester container of the present invention having excellent transparency and heat resistance can be successfully obtained. Note that d/ρ5−ρ is particularly preferably 85 or less. Further, the lower limit of d/ρ5-ρ6 is usually related to parison heating conditions, stretching speed, etc., but it is usually difficult to set it to 25 or less. The unstretched portion of the container before heat-setting treatment is of course a substantially unoriented portion,
Taking polyethylene terephthalate as an example, the density ρ is usually 1,340 to 13429/C7rL. The stretched portion has a density higher than that of the unstretched portion by 0.008 g/d or more, preferably 0.0139/CTII or more, and an oriented pattern can be obtained by X-ray diffraction. Furthermore, the part where the drawing ratio changes continuously is a part with morphological changes such as thickness change, and is a part where no orientation pattern is seen when X-ray diffraction is performed, and the density is ρS + 0.
.. It is a low stretching part that is less than 008 and is thermally unstable. In the present invention, a specific polyester container having the above-mentioned properties is heat-set.
未延伸部分は高熱に対し不安定であり、白化を避けるた
め熱処理効果を受けないよう工夫する必要があるが白化
しない程度の熱は受けても何ら差支えない。また延伸比
が連続して変化する部分すなわちポリエチレンアレフタ
レートを例にとるとブロー成形後密度ばほマ1.347
以下の部分も熱固定処理により白化するため熱処理効果
を受けないよう工夫する必要がある。ポリエチレンテレ
フタレートの場合ブロー形成により少くとも1.349
以上の密度を有する延伸部分は熱固定処理により白化す
ることなく耐熱性を改良することができるのである。し
たがつて、本発明においては1.347以下の密度をも
つ低延伸部ができるだけ存在しないような容器を熱固定
処理することによつて本発明の容器が得られるのである
。通常熱固定処理は容器を金型に装填し、圧流気体を吹
込み内圧のかかつた状態で行われる。本発明でいうエチ
レンテレフタレートを主たる繰返し単位とする熱可塑性
ポリエステルとは通常酸成分の80モル%以上、好まし
くは90モル%以上がテレフタル酸であり、グリコール
成分の80モル%、好ましくは90モル%以上がエチレ
ングリコールであるポリエステルを意味し、残部の他の
酸成分としてイソフタル酸、ジフエニルエーテル4,4
′−ジカルボン酸、ナフタレン1,4一または2,6−
ジカルボン酸、アジピン酸、セバシン酸、デカン1,1
0−ジカルボン酸、ヘキサヒドロテレフタル酸、また他
のグリコール成分としてプロピレングリコール、1,4
−ブタンジオール、ネオペンチルグリコール、ジエチレ
ングリコール、1,6−ヘキシレングリコール、シクロ
ヘキサンジメタノール、2,2−ビス(4−ヒドロキシ
フエニル)プロパン、2,2−ビス(4ーヒドロキシエ
トキシフエニル)プ山マン、またはオ牛シ酸としてP−
オキシ安息香酸、P−ヒドロエトキシ安息香酸等を含有
するポリエステルを意味する。The unstretched portion is unstable to high heat, and in order to avoid whitening, it is necessary to devise measures to prevent it from being subjected to the heat treatment effect, but there is no harm in subjecting it to heat that does not cause whitening. Taking polyethylene alephthalate as an example of a part where the stretching ratio changes continuously, the density after blow molding is 1.347.
The following parts will also whiten due to heat setting treatment, so it is necessary to take measures to prevent them from being affected by the heat treatment effect. At least 1.349 by blow forming in the case of polyethylene terephthalate
The heat resistance of the stretched portion having the above density can be improved by heat setting treatment without whitening. Therefore, in the present invention, the container of the present invention can be obtained by heat-setting the container so that the low stretch portion having a density of 1.347 or less does not exist as much as possible. Normally, the heat setting process is performed by loading the container into a mold and blowing pressurized gas into the container to apply internal pressure. The thermoplastic polyester having ethylene terephthalate as a main repeating unit in the present invention usually has an acid component of 80 mol% or more, preferably 90 mol% or more of terephthalic acid, and a glycol component of 80 mol%, preferably 90 mol%. The above refers to polyester that is ethylene glycol, and the remaining acid components include isophthalic acid and diphenyl ether 4,4
'-dicarboxylic acid, naphthalene 1,4- or 2,6-
Dicarboxylic acid, adipic acid, sebacic acid, decane 1,1
0-dicarboxylic acid, hexahydroterephthalic acid, and other glycol components such as propylene glycol, 1,4
-butanediol, neopentyl glycol, diethylene glycol, 1,6-hexylene glycol, cyclohexanedimethanol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyethoxyphenyl)propane P- as mountain man or bovine silicic acid
It means a polyester containing oxybenzoic acid, P-hydroethoxybenzoic acid, etc.
なお、本発明におけるポリエステルは必要に応じて着色
剤、紫外線吸収剤、帯電防止剤、熱酸化劣化防止剤、抗
菌剤、滑剤などの添加剤を適宜の割合で含有することが
できる。The polyester in the present invention may contain additives such as colorants, ultraviolet absorbers, antistatic agents, thermal oxidative deterioration inhibitors, antibacterial agents, and lubricants in appropriate proportions, if necessary.
本発明の熱可塑件ポリエステルは0.55以上の固有粘
度を有することが必要であり、好ましくは0.6以上、
更に好ましくは0.7〜1.4の固有粘度を有する。The thermoplastic polyester of the present invention needs to have an intrinsic viscosity of 0.55 or more, preferably 0.6 or more,
More preferably, it has an intrinsic viscosity of 0.7 to 1.4.
固定粘度とはフエノール/テトラクロロエタン混合溶媒
(6/4重量比)にポリエステルを溶解した溶液を30
℃において測定した極限粘度である。固有粘度が0.5
5未満ではパリソン成形時に透明な非晶質成形品を得る
ことが困難であるほか機械的強度も不充分となる。上記
〔〕式を満たすポリエステル容器は、たとえば実質的に
無配向かつ非晶質な上端部開口の有底パリソンから特定
条件による延伸ブロー成形によつて製造することができ
る。Fixed viscosity refers to a solution of polyester dissolved in a mixed solvent of phenol/tetrachloroethane (6/4 weight ratio).
Intrinsic viscosity measured at °C. Intrinsic viscosity is 0.5
If it is less than 5, it will be difficult to obtain a transparent amorphous molded product during parison molding, and the mechanical strength will also be insufficient. A polyester container satisfying the above formula [] can be manufactured, for example, from a substantially non-oriented and amorphous bottomed parison with an open top end by stretch blow molding under specific conditions.
すなわちまず実質的に無配向かつ非晶質な上端部開口の
有底パリソンがポリエステルから射出成形法または押出
成形されたパイプを裁断し、一端を加熱加圧して封緘す
る方法等により成形される。次いで公知の方法は該パリ
ソンを肌熱装置内で延伸温度たとえばガラス転移諦度T
g以上、融点Tm以下の温度範囲に加熱し、所望の体積
構造を有するブロー金型内で延伸ロツドと圧流気体によ
り延伸ブロー成形する方法によつて容器が製造される。
ここで、本発明のポリエステル容器製造に適するすなわ
ち熱固定処理に適した上記()式を満たすポリエステル
容器の好ましい製造方法はたとえばこのような公知の方
法による製造において、該パリソンを延伸温度に加熱す
る際、目的とする容器の形状のうち首部または首部から
肩部、および底部に相当するパリソン部分の温度を容器
の胴部に相当するパリソン部分の温度よりも1〜20℃
好ましくは1〜15℃高くなるような温度分布を与えた
後、予めパリソン構造とブロー割金型構造との関係がパ
リソン嵌合部にパリソンを嵌装し、該割金型を閉鎖した
とき、延伸ブローを行う前に通常容器の首部相当部分の
好ましくは311t以上特に好ましくは5關以上のパリ
ソン部分が該割金型の該当部と密着するように設d]さ
れたブロー割金型を用いて、該温度分布を与えたパリソ
ンを延伸ロツドおよび圧流気体により二軸延伸ブロー成
形することにより製造される。以上はいわゆるコールド
パリソンを用いるブロー成形法であるが、ホツトパリソ
ンを用いるブロー成形法においては延伸温度に冷却する
過程でパリソンに上記のような温度分布を与えてもよい
。熱固定を行うのに最も適したポリエステル容器の特徴
は延伸比の小さい容器の肩部や底部の延伸効果を向土す
るために未延伸部と延伸部との間に明確な延伸開始点を
持たせた点にある。That is, first, a substantially non-oriented and amorphous parison with an open top is formed from polyester by injection molding or by cutting an extrusion-molded pipe and sealing it by heating and pressing one end. The known method then stretches the parison in a skin heating device at a temperature such as the glass transition temperature T.
The container is manufactured by a method in which the container is heated to a temperature range of not less than Tm and not more than the melting point Tm, and then stretch-blow-molded using a stretching rod and pressurized gas in a blow mold having a desired volumetric structure.
Here, a preferred method for manufacturing a polyester container that satisfies the above formula (), which is suitable for manufacturing the polyester container of the present invention, that is, suitable for heat-setting treatment, is, for example, in manufacturing by such a known method, heating the parison to a stretching temperature. At this time, the temperature of the parison portion corresponding to the neck or neck to shoulder and bottom of the desired container shape is 1 to 20°C higher than the temperature of the parison portion corresponding to the body of the container.
After providing a temperature distribution that is preferably 1 to 15° C. higher, the relationship between the parison structure and the blow split mold structure is determined in advance, and when the parison is fitted into the parison fitting portion and the split mold is closed, Before carrying out the stretch blowing, a blow splitting mold is used which is designed so that the parison part of the neck of the container, preferably 311 tons or more, particularly preferably 5 inches or more, is in close contact with the corresponding part of the splitting mold. Then, the parison provided with the temperature distribution is biaxially stretched and blow-molded using a stretching rod and pressurized gas. The above is a blow molding method using a so-called cold parison, but in a blow molding method using a hot parison, the above temperature distribution may be given to the parison during the cooling process to the stretching temperature. The characteristic of the polyester container most suitable for heat setting is that it has a clear stretching start point between the unstretched part and the stretched part in order to counteract the stretching effect on the shoulders and bottom of the container where the stretching ratio is small. It is at the point where it was set.
パリソンを延伸適温にするための加熱はプロツクヒータ
一や赤外線ヒーター等の通常の発熱体を有する加熱オー
ブン中で行われる。Heating to bring the parison to the appropriate temperature for stretching is carried out in a heating oven equipped with a conventional heating element such as a block heater or an infrared heater.
また、加熱によりパリソンに温度分布を与える方法とし
ては種種の方法が用いられる。たとえば、加熱オーブン
中を回転しながら移動するスピンドルにパリソンを装填
し、オーブン中を自転させながらパリソンを移動させる
。その時に温度勾配をつけるべきパリソン部分に該当す
るオーブンの加熱部にのみ通常の発熱体以外に補助ヒー
タを設けて該当部のろが他の部分よりも高温に加熱でき
るようにするとか、あるいは反対に相対的に低い温度分
布をもたせるパリソン胴部に該当するオーブン部に熱遮
蔽板や熱反射板を設けて加熱を調節する方法等や局部的
に高周波加熱、誘電加熱する方法等種々の方法があるが
、パリソンに温度分布を与える方法に関しては何等制約
をうけるものではない。またパリソンの温度分布は軸方
向に対して与えるものであつて、円周方向に対しては同
一円周土の温度が均一であることが望ましく、そのため
には加熱オーブン中でのバリソンはスピンドル等の1駆
動装置により自転させながら加熱するのが望ましい。パ
リソンの延伸温度(加熱後直ちに延伸ブロー成形すると
ぎは加熱温度にほマ等しい。)は通常使用するポリエス
テルのTg以上、Tm以下の温度範囲であるが、延伸適
温は延伸速度、使用するポリエステ火の固有粘度等によ
つても異なり通常80〜170℃が好ましい。更に延伸
ブロー成形法について説明すると、加熱または衿却によ
り上記温度をもちかつ延伸温度に調温されたパリソンは
延伸ブロー成形機のパリソン嵌装部に嵌装し、ブロー割
金型を閉鎖する。Furthermore, various methods are used to impart temperature distribution to the parison by heating. For example, a parison is loaded onto a spindle that rotates and moves in a heating oven, and the parison is moved while rotating in the oven. At that time, an auxiliary heater may be installed in addition to the normal heating element only in the heating section of the oven that corresponds to the part of the parison where a temperature gradient should be created, so that the oven in that section can be heated to a higher temperature than other sections, or vice versa. Various methods are available, including a method of adjusting heating by installing a heat shield plate or a heat reflection plate in the oven section corresponding to the body of the parison, which has a relatively low temperature distribution, and a method of locally applying high-frequency heating or dielectric heating. However, there are no restrictions on the method of providing temperature distribution to the parison. In addition, the temperature distribution of the parison is given in the axial direction, and it is desirable that the temperature of the same circumferential soil is uniform in the circumferential direction. It is preferable to heat it while rotating it by a driving device. The stretching temperature of the parison (if stretch blow molding is carried out immediately after heating is almost equal to the heating temperature) is within the range of Tg or higher and Tm or lower of the polyester normally used, but the appropriate stretching temperature depends on the stretching speed and the polyester flame used. The temperature varies depending on the intrinsic viscosity and the like, and is usually preferably 80 to 170°C. Further explaining the stretch blow molding method, the parison, which has the above-mentioned temperature and has been adjusted to the stretching temperature by heating or cooling, is fitted into the parison fitting part of the stretch blow molding machine, and the blow split mold is closed.
容器の首部に相当するパリソンにおける金型との接触部
はその時点で急冷される。その後直ちにパリソン嵌装部
に連結された延伸ロツドの押出しによりパリソンは軸方
向に好ましくは2倍以上延伸され、続いてあるいはほと
んど同時に好ましくは5Kf/?以上、就中10K′/
d以上の圧流気体により円周方向に好ましくはλ倍(パ
リソンに対する円周比)以上延伸される。また延伸は面
積倍率でパリソンに対し通常2.5倍以上、好ましくは
3倍以上である。この方法において延伸ロツドかパリソ
ン底部に到達した直後のパリソンの温度分布は、パリソ
ンの加熱または冷却による調温段階での温度分布と異な
り、金型と接触した首部の直ぐ近傍の非接触部および延
伸ロツドと接触した底部の極く近傍の非接触部の温度が
最も高く、金型および延伸ロツドと接触する部分の温度
が急冷されるため、接触部と非接触部との境界面に大き
な温度勾配が生じ、この境界面を中心にネツキング現象
に近い状態で延伸され、同時に圧流気体のブローにより
円周方向にも延伸される。つまりこの時の急激な温度勾
配を有する境界面が延伸固定点になる。容器首部に相当
するパリソン部分と金型との接触は単に首部に急激な温
度勾配を付与するだけでなく、接触部分のパリソンを機
械的に把持することにより延伸点をより明確に固定する
効果も有している。The part of the parison that contacts the mold, corresponding to the neck of the container, is then rapidly cooled. Immediately thereafter, the parison is stretched in the axial direction, preferably by a factor of at least twice, by extrusion of a stretching rod connected to the parison fitting, and subsequently or almost simultaneously, preferably by 5 Kf/? More than 10K'/
It is stretched in the circumferential direction by a pressure gas of d or more, preferably by λ times (circumferential ratio to the parison) or more. Further, the area magnification of the stretching is usually 2.5 times or more, preferably 3 times or more, relative to the parison. In this method, the temperature distribution in the parison immediately after the drawing rod reaches the bottom of the parison is different from the temperature distribution in the temperature control stage by heating or cooling the parison, and the temperature distribution in the non-contact area immediately adjacent to the neck in contact with the mold and the drawing rod The temperature of the non-contact part, which is very close to the bottom in contact with the rod, is the highest, and the temperature of the part that comes into contact with the mold and stretching rod is rapidly cooled, so there is a large temperature gradient at the interface between the contact part and the non-contact part. is generated, and the material is stretched around this boundary surface in a state similar to a netting phenomenon, and at the same time, it is also stretched in the circumferential direction by blowing with a pressurized gas. In other words, the boundary surface having a steep temperature gradient at this time becomes the stretching fixing point. The contact between the parison part corresponding to the neck of the container and the mold not only creates a sharp temperature gradient in the neck part, but also has the effect of fixing the drawing point more clearly by mechanically gripping the parison at the contact part. have.
この際容器の底部は第1図に示すように底部中央が凹状
である方が延伸点の固定が容易なことから好ましい。こ
のようにして得られる二軸配向したポリエステル容器は
、金型および延伸ロツドと接触していた部分の直ぐ近傍
から肉厚が急に薄くなり延伸部と未延伸部との境界が鮮
明に生じている。In this case, it is preferable that the bottom of the container is concave at the center as shown in FIG. 1, since this makes it easier to fix the stretching point. In the biaxially oriented polyester container thus obtained, the wall thickness suddenly becomes thinner in the immediate vicinity of the part that was in contact with the mold and the stretching rod, and the boundary between the stretched and unstretched parts is clearly formed. There is.
また、未延伸部から延伸部への移行が急勾配のため、熱
収縮に対して最も不安定な低延伸部がほとんど生じるこ
となく続いて行なう熱固定処理に供しうる二軸配向した
ポリエステル容器が再現性よく高生産性でもつて得られ
るのである。以上は首部と割金型を接触させる特に好ま
しい延伸ブロー成形について述べたが、従来法の第4図
および第5図に示したパリソン構造と割金型構造であつ
ても温度勾配を与えたびんの首部に相当するパリソン部
分に予めアルミ等からなるリングを嵌着して延伸ブロー
成形することによつて目的を達成することができる。In addition, since the transition from the unstretched part to the stretched part is steep, the biaxially oriented polyester container can be subjected to the subsequent heat-setting treatment without forming a low-stretched part, which is most unstable against heat shrinkage. It can be obtained with good reproducibility and high productivity. The above has described a particularly preferable stretch blow molding in which the neck and the split mold are in contact with each other, but even if the parison structure and the split mold structure shown in FIGS. This objective can be achieved by fitting a ring made of aluminum or the like in advance to the parison portion corresponding to the neck portion of the parison and performing stretch blow molding.
本発明のポリエステル容器を製造するために用いられる
ブロー金型としては、たとえばびんを製造するための特
に好ましいものとして第2図に示すブロー金型が例示さ
れる。As the blow mold used for manufacturing the polyester container of the present invention, for example, the blow mold shown in FIG. 2 is exemplified as a particularly preferable mold for manufacturing bottles.
すなわち、第2図は本発明で用いられる熱固定処理ので
きるブロー金型とパリソン構造との関係を示した概略図
であり、第3図は第2図におけるブロー金型のX−X′
線に沿つた横断面図である。ブロー金型は口栓部31、
胴部33?5よび底部35を構成する割金型からなり、
各割金型間に断熱プロツク32および34が組み込まれ
た構造を有する。また、胴部を構成する割金型33には
びんの円周に沿つて半円状に数段のヒーター36とびん
の長さ方向に沿つて数本の冷却管37が配設されている
。第4図は第2図におけるパリソン構造および割金型の
開口部、首部および肩部にかけての拡大図であり、延伸
温度に加熱されたパリソン29はびんの首部に相当する
部分が割金型と密着した状態で圧流気体によりブロー成
形される。ブロー工程が終了すると割金型33に配設さ
れた冷却管37の通水を止め、割金型33に組み込まれ
ているヒーター36に通電して金型を熱固定処理温度に
加熱する。その後、金型が所定温度に到達すると、通常
通電が自動的に停止し、冷却管37に再び通水されて金
型温度がポリエステルのTg以下の温度になるまで冷却
される。次いで脱気を行つて金型を開け本発明のポリエ
ステルびんが取出される。なお、衿却管37は土段、下
段を共通の環状の連結管39で連結するのが好ましく、
通水が停止すると電磁弁が作動してリークされ、水が金
型から速かに排除されるように工夫されている。口栓部
31および底部35を構成する割金型は冷却管38を配
設するのが好ましく、冷却管38への通水および断熱プ
ロツク32,34の存在によつて、胴部ヒーター36に
辿電してもびんの口栓部および底部未延伸部分は熱固定
処理を受けないように工夫されている0このように、内
圧のかかつた状態での熱処理であるため、延伸工程で生
じた分子配向の効果を損うことなく、物理的および機械
的性質にすぐれ、しかも熱的にも安定な透明容器が得ら
れることになるO本発明における式(川)を満足するポ
リエステル容器は熱固定処理温度で所定時間保持するこ
とにより熱固定するのが好ましいが、熱固定処理温度に
昇温したと同時に冷却するというプロフアイルでも十分
な熱固定効果を得ることができる。That is, FIG. 2 is a schematic diagram showing the relationship between the parison structure and the blow mold that can be heat-set used in the present invention, and FIG.
FIG. 3 is a cross-sectional view taken along a line. The blow mold has a spout part 31,
It consists of a split mold that constitutes the body part 33?5 and the bottom part 35,
It has a structure in which heat insulation blocks 32 and 34 are incorporated between each split mold. Furthermore, several stages of heaters 36 are arranged in a semicircular manner along the circumference of the bottle, and several cooling pipes 37 are arranged along the length of the bottle in the split mold 33 constituting the body. . FIG. 4 is an enlarged view of the parison structure in FIG. 2 and the opening, neck, and shoulder of the split mold, and the parison 29 heated to the stretching temperature has a portion corresponding to the neck of the bottle that is connected to the split mold. Blow molding is performed using pressurized gas in a close contact state. When the blowing step is completed, the water flow through the cooling pipe 37 disposed in the split mold 33 is stopped, and the heater 36 incorporated in the split mold 33 is energized to heat the mold to a heat-setting temperature. Thereafter, when the mold reaches a predetermined temperature, the normal current supply is automatically stopped, and water is passed through the cooling pipe 37 again to cool the mold until the mold temperature reaches the Tg of polyester or lower. Next, deaeration is performed, the mold is opened, and the polyester bottle of the present invention is taken out. In addition, it is preferable that the collar pipe 37 connects the earthen step and the lower step with a common annular connecting pipe 39.
When water stops flowing, a solenoid valve is activated to leak water, and the water is quickly removed from the mold. It is preferable that a cooling pipe 38 is disposed in the split mold forming the spout part 31 and the bottom part 35, and water can be routed to the body heater 36 by passing water to the cooling pipe 38 and by the presence of the heat insulating blocks 32 and 34. The spout and the unstretched bottom part of the bottle are designed so that they are not subjected to heat-setting treatment when the bottle is heated.As the heat treatment is performed under internal pressure, the molecules generated during the stretching process are A transparent container that has excellent physical and mechanical properties and is thermally stable can be obtained without impairing the effect of orientation. A polyester container that satisfies the formula (river) in the present invention can be heat-set. Although it is preferable to carry out heat setting by holding at a temperature for a predetermined period of time, a sufficient heat setting effect can also be obtained by a profile in which the temperature is raised to the heat setting treatment temperature and then cooled at the same time.
熱固定処理温度は通常ポリエステルのガラス転移温度T
g+20℃以上、融点Tm−20℃以下の温度範囲であ
り、好ましくは130〜200℃である。また、ブロー
成形と熱固定処理とは必ずしも連続した一工程で行う必
要はなく、ブロー成形と熱固定処理を分離した別工程で
行つてもよい。The heat setting temperature is usually the glass transition temperature T of polyester.
The temperature range is from g+20°C to melting point Tm-20°C, preferably from 130 to 200°C. Further, blow molding and heat setting treatment do not necessarily need to be performed in one continuous step, but may be performed in separate separate steps.
なお、第5図は参考として第4図に対応する従来法にお
けるパリソン構造とブロー割金型の関係を示した拡大図
である。以下、本発明を実施例により詳しく説明する。For reference, FIG. 5 is an enlarged view showing the relationship between the parison structure and the blow split mold in the conventional method corresponding to FIG. 4. Hereinafter, the present invention will be explained in detail with reference to Examples.
なお、実施例および比較例に挙げたびんの特性値の評価
法、測定方法は次の通りである。(1)番号付け
びんについたブロー金型のパーテイングラインに沿つて
びんを軸方向に切開する。The methods for evaluating and measuring the characteristic values of the bottles listed in Examples and Comparative Examples are as follows. (1) Cut the bottle in the axial direction along the parting line of the blow mold attached to the numbered bottle.
切開したびんの鍔部直下から第1図に示すようにびんの
形状に沿つて1譚間隔に1,2,3・・・・・・と番号
を付けてゆく。実施例で製造したびんではO〜8までが
首部〜肩部、9〜23までが胴部、23〜27が底部で
あり、28は底部中心である。(11)肉厚
各位置における厚みをマイクロメーターにより測定する
。Numbers 1, 2, 3, etc. are numbered at intervals of one line along the shape of the bottle, as shown in Figure 1, starting just below the flange of the cut bottle. In the bottles manufactured in the examples, numbers 0 to 8 are the neck to shoulders, numbers 9 to 23 are the body, numbers 23 to 27 are the bottom, and number 28 is the center of the bottom. (11) Wall Thickness Measure the thickness at each position using a micrometer.
(111)密度
びんの各位置番号における密度の測定は、びんの各位置
から切り取つた一辺が1〜5mmの試5験片について、
硝酸カルシウム一水系密度勾配管を用いて行つた。(111) Density The density at each position number of the bottle was measured using 5 specimens with a side of 1 to 5 mm cut from each position of the bottle.
This was carried out using a calcium nitrate monoaqueous density gradient tube.
測定温度は30℃である。(IV配向度びんの側壁より
軸方向および周方向に巾1mmのたんざく状試片を切り
出し、その厚み方向からX線を入射(EdgeおよびE
nclvi−Ew)して、各方向における(100)結
晶面の配向角の測定から配向度を算出した。The measurement temperature is 30°C. (IV Orientation Degree: Cut out a strip-shaped specimen with a width of 1 mm in the axial and circumferential directions from the side wall of the bottle, and irradiate X-rays from the thickness direction (Edge and E
nclvi-Ew), and the degree of orientation was calculated from the measurement of the orientation angle of the (100) crystal plane in each direction.
(V)沸とう水光填処理による容積収縮率びんに沸とう
水を口切一杯光填して5分間放置する。(V) Volume shrinkage due to boiling water light filling treatment Lightly fill a bottle with boiling water to the fullest and leave it for 5 minutes.
5分後熱水を排除し、20℃の水を光5填して処理後の
内容積Vを測定し、処理前の内容積V。After 5 minutes, remove the hot water, fill it with 20°C water, measure the internal volume V after treatment, and measure the internal volume V before treatment.
と比較することにより容積収縮率Vs(%)を次式で算
出する。(VO引張特性
びんの最大直径の円筒部分からJISK一6301に規
定したタンペル8″号形試験片を打ち抜き、東洋測器社
製[テンシロン」を用いて引張速度10m7!L/?n
で降伏時および破断時の張力を測定し、原試料の単位断
面積当りの応力に換算する。By comparing with , the volumetric shrinkage rate Vs (%) is calculated using the following formula. (VO tensile properties A tampel size 8" test piece specified in JIS K-6301 was punched out from the cylindrical part of the maximum diameter of the bottle, and a tensile speed of 10 m7!L/?n was used using a Tensilon manufactured by Toyo Sokki Co., Ltd.
Measure the tension at yield and break, and convert it to stress per unit cross-sectional area of the original sample.
QIL)落下試験
びんに1tの水を光填し、口栓をした後底を下に向けて
1.2mの高さからコンクリート床面上に繰り返し落下
し、破壊に至るまでの落下回数を調べる。QIL) Drop test Fill a bottle with 1 ton of water, put a stopper on it, then drop it repeatedly from a height of 1.2 m onto a concrete floor with the bottom facing down, and check the number of drops until it breaks. .
実施例 1
固有粘度が0.62のポリエチレンテレフタレートのペ
レツトを130ポCs0.1mmHgの減圧下、16時
間の条件で水分率0.01%以下に乾燥した後、日本製
鋼社製N−95射出成形機を用いてシリンダー温度がホ
ツパ一側から250をC−270゜C−280℃にし、
射出圧力をゲージ圧で40K′/d1金型温度20℃、
射出および冷却のサイクルタイムが15秒および25秒
の成形条件で上端部開口の有底パリソンを成形した。Example 1 Pellets of polyethylene terephthalate with an intrinsic viscosity of 0.62 were dried to a moisture content of 0.01% or less under a reduced pressure of 130 points Cs and 0.1 mmHg for 16 hours, and then molded using N-95 injection molding manufactured by Nippon Steel Corporation. Using a machine, reduce the cylinder temperature from 250°C to 270°C to 280°C from one side of the hopper.
Injection pressure is 40K'/d1 gauge pressure, mold temperature 20℃,
A bottomed parison with an open top end was molded under molding conditions with injection and cooling cycle times of 15 seconds and 25 seconds.
パリソンは第2図中に示される形状のものであり、開口
部Aから首部下端Cまでは外径が30rnn,内径26
mmであり、その間に鍔部Bが突起している。Cから底
部の曲面開始点Eにかけてパリソン外径はゆるやかに細
くなり、Eの外径は24m富である。パリソンの全長は
140r1Lmで、Aから鍔部Bの下端までの長さは2
3r!Lml鍔部下端BからCまでの首部の長さは10
mmである。このパリソンを自転用1駆動装置のついた
上向きのパリソン嵌合部に、パリソン開口端を下向けに
して嵌装し、加熱分布が自由に調節できる10面の遠赤
外線ヒーターおよび熱反射板を有するオーブン中で回転
させながら加熱し、パリソン温度分布が首部のC点で1
15℃、胴部のD点で100℃、底部のF点で115℃
になつた時点で加熱オーブンより出し、延伸ブロー成形
機に直ちに移送した。The parison has the shape shown in Fig. 2, and has an outer diameter of 30rnn and an inner diameter of 26mm from the opening A to the lower end of the neck C.
mm, and the flange B protrudes between them. The outer diameter of the parison gradually becomes thinner from C to the bottom curved surface starting point E, and the outer diameter of E is 24 m thick. The total length of the parison is 140r1Lm, and the length from A to the lower end of flange B is 2
3r! The length of the neck from the lower end B of the Lml tsuba to C is 10
It is mm. This parison is fitted into an upward parison fitting part equipped with an autorotation drive unit with the parison opening end facing downward, and has a far-infrared heater and a heat reflection plate on 10 sides that can freely adjust the heating distribution. Heat the parison while rotating it in an oven until the temperature distribution of the parison reaches 1 at point C at the neck.
15℃, 100℃ at point D on the body, 115℃ at point F on the bottom.
When the temperature reached the temperature, it was removed from the heating oven and immediately transferred to a stretch blow molding machine.
延伸ブロー成形機の割金型を閉鎖したとき、該パリソン
首部のBC面は完全に割金型と密着する状態にあらかじ
め設定されてあり、金型閉鎖後延伸ロツドおよび続いて
の圧流気体による延伸を行つた。When the split mold of the stretch blow molding machine is closed, the BC surface of the parison neck is set in advance to be in complete contact with the split mold, and after the mold is closed, the parison is stretched by a stretching rod and subsequent pressurized gas. I went to
ブロー金型のキヤビテイ構造はビールびん形状のもので
第2図に示すように全長265腐寡、胴部の外径が80
mm1内容積1000dである。The cavity structure of the blow mold is shaped like a beer bottle, and as shown in Figure 2, the total length is 265 mm and the outer diameter of the body is 80 mm.
The internal volume of mm1 is 1000 d.
また二軸延伸ブローの成形条件は延伸ロツド油圧80K
f/(:7n1圧縮気体圧20K′/dおよびブカ一金
型温度20℃である。脱気を行つた後:取り出したびん
は首部のブカ一金型と最初から接触していた部分と非接
触部との境界および底部の延伸ロツドの接触部と非接触
部との境界近傍に延伸固定点とみられる急激な肉厚変位
点が外見からも認められた。In addition, the forming conditions for biaxial stretching blowing are stretching rod hydraulic pressure 80K.
f/(: 7n1 compressed gas pressure 20K'/d and mold temperature 20°C. After degassing: the bottle is removed from the neck part that was in contact with the mold from the beginning. From the outside, points of sudden wall thickness displacement, which were considered to be stretching fixation points, were observed near the boundary with the contacting part and the boundary between the contacting part and the non-contacting part of the bottom stretching rod.
このびんは、密度ρ6=1.342なる未延伸部の延伸
開始点から、最初に密度ρ″(=窩+0.008)を越
える延伸部の位置までの距離が首部近傍で0.46cn
L,また底部近傍で0.3801nであり、d/ρ1−
ρらはそれぞれ58および48となる。In this bottle, the distance from the stretching start point of the unstretched part with density ρ6 = 1.342 to the position of the stretched part where the density ρ'' (=fove + 0.008) first exceeds is 0.46 cn near the neck.
L, also 0.3801n near the bottom, d/ρ1-
ρ are 58 and 48, respectively.
次に同一条件でブロー成形を行つた後通水を停止し、脱
気を行わずにブロー金型に装填してあるヒーターに通電
を開始し、金型温度を140℃に加熱する。加熱に要す
る時間は約2分で、金型温度が140℃に達すると自動
的に通電が停止され、今度は冷却管に通水が始まり、約
1分間で金型温度を400Cに冷却する。この後、脱気
を行つてびんを取り出した。このようにして得られたび
んは、熱固定処理を行わずに取り出したびんと外観土何
ら異なるところは認められなかつた。Next, after blow molding was performed under the same conditions, water flow was stopped, and without degassing, electricity was started to flow to the heater installed in the blow mold to heat the mold temperature to 140°C. The time required for heating is about 2 minutes, and when the mold temperature reaches 140°C, the power supply is automatically stopped, and then water starts flowing through the cooling pipe, cooling the mold temperature to 400°C in about 1 minute. After this, the bottle was degassed and taken out. There was no difference in appearance between the bottles thus obtained and the bottles taken without heat-setting.
更に、このびんに沸とう水を充填し、5分間放置した後
熱水を除去し、20℃の水を充填して内容積を沖淀し、
沸とう水光填前後の内容積比から求めた沸とう水光填に
よる収縮率は0.87%であり、この処理に伴う外観上
の変化も認められなかつた。一方、熱固定処理を行わな
かつたびんは、沸とう水を充填すると特に肩部および底
部に著しい変形が認められ、5分間放置した後、熱水を
除去して沸とう水充填による収縮率を求めたところ17
.4%と大きく、沸とう水充填に耐えることができなか
つた。Furthermore, this bottle was filled with boiling water, left to stand for 5 minutes, the hot water was removed, and the inner volume was filled with 20°C water.
The shrinkage rate due to boiling water light filling, determined from the internal volume ratio before and after boiling water light filling, was 0.87%, and no change in appearance was observed due to this treatment. On the other hand, when bottles that were not heat-set were filled with boiling water, significant deformation was observed, especially at the shoulders and bottoms. I asked for 17
.. It was as large as 4% and could not withstand filling with boiling water.
実施例 2〜4
固有粘度が0.8,1.0および1.2の各ポリエチレ
ンテレフタレートを使用し、表1に示す射出成形条件で
実施例1と同様の上端部開口の有底パリソンを成形した
後、パリソン加熱オーブンで表2に示す温度にパリソン
を加熱し、二軸延伸ブロー成形を行つた。Examples 2 to 4 Using polyethylene terephthalate having an intrinsic viscosity of 0.8, 1.0, and 1.2, a bottomed parison with an opening at the upper end similar to that of Example 1 was molded under the injection molding conditions shown in Table 1. After that, the parison was heated in a parison heating oven to the temperature shown in Table 2, and biaxial stretch blow molding was performed.
得られたびんの首部や底部はいずれも(1)式を満足す
るものであつた。そこで、今度は上記と同一の条件で延
伸ブロー成形を行つた後、ひき続いて実施例1で述べた
方法ならびに条件を用いてびんの熱固定処理を行つた。
表2に示したように熱固定処理を行つたびんは、沸水の
充填に十分酎えることができたが、処理を行わなかつた
比較例は肩および底に変形を伴なつた収縮が認められた
。固有粘度が1.0のポリエチレンテレフタレートを用
いたびんの性能を表3および表4に示した。実施例3に
示したびんは首部、底部といつた未延伸部を除きびん全
体が高密度に仕土つており、熱固定前のびんに比べると
耐熱性が著しく向上した。The neck and bottom of the resulting bottle both satisfied formula (1). Therefore, this time, after stretch blow molding was performed under the same conditions as above, the bottle was subsequently heat-set using the method and conditions described in Example 1.
As shown in Table 2, the bottles that were heat-set were able to hold enough water to fill with boiling water, but the comparative examples that were not heat-set showed shrinkage with deformation at the shoulders and bottom. Ta. Tables 3 and 4 show the performance of bottles made of polyethylene terephthalate with an intrinsic viscosity of 1.0. In the bottle shown in Example 3, the entire bottle was densely packed except for the unstretched parts such as the neck and bottom, and the heat resistance was significantly improved compared to the bottle before heat setting.
しかも内圧のかかつた状態での熱処理であるため何ら配
向度の低下は認められず、むしろ結晶化度が増加するた
め、強度物性の向上が認められた。落下強度についても
、底コーナー部に十分な配向効果を付与しているので、
熱処理前のびんと同程度の強さを維持している。したが
つて、これらのびんは熱固定処理により著しい耐熱性と
すぐれた強度物性が付与されたことになる。比較例 1
〜4
固有粘度が各々0.62、0.8011.00および1
.21のポリエチレンテレフタレートから表1に示す射
出成形条件で有底パリソンを成形し、次いで各パリソン
を加熱オーブン中で表2に示すパリソン温度に加熱して
、実施例1と同様に2軸延伸ブロー成形を行つた。Moreover, since the heat treatment was carried out under internal pressure, no decrease in the degree of orientation was observed, but rather an increase in the degree of crystallinity, resulting in an improvement in strength and physical properties. Regarding drop strength, the bottom corner has sufficient orientation effect, so
It maintains the same strength as the bottle before heat treatment. Therefore, these bottles were given remarkable heat resistance and excellent strength and physical properties by the heat setting treatment. Comparative example 1
~4 Intrinsic viscosities are 0.62, 0.8011.00 and 1, respectively
.. A bottomed parison was molded from polyethylene terephthalate No. 21 under the injection molding conditions shown in Table 1, and then each parison was heated in a heating oven to the parison temperature shown in Table 2, and biaxially stretched blow molded in the same manner as in Example 1. I went to
得られたびんの特性は表2に示したが、いずれも前述の
(川)式を満足していなかつた。そこで、今度は上記と
同一条件で延伸ブロー成形を行つた後、ひき続いて実施
例1で述べた方法および条件を用いて熱固定を行うと、
得られたびんは、いずれも首部近傍および底部にリング
状の不透明(白化)部分が発生し、またその近辺に収縮
が認められた。更に、このびんに沸とう水を充填し、5
分間放置した後内容積を測定し、沸とう水充填による収
縮率を求めたところ表3″に示すように約5〜7%程度
の収縮が認められた。The properties of the obtained bottles are shown in Table 2, but none of them satisfied the above-mentioned (Kawa) formula. Therefore, this time, after stretch blow molding was performed under the same conditions as above, heat setting was performed using the method and conditions described in Example 1.
In each of the obtained bottles, a ring-shaped opaque (whitened) area appeared near the neck and bottom, and shrinkage was observed in the vicinity. Furthermore, fill this bottle with boiling water and
After standing for a minute, the internal volume was measured and the shrinkage rate due to filling with boiling water was determined, and as shown in Table 3'', about 5 to 7% shrinkage was observed.
この沸とう水充填に伴う収縮は熱固定効果が十分に行わ
れなかつたためであり、処理時間の延長または処理温度
の増加による熱固定の強化が望まれるが、熱固定の強化
は前述のリング状の不透明部分が一層明白になることか
ら、これらのびんはびんの外観止の変化を伴わないよう
な熱固定処理が行えないことを示した。この様な底部に
リング状の白化(不透明)部分が発生したびんは表4に
示したように著しい落下強度の低下をきたすことから、
実用に耐えることができない。実施例 5
酸成分としてイソフタル酸を10モル%含有する共重合
ポリエチレンテレフタレート/イソフタレートからなる
固有粘度0.85のペレツトを常法により乾燥後、日本
製鋼社製射出成形機を用いてシリンダー温度をホツパ一
側から240℃−2600C−270℃にし、射出圧力
がゲージ圧力で50k9/6!i1金型温度20℃、射
出および冷却のサイクルタイムが15秒および25秒の
成形条件で実施例1と同形状のパリソンを成形した。This shrinkage due to filling with boiling water is due to insufficient heat-setting effect, and it is desirable to strengthen heat-setting by extending treatment time or increasing treatment temperature. The opaque areas became more apparent, indicating that these bottles could not be heat-set without altering the appearance of the bottle. Bottles with such a ring-shaped whitened (opaque) part on the bottom have a significant drop in drop strength, as shown in Table 4.
It cannot withstand practical use. Example 5 After drying pellets with an intrinsic viscosity of 0.85 made of copolymerized polyethylene terephthalate/isophthalate containing 10 mol% of isophthalic acid as an acid component by a conventional method, the cylinder temperature was adjusted using an injection molding machine manufactured by Nippon Steel Corporation. The temperature was set to 240℃-2600C-270℃ from one side of the hopper, and the injection pressure was 50k9/6 in gauge pressure! i1 A parison having the same shape as in Example 1 was molded under the molding conditions of a mold temperature of 20° C. and injection and cooling cycle times of 15 seconds and 25 seconds.
このパリソンを加熱オーブン中で表5に示す温度に加熱
したあと実施例1と同じ延伸ブロー条件で二軸配向びん
を成形した。This parison was heated in a heating oven to the temperature shown in Table 5, and then a biaxially oriented bottle was molded under the same stretch blowing conditions as in Example 1.
得られたびんは表5に示したような特性をもつており、
びんの首部および底部における延伸比の連続して変化す
る部分が(H)式を満足していることがわかる。The obtained bottle had the characteristics shown in Table 5.
It can be seen that the continuously changing portions of the stretching ratio at the neck and bottom of the bottle satisfy equation (H).
別に上記と同一の条件で延伸ブロー成形を行つた後、今
度は実施例1で述べた方法ならびに条件を用いて熱固定
処理を行つた。Separately, stretch blow molding was performed under the same conditions as above, and then heat setting treatment was performed using the method and conditions described in Example 1.
この処理を施したびんは結晶化に伴う透明性の低下等は
認められず、外観も熱固定処理を行わなかつたびんと何
ら異なるところは認められなかつた。更に、このびんに
沸とう水を充填し、5分放置した後の体積の測定から、
沸とう水充填による収縮率を計算すると1.05%であ
り、沸とう水の充填に十分耐えるびんであることがわか
つた。The bottles subjected to this treatment showed no decrease in transparency due to crystallization, and no difference in appearance was observed from bottles that had not been heat-set. Furthermore, by filling the bottle with boiling water and measuring the volume after leaving it for 5 minutes,
The shrinkage rate due to filling with boiling water was calculated to be 1.05%, indicating that the bottle could sufficiently withstand filling with boiling water.
一方、熱固定処理を行わなかつたびんは、びんの肩部お
よび底部において()式を満足するが、沸とう水の充填
を行うと、肩部および底部に変形を伴つた収縮が認めら
れ沸とう水の充填に耐えることができなかつた。比較例
5
実施例5に用いたと同一のパリソンを用い、このパリソ
ンを加熱オーブン中で表5に示す温度に加熱した後、延
伸ブロー成形を行つた。On the other hand, a bottle that has not been heat-set satisfies the equation () at the shoulder and bottom of the bottle, but when it is filled with boiling water, shrinkage with deformation is observed in the shoulder and bottom. It could not withstand the filling of water. Comparative Example 5 Using the same parison as used in Example 5, this parison was heated in a heating oven to the temperature shown in Table 5, and then stretch blow molding was performed.
得られたびんの特性は表5に示した通りで、びんの首部
および底部における延伸比の連続して変化する部分が(
)式を満たさないことがわかる。次に上記と同一の条件
で延伸ブロー成形を行つた後、今は実施例1で述べた方
法ならびに条件を用いて熱固定処理を行つた。The properties of the obtained bottle are shown in Table 5, and the part where the stretching ratio changes continuously at the neck and bottom of the bottle is (
) It can be seen that the formula is not satisfied. Next, stretch blow molding was performed under the same conditions as above, and then heat setting was performed using the method and conditions described in Example 1.
この処理を施したびんは首部と底部の近傍にリング状の
不透明な部分が発生し、またその近辺に収縮が認められ
た。更に、このびんに沸とう水を充填し5分間放置した
後の内容積変化を測定すると、約5.8%の収縮が認め
られた。この沸とう水の充填に伴う収縮は熱固定効果が
十分に行われなかつたためであり、処理時間の延長また
は処理温度の増加による熱固定条件の強化が望まれるが
、そうすると前述のリング状の不透明部分が一層明白に
なることから、このびんはびんの外観土の変化を伴わな
いような熱固定処理が行えないことを示した。The bottles subjected to this treatment had ring-shaped opaque areas near the neck and bottom, and shrinkage was observed in the vicinity. Furthermore, when this bottle was filled with boiling water and left to stand for 5 minutes, the change in internal volume was measured, and a shrinkage of about 5.8% was observed. This shrinkage due to filling with boiling water is due to insufficient heat-setting effect, and it is desirable to strengthen the heat-setting conditions by extending the processing time or increasing the processing temperature, but if this is done, the ring-shaped opaque As the area became more obvious, this bottle showed that it was not possible to heat set the bottle without changing the appearance of the bottle.
第1図は本発明による実施例で製造されたびんのブロー
金型のパーテイングラインに沿つて軸方向に切開した縦
断面概略図であり、A,b,cは本発明で定義された延
伸区分に対応する概略の位置、および1,2,3,・・
・・・・,28はびんの鍔部直下から1c7n間隔で番
号付けし、物性値の測定を行つた部位の番号である。
また第2図は本発明で用いる熱固定処理のできるブロー
金型およびパリソン構造と延伸ブロー割金型との関係を
例示した概略図である。
第3図は第2図に示したフb一金型のX−X5゜線に沿
つた横断面図である。更に第4図は第2図におけるパリ
ソンおよび割金型の開口部、首部および肩部にかけての
拡大図である。更にまた第5図は第4図に対応する従来
法のパリソン構造とブロー割金型との関係を示した拡大
図である。a・・・・・・熱的に安定な延伸部分、b・
・・・・・熱的に不安定な延伸部分(延伸比が連続して
変化する部分)、c・・・・・・未延伸部分、29・・
・・・・パリソン、30・・・・・・固定台、32,3
4・・・・・・断熱プロツク、31,33,35・・・
・・・割金型、36・・・・・・ヒーター、37,38
・・・・・・冷却管、39・・・・・・連結管、40・
・・・・・延伸ロツド、41・・・・・・パリソン嵌合
部、A・・・・・・パリソン開口部、B・・・・・・鍔
部、C・・・・・・首部、D・・・・・・胴部中央、E
・・・・・・底部曲面開始部、F・・・・・・底部中央
。FIG. 1 is a schematic vertical cross-sectional view cut along the parting line of a blow mold for a bottle manufactured in an embodiment according to the present invention, and A, b, and c are drawings defined by the present invention. The approximate location corresponding to the division, and 1, 2, 3, etc.
..., 28 are numbered at intervals of 1c7n from just below the flange of the bottle, and are the numbers of the parts where the physical property values were measured. Further, FIG. 2 is a schematic diagram illustrating the relationship between the blow mold and the parison structure and the stretch blow split mold used in the present invention, which can be heat-set. FIG. 3 is a cross-sectional view of the mold shown in FIG. 2 taken along the line X-X5. Furthermore, FIG. 4 is an enlarged view of the opening, neck, and shoulder of the parison and split mold in FIG. 2. Furthermore, FIG. 5 is an enlarged view corresponding to FIG. 4 showing the relationship between the conventional parison structure and the blow split mold. a... thermally stable stretched portion, b.
...Thermally unstable stretched part (part where the stretching ratio changes continuously), c... Unstretched part, 29...
...Parison, 30...Fixed stand, 32,3
4...Insulation block, 31, 33, 35...
... Split mold, 36... Heater, 37, 38
......Cooling pipe, 39...Connecting pipe, 40.
...Stretching rod, 41...Parison fitting part, A...Parison opening, B...Brim part, C...Neck part, D... Center of the torso, E
...... Bottom curved surface start part, F... ... Bottom center.
Claims (1)
熱可塑性ポリエステルからなる有底パリソンを、該ポリ
エステルの延伸温度で圧流気体および延伸ロッドを用い
て二軸延伸ブロー成形することにより未延伸部分、延伸
部分および未延伸部から延伸部にかけて延伸比が連続し
て変化する部分からなる容器を成形し、次いで熱固定す
るポリエステル容器の製造方法において、該パリソンを
延伸温度にする際、目的とする容器の首部または首部か
ら肩部、および底部に相当するパリソン部分の温度を容
器の胴部に相当するパリソン部分の温度よりも1〜20
℃高くなるように温度分布を与えた後、延伸温度よりも
低い温度の金型、延伸ロッド及び圧流気体を用いて二軸
延伸ブロー成形した後、ポリエステルのガラス転移温度
より20℃以上高く、融点より20℃以上低い温度範囲
で熱処理することを特徴とする沸とう水充填による容積
収縮率が2%以下である透明ポリエステル容器の製造方
法。1 A bottomed parison made of a thermoplastic polyester whose main repeating unit is ethylene terephthalate is biaxially stretched and blow molded using a compressed gas and a stretching rod at the stretching temperature of the polyester to form an unstretched part, a stretched part, and an unstretched part. In a method for producing a polyester container, in which a container consisting of a part in which the stretching ratio changes continuously from the drawing part to the drawing part is formed and then heat-set, when the parison is brought to the drawing temperature, The temperature of the parison part corresponding to the shoulder and bottom part is 1 to 20 degrees higher than the temperature of the parison part corresponding to the body of the container.
After giving a temperature distribution such that the temperature is higher than the stretching temperature, biaxial stretch blow molding is performed using a mold, a stretching rod, and a compressed gas at a temperature lower than the stretching temperature. 1. A method for producing a transparent polyester container having a volume shrinkage rate of 2% or less when filled with boiling water, the method comprising heat-treating at a temperature range of 20° C. or more lower than that of a polyester container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53050599A JPS5935333B2 (en) | 1978-04-26 | 1978-04-26 | Method for manufacturing polyester containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53050599A JPS5935333B2 (en) | 1978-04-26 | 1978-04-26 | Method for manufacturing polyester containers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54143381A JPS54143381A (en) | 1979-11-08 |
JPS5935333B2 true JPS5935333B2 (en) | 1984-08-28 |
Family
ID=12863425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53050599A Expired JPS5935333B2 (en) | 1978-04-26 | 1978-04-26 | Method for manufacturing polyester containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5935333B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138948A (en) * | 1986-12-02 | 1988-06-10 | 大日本印刷株式会社 | Plastic vessel with metallic cover and manufacture thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5881131A (en) * | 1981-11-10 | 1983-05-16 | Mitsubishi Plastics Ind Ltd | Plastic bottles and their manufacturing method |
JPH02111608U (en) * | 1989-02-23 | 1990-09-06 | ||
JPH0739129B2 (en) * | 1991-06-21 | 1995-05-01 | 東洋製罐株式会社 | High stretch blow molded container and method of manufacturing the same |
JPH0739130B2 (en) * | 1991-06-21 | 1995-05-01 | 東洋製罐株式会社 | High stretch blow molded container and method of manufacturing the same |
-
1978
- 1978-04-26 JP JP53050599A patent/JPS5935333B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138948A (en) * | 1986-12-02 | 1988-06-10 | 大日本印刷株式会社 | Plastic vessel with metallic cover and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS54143381A (en) | 1979-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5281387A (en) | Method of forming a container having a low crystallinity | |
US4318882A (en) | Method for producing a collapse resistant polyester container for hot fill applications | |
US4497855A (en) | Collapse resistant polyester container for hot fill applications | |
US4512948A (en) | Method for making poly(ethylene terephthalate) article | |
US4476170A (en) | Poly(ethylene terephthalate) articles and method | |
US4603066A (en) | Poly(ethylene terephthalate) articles | |
EP0669255B1 (en) | Heat and pressure resistant container | |
EP0280742B1 (en) | Production of polyester hollow molded article | |
NZ209211A (en) | Blow moulding a container in two moulds with intermould transfer under pressure | |
CN101808801B (en) | Polyester bottle with resistance to heat and pressure and process for producing the same | |
CA1197961A (en) | Poly(ethylene terephthalate) articles and method | |
JPS584611B2 (en) | plastic containers | |
US20040026827A1 (en) | Method for the fabrication of crystallizable resins and articles therefrom | |
JP2001526598A (en) | Improved multilayer container and preform | |
JPS6356104B2 (en) | ||
JPS5935333B2 (en) | Method for manufacturing polyester containers | |
JPS6357312B2 (en) | ||
EP0404187B1 (en) | Polyester vessel for drink and process for preparation thereof | |
JPS59103832A (en) | Polyester vessel | |
JP2005001164A (en) | Method for manufacturing bottle made of polyester resin | |
JPS5850177B2 (en) | Method for manufacturing biaxially oriented bottles | |
JPH0443498B2 (en) | ||
JPH0615643A (en) | Manufacture of premolded body | |
JP3835428B2 (en) | Heat-resistant stretched resin container | |
KR100480947B1 (en) | Method for biaxial stretch blowmolding of heat resistant pet bottle |