JPS5934447A - Air-fuel ratio control unit for engine - Google Patents
Air-fuel ratio control unit for engineInfo
- Publication number
- JPS5934447A JPS5934447A JP14519382A JP14519382A JPS5934447A JP S5934447 A JPS5934447 A JP S5934447A JP 14519382 A JP14519382 A JP 14519382A JP 14519382 A JP14519382 A JP 14519382A JP S5934447 A JPS5934447 A JP S5934447A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel
- fuel ratio
- sensor
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2441—Methods of calibrating or learning characterised by the learning conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2438—Active learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、エンジンの空燃比制御装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an engine.
一般にエンジンの空燃比制御装置dとして、排気通路に
設けた02センサ、即ち空燃比センサによって排気ガス
中の酸素濃度を検出し、該空燃比センサの出力に応じて
燃料供給量又は吸入空気量を調整して混合気の空燃比を
フィードバック制御するようにしたものがある。そして
このような空燃比制御装置に2いては、エンジンの定常
運転時には混合気の空燃比を比較的精度よく理論空燃比
14.7等の目標値に制御することが可能であるが、エ
ンジンの過渡時、例えば加速時には吸入空気の増加に対
する燃料供給の遅れあるいは02センサ等制御系の信号
の遅れなどに起因して、混合気の空燃比が目標++&か
らリーン側あるいはリッチ側にずれてしまうことがあり
、このような場合、単に02センサの出力に応じて空燃
比のフィードバック制御を行なうのみでは混合気が目標
空燃比になるまでに時間がかかり、排気ガス中のHC、
CO等が増加してエミッション(排気ガスの浄化状ウリ
)が悪化する等の不具合がある。Generally, as an engine air-fuel ratio control device d, the oxygen concentration in the exhaust gas is detected by an 02 sensor installed in the exhaust passage, that is, the air-fuel ratio sensor, and the amount of fuel supply or intake air is adjusted according to the output of the air-fuel ratio sensor. There is one that performs feedback control of the air-fuel ratio of the air-fuel mixture by adjusting the air-fuel ratio. With such an air-fuel ratio control device, it is possible to control the air-fuel ratio of the air-fuel mixture to a target value such as the stoichiometric air-fuel ratio of 14.7 with relative accuracy during steady engine operation. During a transient period, for example during acceleration, the air-fuel ratio of the air-fuel mixture deviates from the target ++& to the lean side or rich side due to a delay in fuel supply due to an increase in intake air or a delay in signals from the control system such as the 02 sensor. In such cases, simply performing feedback control of the air-fuel ratio according to the output of the 02 sensor will take time for the air-fuel mixture to reach the target air-fuel ratio, and the HC in the exhaust gas,
There are problems such as an increase in CO, etc., which worsens emissions (exhaust gas purification).
そこで従来は、このようなエミッションの悪化を防止す
るため、例えば燃料噴射弁を備えたエンジンに2いては
予め実験等によって各運転状態ごとに過渡時の補正量を
求めてそれをメモリに記憶させてかき、エンジンの加速
時には記憶している補E)1により燃料噴射弁に加える
1!u射パlレス信号(7) ハ)Vス幅を順次補正し
、これによって混合気の空燃比を短時間で目標値に制御
するようにしている(特公昭55−26299号公報参
照)。Conventionally, in order to prevent such deterioration of emissions, for example, for engines equipped with fuel injection valves, the correction amount during transient times for each operating state is determined through experiments, etc., and then stored in memory. When the engine accelerates, add 1 to the fuel injector using the memorized auxiliary E) 1! U injection pulse signal (7) C) The V pulse width is corrected sequentially, thereby controlling the air-fuel ratio of the air-fuel mixture to the target value in a short time (see Japanese Patent Publication No. 55-26299).
しかしながら従来の空燃比’tllj611]装置では
、エンジンの状態が経年変化により変化した場合等は、
あらかじめ求めていた補IE世が必ずしも最適な値とは
なり得なくなり、従って、過渡時の空燃比制御の制御効
率が悪くなってしまうという問題があった。However, with the conventional air-fuel ratio 'tllj611] device, if the engine condition changes due to aging, etc.
There is a problem in that the supplementary IE obtained in advance cannot necessarily be the optimum value, and therefore the control efficiency of the air-fuel ratio control during transient times deteriorates.
この発明は以上のような従来の問題点に鑑みてなされた
もので、排気通路に設けた02センサの出力に応じて空
燃比のフィードバック制御を行なうようにしたエンジン
において、エンジンの過渡時、混合気の空気量又は燃′
#+瞳をその空燃比が目標値となる才で記憶装置内の初
期補正−により又はこれに所定酸の加算又は減算を繰り
返して得られる補正量により順次t11i正するととも
に、記憶装置内の初期補正量を上記加算又は減算の繰り
返しにより得られる最適補正−に書き換えることにより
、制御効率を向上させるようにしたエンジンの空燃比制
御装置を提供することを目的としている。This invention was made in view of the above-mentioned conventional problems.In an engine that performs feedback control of the air-fuel ratio according to the output of the 02 sensor installed in the exhaust passage, the mixture air volume or combustion
When the air-fuel ratio reaches the target value, the air-fuel ratio is corrected sequentially by t11i by the initial correction in the storage device or by the correction amount obtained by repeatedly adding or subtracting a predetermined acid to this, and the initial correction value in the storage device is It is an object of the present invention to provide an air-fuel ratio control device for an engine that improves control efficiency by rewriting the correction amount into an optimal correction obtained by repeating the above addition or subtraction.
以下本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.
81図及び第2図は本発明の一実施例によるエンジンの
空燃比制御装置を示す。図にpいて、1はエンジンであ
り、該エンジン1の吸気通路2にはスロットル弁4及び
燃料噴射弁5が配設されるとともに、負圧センサ6及び
スロットルセンサ7が設けられている。このスロットル
センサ7が本実施例ではエンジンの過渡状態を検出する
ための過渡センサとなっている。また吸気通路2の上流
端はエアクリーナ8に接続されている。一方エンジン1
の排気通路3には排気ガス中の酸素濃度よりエンジン1
に吸入される混合気の空燃比を検出する02センサ(空
燃比センサ)9が設けられており、該02センサ9とし
ては空燃比対出力電圧特性が空燃比が理論空燃比付近ま
で増大する間はほぼ一定であり、理論空燃比付近で急激
に低下し、その後はその低下した値でほぼ一定となる特
性を有するものが用いられている。上記排気通路3の0
2センサ9の下流側には排気ガス浄化用の触媒10が配
設されている。またエンジン1の側壁にはエンジン回転
数を検出する回転センサ11が設けられている。FIG. 81 and FIG. 2 show an air-fuel ratio control device for an engine according to an embodiment of the present invention. In the figure, 1 is an engine, and an intake passage 2 of the engine 1 is provided with a throttle valve 4 and a fuel injection valve 5, as well as a negative pressure sensor 6 and a throttle sensor 7. In this embodiment, the throttle sensor 7 serves as a transient sensor for detecting a transient state of the engine. Further, the upstream end of the intake passage 2 is connected to an air cleaner 8. On the other hand, engine 1
According to the oxygen concentration in the exhaust gas, the exhaust passage 3 of the engine 1
An 02 sensor (air-fuel ratio sensor) 9 is provided to detect the air-fuel ratio of the air-fuel mixture taken into the air-fuel mixture. is approximately constant, rapidly decreases near the stoichiometric air-fuel ratio, and thereafter remains approximately constant at that decreased value. 0 of the above exhaust passage 3
A catalyst 10 for purifying exhaust gas is disposed downstream of the two sensors 9. Further, a rotation sensor 11 is provided on a side wall of the engine 1 to detect the engine rotation speed.
また第2図中、13は負圧センサ6.スロツトルセンサ
7及び回転センサ11の各出力をA/D変換するA/D
変換器、14は02センサ9の出力電圧を基準電圧Eと
比較する比較器、15は比較器】4の出力を受ける入力
用インターフェース、15はCPU、17は過渡時の補
正量CFのテーブル■。In FIG. 2, reference numeral 13 indicates a negative pressure sensor 6. A/D that converts each output of the throttle sensor 7 and rotation sensor 11 into A/D
Converter, 14 is a comparator that compares the output voltage of 02 sensor 9 with reference voltage E, 15 is an input interface that receives the output of comparator 4, 15 is CPU, 17 is a table of transient correction amount CF. .
■、及び第3図にフローチャートで示すCPU16の演
算処理プログラムを記憶しているROM、18はROM
117のテープ/l/1.[Iを記憶するとともにその
記憶データを更新するために使用される艮AMである。18 is a ROM that stores the arithmetic processing program of the CPU 16 shown in the flowchart in FIG.
117 tapes/l/1. [This is an AM used to store I and update the stored data.
ここで上記テーブルI 、 ITは、予め実験等によっ
て各運転状態における過渡時の面1E計CFを求め、そ
れらをエンジン回転数及びスロットル弁開度によって決
まるアドレスに格納して作成したものであり、テーブル
Iは混合気の空燃比がり一ン側にずれた場合の補正1c
Fを格納するテーブル、テーブル■は空燃比がリッチ側
にずれた場合の補正ばCFを格納するテーブルである。Here, the above-mentioned tables I and IT were created by determining the transient surface 1E total CF in each operating state through experiments, etc., and storing them at addresses determined by the engine speed and throttle valve opening. Table I shows the correction 1c when the air-fuel ratio of the mixture shifts to one side.
Table (2), which stores F, is a table that stores CF, which is corrected when the air-fuel ratio shifts to the rich side.
また19はC:PUl 6によって演算処理された1省
射パルス信号を燃料噴射弁5に加える出力用インターフ
ェースである。そして上記13〜19によって制御回路
12と構成して2つ、該制御回路12はエンジンの定常
運転時は02センサ9の出力を受けて混合気の空燃比を
目標値(理論空燃比)にフィードバック制御し、エンジ
ンの過渡時は混合気の空燃比が目標値となるまでltA
Mls内の初期補正量CFにより又はこれに所定着αの
加算又は減算を繰り返して得られる補正量により噴射パ
ルス信号のパルス幅Tを順次補正するとともに、ltA
Ml 8内の初期補正量を上記の加算又は減算の繰り返
しにより最終的に渇られる最適補正量に書き換える制御
を行なうものである。Reference numeral 19 denotes an output interface for applying one injection saving pulse signal, which has been arithmetic processed by C:PUl 6, to the fuel injection valve 5. 13 to 19 above constitute a control circuit 12. During steady operation of the engine, the control circuit 12 receives the output of the 02 sensor 9 and feeds back the air-fuel ratio of the mixture to the target value (stoichiometric air-fuel ratio). During engine transients, ltA is maintained until the air-fuel ratio of the mixture reaches the target value.
While sequentially correcting the pulse width T of the ejection pulse signal using the initial correction amount CF in Mls or the correction amount obtained by repeatedly adding or subtracting a predetermined value α to this, the pulse width T of the ejection pulse signal is corrected.
Control is performed to rewrite the initial correction amount in Ml 8 to the optimum correction amount that is finally exhausted by repeating the above-mentioned addition or subtraction.
また第3図は上記CPUI 6の演算処理のフローチャ
ートを示し、図において、20はROM17内のテーブ
ルI、IIを初期値としてRAMI 8に記憶させるス
テップ、21は入力用インターフェース15から02セ
ンサ9の検出値を比較器14の出力値として読み込み、
それをVジスタAに記憶するステップ、22は記憶した
02センサ9の検出値より混合気が目標空燃比か否かを
判定する判定ステップ、23は負圧センサ6及びスロッ
トルセンサ7の両市力値によって決まる噴射パルス信号
のパルス幅Tを混合気が目標空燃比となるよう所定値β
だけ補正し、該補正したパルス幅T−T+β、T=T−
βの噴射パルス信号により燃料噴射弁5に燃料噴射を行
なわせるステップである。Further, FIG. 3 shows a flowchart of the arithmetic processing of the CPUI 6, in which 20 is a step of storing tables I and II in the ROM 17 as initial values in the RAMI 8, and 21 is a step of storing tables I and II in the ROM 17 as initial values, and 21 is a step of storing the data from the input interface 15 to the 02 sensor Read the detected value as the output value of the comparator 14,
22 is a determination step of determining whether the air-fuel mixture is at the target air-fuel ratio based on the stored detected value of the 02 sensor 9; 23 is the internal power value of both the negative pressure sensor 6 and the throttle sensor 7; The pulse width T of the injection pulse signal, which is determined by
The corrected pulse width T-T+β, T=T-
This is a step in which the fuel injection valve 5 is caused to inject fuel using the injection pulse signal β.
ここで負圧センサ6及びスロットルセンサ7の割出力よ
り噴射パルス信号を決定する処理フローは公知のもので
あり、その詳細な説明は省略する。Here, the processing flow for determining the injection pulse signal from the divided outputs of the negative pressure sensor 6 and the throttle sensor 7 is well known, and detailed explanation thereof will be omitted.
また24はA/D変換器13からスロットルセンサ7及
び回転センサ11の雨検出値を読み込み、それらをレジ
スタT’、Rに記憶するステップ、25は記憶したスロ
ットルセンサ7の出カヲ微分し、エンジンが加速状態か
否かを判定する判定ステップ、26は燃料噴射後の02
センサ9の検出値を読み込み、混合気の空燃比がリーン
又はリッチのいずれの側にずれているかを判定する判定
ステップである。Further, 24 is a step of reading the rain detection values of the throttle sensor 7 and rotation sensor 11 from the A/D converter 13 and storing them in registers T' and R; 25 is a step of differentiating the stored output of the throttle sensor 7, and A determination step of determining whether or not is in an acceleration state, 26 is 02 after fuel injection
This is a determination step in which the detected value of the sensor 9 is read and it is determined whether the air-fuel ratio of the air-fuel mixture is lean or rich.
27はRAM18に記憶させたテーブルIの上記両セン
サ7.11の検出値によって決まるアドレスより初期補
正量CFを読み出すステップ、28は上記噴射パルス信
号のパルス幅Tを初期補正量CFに基づいて補正し、そ
のパルス幅T=T+CFの噴射パルス信号によって燃料
の噴射を行なわせるステップ、29は燃料噴射後の02
センサ9の検出値を読み込み該検出値が反転したか否か
、即ち混合気の空燃比がリーンからリッチになったか否
かを判定する判定ステップ、30は上記初期補正量CF
に所定量αを加算するステップ、31は上記テーブル■
内の初期補正量を現在の補正量CFに書き換えるステッ
プである。またステップ32はRAM1B内のテーブル
Hの上記スロットフレセンサ7及び回転センサ11の雨
検出値によって決まるアドレスより初期補正量CFを読
み出すステップ、33は噴射パルス信号のパルスIiT
を初期補正1ic:pに基づいて補正し、そのパルスI
MT=T−CFでもって燃料の噴射を行なわせるステッ
プ、34は燃料噴射後の02センサ9の検出値を読み込
み、該検出値が反転したか否か、即ち混合気の空燃比が
リッチからリーンになったか否かを判定する判定ステッ
プ、35は上記初期補正量CFから所定量αを減算する
ステップ、36は上記テーブル1■内の初期補正量を現
在の補正量CFに書き換えるステラ・プである。27 is a step of reading out the initial correction amount CF from the address determined by the detection values of both the sensors 7 and 11 of Table I stored in the RAM 18, and 28 is a step of correcting the pulse width T of the injection pulse signal based on the initial correction amount CF. Then, the step 29 is a step of injecting fuel according to the injection pulse signal with the pulse width T=T+CF.
A determination step of reading the detected value of the sensor 9 and determining whether the detected value has been reversed, that is, whether the air-fuel ratio of the air-fuel mixture has changed from lean to rich; 30 is the initial correction amount CF;
The step of adding a predetermined amount α to , 31 is the above table ■
This is a step of rewriting the initial correction amount in the current correction amount CF. Further, step 32 is a step of reading out the initial correction amount CF from the address determined by the rain detection values of the slot deflection sensor 7 and rotation sensor 11 in the table H in the RAM 1B, and 33 is the step of reading the pulse IiT of the injection pulse signal.
is corrected based on the initial correction 1ic:p, and its pulse I
Step 34 of injecting fuel with MT=T-CF reads the detected value of the 02 sensor 9 after fuel injection, and determines whether the detected value has been reversed, that is, whether the air-fuel ratio of the mixture is from rich to lean. 35 is a step of subtracting a predetermined amount α from the initial correction amount CF, and 36 is a step of rewriting the initial correction amount in the table 1■ to the current correction amount CF. be.
次に第3図を用いて動作について説明する。Next, the operation will be explained using FIG.
エンジンの作動中、吸気通路2にはスロットル弁4の開
度に応じた薇の空気が吸入され、その際負圧センサ6は
スロットル弁4下流側の吸気負圧を、スロットルセンサ
7はスロットル弁4の開度をそれぞれ検出し、又回転セ
ンサ11はエンジン回転数を、02センサ9は排気ガス
中の酸素濃度より混合気の空燃比をそれぞれ検出し、上
記各センサ6.7,11.9の出力は制御回路12に加
えられる。この制御回路12においては、A10変換器
13は負圧センサ6、スロットルセンサ7及び回転セン
サ11の各出力をA/D変換し、又比較器14は02セ
ンサ9の出力電圧と基準1直Eとを比較し、該比較Fa
14の出力信号は入力用インターフェース15に人力さ
れる。While the engine is operating, air is drawn into the intake passage 2 according to the opening degree of the throttle valve 4. At this time, the negative pressure sensor 6 detects the intake negative pressure on the downstream side of the throttle valve 4, and the throttle sensor 7 detects the intake negative pressure downstream of the throttle valve 4. The rotation sensor 11 detects the engine rotation speed, and the 02 sensor 9 detects the air-fuel ratio of the air-fuel mixture from the oxygen concentration in the exhaust gas. The output of is applied to the control circuit 12. In this control circuit 12, an A10 converter 13 A/D converts the outputs of the negative pressure sensor 6, throttle sensor 7, and rotation sensor 11, and a comparator 14 converts the output voltage of the 02 sensor 9 and the reference 1 direct current E. and the comparison Fa
The output signals of 14 are inputted to an input interface 15.
そしてスロットル弁4の開度がほぼ一定であるエンジン
の定常運転時には、CPU15は第3図に示すように、
まずステップ20.21.22の経路を進み、ステップ
20で10M17に格納されている過渡時の補正量のテ
ーブルI、flをRAM18に記憶させ、ステップ21
で入力用インターフェース15より02センサ9の検出
値を比較器14の出力として読み込み、それをレジスタ
Aに記憶させ、ステップ22で上記記憶させた比較力は
“1°又は°0°、即ち空燃比がリッチ又はり一ンにな
っていることのみを示し、ここで目標空燃比に対応する
値になることはないので、(:PU16はステップ22
からステップ23,24.25の経路を進み、ステップ
23で混合気が目標空燃比となるよう、即ち現在の空燃
比がり一ンの場合はリッチに、リッチの場合はリーンに
なるよう、負圧センサ6及びスロットルセンサ7の両横
出値によって決まる噴射パルス信号のパルス幅Tを所定
量βだけ補正(T=T+β、T=T−β)し、該補正し
た噴射パルス信号を出力用インターフェース19を介し
て燃料噴射弁5に加えて、燃料の噴射を行なわせる。ま
たステップ24でA、 / D変換器13からスロット
ルセンサ7及び回転センサ11の両横出値を読み込み、
それらをレジスタTI 、 Rに記憶させ、ステップ2
5で記憶させたスロットルセンサ7の検出値の変化より
エンジンが加速時か否かを判別し、エンジンが加速時で
ない、即ち定常運転時である場合はステップ21に戻り
、ステップ21〜25の経路を循環する。During steady operation of the engine when the opening degree of the throttle valve 4 is approximately constant, the CPU 15 performs the following operations as shown in FIG.
First, proceed along the path of steps 20, 21, and 22, and in step 20, store the transient correction amount tables I and fl stored in 10M17 in the RAM 18, and in step 21
At step 22, the detected value of the 02 sensor 9 is read as the output of the comparator 14 from the input interface 15, and it is stored in the register A. At step 22, the stored comparison force is "1° or 0°, that is, the air-fuel ratio. This only indicates that the air-fuel ratio is rich or rich, and does not correspond to the target air-fuel ratio.
From there, proceed through steps 23, 24, and 25, and in step 23, apply negative pressure so that the air-fuel mixture reaches the target air-fuel ratio, that is, if the current air-fuel ratio is close to 1, it becomes rich, and if it is rich, it becomes lean. The pulse width T of the injection pulse signal determined by the side output values of the sensor 6 and the throttle sensor 7 is corrected by a predetermined amount β (T=T+β, T=T−β), and the corrected injection pulse signal is output to the output interface 19. In addition to the fuel injection valve 5, fuel is injected via the fuel injection valve 5. Also, in step 24, both side output values of the throttle sensor 7 and rotation sensor 11 are read from the A/D converter 13,
Store them in registers TI, R and step 2
It is determined whether the engine is accelerating or not based on the change in the detected value of the throttle sensor 7 stored in step 5. If the engine is not accelerating, that is, it is in steady operation, the process returns to step 21 and the route from steps 21 to 25 is followed. cycle.
このようにエンジンの定常運転時には、燃料噴射tは0
2センサ9の出力に応じてフィードバック制御され、混
合気の空燃比はリーンとリッチとの間で微小変動を繰り
返すこととなり、これによってエンジンに吸入される混
合気はほぼ目標空燃比に制御されるものである。In this way, during steady engine operation, the fuel injection t is 0.
Feedback control is performed according to the output of the second sensor 9, and the air-fuel ratio of the air-fuel mixture repeats minute fluctuations between lean and rich, so that the air-fuel mixture taken into the engine is controlled to approximately the target air-fuel ratio. It is something.
またエンジンが加速時である場合は、cpty16はス
テップ25からステップ26に進み、02センサ9の検
出値を読み込んで混合気の空燃比がリーン又はリッチの
いずれの側にずれているかを判別し、リーン側にずれて
いる場合はステップ27゜28.29の経路を進み、ス
テップ27で加速を開始したときのスロットルセンサ7
及び回転センサ11の両横出値によって決まるRAM1
g内のテーブルIのアドレスより初期補正量CFを読み
出し、ステップ28で読み出した初期補正@ CFに基
づいて噴射パルス信号のパルス幅Tを補正し、補正した
噴射パルス信号を出力用インターフェース19を介して
燃料噴射弁5に加えて、燃料の噴射を行なわせる。そし
てステップ29で燃料噴射後の02センサ9の検出値を
読み込んで混合気の空燃比がリーン側からリッチ側にな
ったか否かを判別し、空燃比が依然としてリーンの場合
はパルス幅Tがまだ短い訳であるから、CPU15はス
テップ30に進んで、上記初期補正量Cpに所定量αを
加算し、ステップ28に戻り、ステップ28〜30の経
路を循環する。そしてステップ29で空燃比がリッチに
なった場合は、過渡時の補正量CFは最適値になってい
ると考えられるので、CPUI 6はステップ29から
ステップ31に進み、RAM18内の一子一ブル■の初
期補正量を現在の補正IcF、即ち最適な補正量に書き
換え、ステップ21に戻り、定常運転状態となって再び
フィードバック制御を行なうこととなる。When the engine is accelerating, the cpty 16 proceeds from step 25 to step 26, reads the detected value of the 02 sensor 9, and determines whether the air-fuel ratio of the air-fuel mixture is lean or rich, If it is off to the lean side, proceed through steps 27° and 28.29, and check the throttle sensor 7 when acceleration starts in step 27.
and RAM1 determined by both side output values of the rotation sensor 11.
The initial correction amount CF is read from the address in Table I in step 28, the pulse width T of the injection pulse signal is corrected based on the initial correction @ CF read out in step 28, and the corrected injection pulse signal is sent via the output interface 19. In addition to the fuel injection valve 5, the fuel injection valve 5 also injects fuel. Then, in step 29, the detected value of the 02 sensor 9 after fuel injection is read to determine whether the air-fuel ratio of the mixture has changed from the lean side to the rich side. If the air-fuel ratio is still lean, the pulse width T is still Since it is short, the CPU 15 proceeds to step 30, adds a predetermined amount α to the initial correction amount Cp, returns to step 28, and circulates through steps 28-30. If the air-fuel ratio becomes rich in step 29, it is considered that the transient correction amount CF is the optimum value, so the CPU 6 proceeds from step 29 to step 31, and stores the The initial correction amount (2) is rewritten to the current correction IcF, that is, the optimum correction amount, and the process returns to step 21, where the steady operation state is established and feedback control is performed again.
またエンジン加速時であって混合気の空燃比がリッチ側
にずれている場合は、CPU16はステップ26からス
テップ32,33.34の経路を進んだ後、ステップ3
5.33.34の経路を循循するか、ステップ34から
ステップ36に進んでステップ21に戻ることとなり、
そのうちステップ32でスロットルセンサ7及び回転セ
ンサ11の両横出値によって決まるRAMI s内のテ
ーブルHのアドレスより初期補正tCFを読み出し、ス
テップ33で初期補正1cFに基づいて噴射パルス信号
のパルス幅TをT−Cpに補正し、この補正した噴射パ
ルス信号を用いて燃料の噴射を行なわせ、ステップ34
で02センサ9の検出値より空燃比がリッチからり一ン
になったか否かを判定し、ステップ35で初期補正量C
pから所定量αを減算し、ステップ36でRAM1s内
のテーブル■の初期補正量を最適な補正量に書き換える
。Further, when the engine is accelerating and the air-fuel ratio of the air-fuel mixture deviates to the rich side, the CPU 16 proceeds from step 26 to steps 32, 33, and 34, and then steps 3.
5.33.34, or proceed from step 34 to step 36 and return to step 21,
In step 32, the initial correction tCF is read from the address of table H in RAMI s determined by the side output values of the throttle sensor 7 and rotation sensor 11, and in step 33, the pulse width T of the injection pulse signal is determined based on the initial correction 1 cF. T-Cp is corrected, and the corrected injection pulse signal is used to perform fuel injection, and step 34
In step 35, it is determined whether the air-fuel ratio has changed from rich to rich based on the detected value of the 02 sensor 9, and in step 35, the initial correction amount C is determined.
A predetermined amount α is subtracted from p, and in step 36, the initial correction amount in the table ① in the RAM 1s is rewritten to the optimum correction amount.
このようにエンジンの加速時には、燃料噴射量はλAM
18内の初期補正量により、又はこれに所定量の加算又
は減算を繰り返して得られる補正量により順次補正され
、これによって混合気はすみやかに目標とする理論空燃
比に制御されることとなる。In this way, when the engine accelerates, the fuel injection amount is λAM
The mixture is sequentially corrected by the initial correction amount in 18 or by the correction amount obtained by repeatedly adding or subtracting a predetermined amount to this, and thereby the air-fuel mixture is quickly controlled to the target stoichiometric air-fuel ratio.
またその際、RAM1g内の初期補正量は上記加算又は
減算の繰り返しにより得られる最適な補正量によって書
き換えられるため、次に同じ運転状態から加速を行なう
ときには燃料噴装置は最初から最適な補正量で補正され
−これによってより速やかに理論空燃比に達することが
でき、エミ・ンションも大幅に改善される。特に燃料噴
射弁5の噴射特性あるいは吸気マニホールドの混合気分
配特性が経年変化したような場合にも、RAM1g内に
は常に最適な初期補正量が記憶されているため、初期補
正量を固定した従来装置に比して混合気はよりすばやく
目標空燃比に制御されるものである。At that time, the initial correction amount in RAM1g is rewritten with the optimum correction amount obtained by repeating the above addition or subtraction, so the next time you accelerate from the same driving condition, the fuel injection system will use the optimum correction amount from the beginning. correction - this allows the stoichiometric air-fuel ratio to be reached more quickly and also significantly improves emissions. In particular, even if the injection characteristics of the fuel injection valve 5 or the air-fuel mixture distribution characteristics of the intake manifold change over time, the optimum initial correction amount is always stored in the RAM 1g. The air-fuel mixture can be controlled to the target air-fuel ratio more quickly than with other systems.
なお上記実施例ではエンジンの加速時において混合気の
燃料量を補正するようにしたが、この補正は混合気の空
気量について行なうようにしてもよい。また制御回路内
のCPUの処理手順のフローチャートとしては同様の機
能を達成するものであれば第3図のフローと異なる処理
フローを用いるようにしてもよい。In the above embodiment, the amount of fuel in the mixture is corrected when the engine accelerates, but this correction may also be made for the amount of air in the mixture. Further, as a flowchart of the processing procedure of the CPU in the control circuit, a processing flow different from that shown in FIG. 3 may be used as long as it achieves the same function.
また、L記実施例ではエンジンの加速時における空燃比
制御について説明したが、本発明は勿論エンジンの減速
時における空燃比制御についても適用できる。また本発
明は燃Mllf射弁ではなく、気化器を備えたエンジン
にも適用できるものである。Furthermore, although the embodiment L has been described with respect to air-fuel ratio control during engine acceleration, the present invention can of course also be applied to air-fuel ratio control during engine deceleration. Further, the present invention can also be applied to an engine equipped with a carburetor instead of a fuel Mllf injection valve.
以上のように本発明によれば、排気通路に設けた02セ
ンサの出力に応じて混合気の空燃比のフィードバック制
御を行なうようにしたエンジンの空燃比制御装置lこお
いて、エンジンの過渡時、混合気の空気量又は燃料量を
その空燃比が目標値となるまで記憶装置内の初期補正酸
により又はこれに所定量の加算又は減算を繰り返して得
られる浦正酸により順次補正するとともに、記憶装置内
の初期補正酸を上記加算又は減算の繰り返しにより得ら
れる最適補正蝋に書き換えるようにしたので、エンジン
の過渡時に2ける制御効率を大幅に向上でき、これによ
って混合気の空燃比をすばやく目標値に制御できるとと
もに、エミッションを大幅に改善できる効果がある。As described above, according to the present invention, in an engine air-fuel ratio control device l that performs feedback control of the air-fuel ratio of the air-fuel mixture according to the output of the 02 sensor provided in the exhaust passage, , sequentially correct the amount of air or fuel in the air-fuel mixture with the initial correction acid in the storage device or with urasho acid obtained by repeatedly adding or subtracting a predetermined amount to the initial correction acid until the air-fuel ratio reaches the target value; Since the initial correction acid in the memory device is rewritten to the optimum correction wax obtained by repeating the above addition or subtraction, the control efficiency during engine transients can be greatly improved, and the air-fuel ratio of the mixture can be quickly adjusted. In addition to being able to control the target value, it has the effect of significantly improving emissions.
第1図は本発明の一実施例によるエンジンの空燃比制御
装置の構成図、第2図は上記装置の回路構成図、第3図
は上記装置のCPUの処理手順のフロー千ヤードを示す
図である◎
1・・・エンジン、7・・・スロットルセンサ(過渡セ
ンサ)% 9・・・02センサ(空燃比センサ)、12
・・・制御回路、17.18・・・艮OM 、 ltA
M (記憶装置)。
特許出願人 東洋工業株式会社
代理人 弁理士 早 瀬 憲 −
第1図FIG. 1 is a block diagram of an air-fuel ratio control device for an engine according to an embodiment of the present invention, FIG. 2 is a circuit diagram of the device, and FIG. 3 is a flowchart of the processing procedure of the CPU of the device. ◎ 1...Engine, 7...Throttle sensor (transient sensor)% 9...02 sensor (air-fuel ratio sensor), 12
...control circuit, 17.18...艮OM, ltA
M (storage device). Patent applicant: Toyo Kogyo Co., Ltd. Agent: Patent attorney Ken Hayase - Figure 1
Claims (1)
空燃比センサと、エンジンの過渡状態を検出する過渡セ
ンサと、エンジンの過渡時に混合気の空気量又は燃料量
を補正するための各運転状態における初期補正量を記憶
している記憶装置と、エンジンの定常運転時は上記空燃
比センサの出力を受けて混合気の空燃比をフィードバッ
ク制御し上記過渡センサによる過渡状態検出時は混合気
の空燃比が目標値となるまで混合気の空気量又は燃料量
を上記初期補正量により又はこれに所定量の加算又は減
算を繰り返して得られる補正量により順次補正するとと
もに上記記憶装置内の初期補正量を上記の加算又は減算
の繰り返しにより最終的に得られる最適補正黴に書き換
える制御回路とを備えたことを特徴とするエンジンの空
燃比制御装置。(1) An air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture taken into the engine, a transient sensor that detects the transient state of the engine, and a sensor that corrects the amount of air or fuel in the air-fuel mixture during engine transients. A storage device that stores the initial correction amount in the operating state, and feedback control of the air-fuel ratio of the air-fuel mixture in response to the output of the air-fuel ratio sensor during steady engine operation, and control of the air-fuel mixture when a transient state is detected by the transient sensor. The amount of air or fuel in the mixture is sequentially corrected using the above initial correction amount or by the correction amount obtained by repeatedly adding or subtracting a predetermined amount to the above initial correction amount until the air-fuel ratio reaches the target value, and the initial correction value in the storage device is An air-fuel ratio control device for an engine, comprising a control circuit that rewrites the correction amount into an optimal correction amount finally obtained by repeating the above addition or subtraction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14519382A JPS5934447A (en) | 1982-08-20 | 1982-08-20 | Air-fuel ratio control unit for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14519382A JPS5934447A (en) | 1982-08-20 | 1982-08-20 | Air-fuel ratio control unit for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5934447A true JPS5934447A (en) | 1984-02-24 |
Family
ID=15379571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14519382A Pending JPS5934447A (en) | 1982-08-20 | 1982-08-20 | Air-fuel ratio control unit for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5934447A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61237851A (en) * | 1985-04-11 | 1986-10-23 | Fujitsu Ten Ltd | Supply device of fuel to internal-combustion engine |
JPS62261629A (en) * | 1986-04-30 | 1987-11-13 | Honda Motor Co Ltd | Air-fuel ratio control method for internal combustion engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5596339A (en) * | 1979-01-13 | 1980-07-22 | Nippon Denso Co Ltd | Air-fuel ratio control method |
JPS56138438A (en) * | 1980-03-28 | 1981-10-29 | Nippon Denso Co Ltd | Control method of air-fuel ratio |
-
1982
- 1982-08-20 JP JP14519382A patent/JPS5934447A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5596339A (en) * | 1979-01-13 | 1980-07-22 | Nippon Denso Co Ltd | Air-fuel ratio control method |
JPS56138438A (en) * | 1980-03-28 | 1981-10-29 | Nippon Denso Co Ltd | Control method of air-fuel ratio |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61237851A (en) * | 1985-04-11 | 1986-10-23 | Fujitsu Ten Ltd | Supply device of fuel to internal-combustion engine |
JPS62261629A (en) * | 1986-04-30 | 1987-11-13 | Honda Motor Co Ltd | Air-fuel ratio control method for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6644017B2 (en) | Device for and method of controlling air-fuel ratio of internal combustion engine | |
JP3356878B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3156534B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH057548B2 (en) | ||
JPS5934447A (en) | Air-fuel ratio control unit for engine | |
JPH0119057B2 (en) | ||
JP3465626B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6232338B2 (en) | ||
JPH0642387A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0512538B2 (en) | ||
US7401604B2 (en) | Engine control device and control method thereof | |
JP3520731B2 (en) | Engine exhaust purification device | |
JPS62342B2 (en) | ||
JPH07119520A (en) | Air-fuel ratio controller of engine | |
JPH05141295A (en) | Air fuel ratio control method | |
JP2855897B2 (en) | Learning control device | |
JP2808214B2 (en) | Air-fuel ratio control device for internal combustion engine with evaporative fuel control device | |
JPH05141294A (en) | Air/fuel ratio control method | |
JPS59158356A (en) | Air-fuel ratio control device in engine | |
JP2518260B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS62107251A (en) | Air fuel ratio learning control device for internal combustion engine | |
JPH06249030A (en) | Air-fuel ratio control device of engine | |
JPH07233763A (en) | Air-fuel ratio control method | |
JPH0413546B2 (en) | ||
JPS61294155A (en) | Fuel feeding apparatus for internal-combustion engine |