JPS5933876A - MIS type semiconductor device - Google Patents
MIS type semiconductor deviceInfo
- Publication number
- JPS5933876A JPS5933876A JP57143725A JP14372582A JPS5933876A JP S5933876 A JPS5933876 A JP S5933876A JP 57143725 A JP57143725 A JP 57143725A JP 14372582 A JP14372582 A JP 14372582A JP S5933876 A JPS5933876 A JP S5933876A
- Authority
- JP
- Japan
- Prior art keywords
- film
- region
- gate
- channel
- channel region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Landscapes
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は絶縁基板上にMIS )ランジスタを形成した
構造のMIS型半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an MIS type semiconductor device having a structure in which a MIS transistor is formed on an insulating substrate.
この種のMIS型半導体装置、例えば5O8(Sili
con on 5apphire)に代表される半導体
装置はシリコン基板を用いたバルク半導体装置に比べて
配線と基板間、拡散層と基板間等の浮遊容量が小さく、
かつ素子間の分離が完全であるので、高速動作、高密度
を実現できると−う利点を有する。This type of MIS type semiconductor device, for example, 5O8 (Sili
Compared to bulk semiconductor devices using silicon substrates, semiconductor devices typified by con on 5apphire have smaller stray capacitances between wiring and the substrate, between diffusion layers and the substrate, etc.
In addition, since the isolation between elements is perfect, it has the advantage of realizing high-speed operation and high density.
ところで、上記SOS構造のMO8型半導体装置は従来
、次のような方法により製造されている。Incidentally, the MO8 type semiconductor device having the above-mentioned SOS structure has conventionally been manufactured by the following method.
まず、サファイア基板1上投p−型の単結晶シリコン膜
を気相成長させ、これを異方性エツチング法を用いてパ
ターニングして断面が台形状をなす島状のシリコン膜2
を形成する(第1図(、)図示)。つづいて、p−型の
シリコン膜2上にダート酸化膜3を介して例えば砒素ド
ーグ多結晶シリコンからなるf−)電極4を形成し、こ
のダート電極4をマスクとしてn型不純物をp−型シリ
コンH2にドーピングして層型のソース。First, a p-type single crystal silicon film is deposited on a sapphire substrate 1 by vapor phase growth, and this is patterned using an anisotropic etching method to form an island-shaped silicon film 2 with a trapezoidal cross section.
(Illustrated in Figure 1(, )). Subsequently, an f-) electrode 4 made of, for example, arsenic doped polycrystalline silicon is formed on the p-type silicon film 2 via a dirt oxide film 3, and using this dirt electrode 4 as a mask, an n-type impurity is transferred to the p-type. A layered source made by doping silicon H2.
ドレイン領域5.6を形成する。次いで、全面にCVD
−8in2膜7を堆積、ソース、ドレイン領域5,6に
対応する該5I02膜7の一部にコンタクトホール8,
8を開孔し、AtMを全面に蒸着した後、これをパター
ニングしてソース、ドレインの電極9,10を形成して
MOS )ランジスタを製造する(第1図(b)図示)
。A drain region 5.6 is formed. Next, CVD is applied to the entire surface.
- 8in2 film 7 is deposited, contact holes 8 are formed in parts of the 5I02 film 7 corresponding to the source and drain regions 5 and 6;
After opening a hole 8 and depositing AtM on the entire surface, this is patterned to form source and drain electrodes 9 and 10 to manufacture a MOS transistor (as shown in FIG. 1(b)).
.
上記方法によれば簡単な工程で島状のシリコン膜2を分
離できるが、次のような種々の欠点を有する。第1の欠
点は島状のシリコン膜2側面に発生する寄生MO8)ラ
ンジスタの効果である。とれは、島状シリコン膜2表面
の(100)面方位からなるMOS )ランジスタと並
列に形成される側面の(111)面方位、ftもつMO
S )ランジヌタが(100)面よシも多くの81−8
102界面準位をもつことに起因する。この寄生MO8
)ランジスタ効果によって、漏れ電流の増加や信頼性の
低下を招く。第2の欠点は島状のシリコン膜2側面に成
長されたダート酸化膜3の絶縁破壊耐圧が低いことであ
る。即ち、第2図に示す如く島状のシリコン膜2側面上
にff−)酸化膜3となる熱酸化膜1ノが一様に成長せ
ず、サファイア基板1界面近傍で薄くなることに起因す
る。こうした原因は孤立した島状のシリコン膜2端部の
ザファイア基板1界面での酸素欠乏によるものと思われ
る。According to the above method, the island-shaped silicon film 2 can be separated in a simple process, but it has various drawbacks as follows. The first drawback is the effect of parasitic MO transistors generated on the side surfaces of the island-shaped silicon film 2. This is a MOS having a (100) plane orientation on the surface of the island-like silicon film 2).
S) Ranjinuta (100) side also many 81-8
This is due to the presence of 102 interface states. This parasitic MO8
) The transistor effect causes an increase in leakage current and a decrease in reliability. The second drawback is that the dielectric breakdown voltage of the dirt oxide film 3 grown on the side surface of the island-shaped silicon film 2 is low. That is, as shown in FIG. 2, the thermal oxide film 1, which becomes the ff-) oxide film 3, does not grow uniformly on the side surface of the island-shaped silicon film 2, and becomes thin near the interface of the sapphire substrate 1. . This is thought to be caused by oxygen deficiency at the interface of the zaphire substrate 1 at the end of the isolated island-like silicon film 2.
一方、別のSO8構造のMOS )ランジスタの製造と
して次のような選択酸化による分離技術を適用した方法
が知られている。まず、サファイア基板1にp′″型単
結晶シリコン膜を気相成長させ、このシリコン膜上に酸
化膜及び耐酸化性のシリコン窒化膜を形成した後、素子
分離領域となるシリコン窒化膜を順次・平ターニングし
てシリコン窒化膜ノ9ターン12及び酸化膜・ヤターン
13を夫々形成する。つづいて、シリコン窒化膜パター
ン12を耐酸化性マスクとして高温酸素雰囲気中で熱処
理してフィールド酸化膜(素子分離領域)14を形成し
て島状のシリコン膜15を作る(第3図(、)図示)。On the other hand, as another method for manufacturing a MOS transistor having an SO8 structure, a method using an isolation technique using selective oxidation as described below is known. First, a p''' type single crystal silicon film is grown in a vapor phase on a sapphire substrate 1, an oxide film and an oxidation-resistant silicon nitride film are formed on this silicon film, and then a silicon nitride film that will become an element isolation region is sequentially grown.・Flat turning is performed to form nine turns 12 of the silicon nitride film and a turn 13 of the oxide film.Next, using the silicon nitride film pattern 12 as an oxidation-resistant mask, heat treatment is performed in a high temperature oxygen atmosphere to form a field oxide film (element). A separation region) 14 is formed to form an island-shaped silicon film 15 (as shown in FIG. 3(, )).
次いで、シリコン窒化膜パターン12及び酸化膜パター
ン13を除去した後、前述した方法と同様に島状のシリ
コン膜15にMOS )ランジスタを造る(第3図(b
)図示)。Next, after removing the silicon nitride film pattern 12 and the oxide film pattern 13, a MOS transistor is fabricated on the island-shaped silicon film 15 in the same manner as described above (see FIG. 3(b)).
).
上記方法によれば前述したダート酸化膜の絶縁破壊耐圧
の低下を改善できるものの、次のような欠点を有する。Although the above method can improve the above-mentioned decrease in dielectric breakdown voltage of the dirt oxide film, it has the following drawbacks.
■ 厚いフィールド酸化膜14を形成するのに高温で長
時間の熱処理を必要とするため、サファイア基板1から
のAtのオートドーピング等によシリコン窒化
に多量の界面電荷が生じ、漏れ電流の増大を招く。特に
、nチャンネル幅方向 )ランジスタを島状のシリコン
膜15に形成した場合、ソース。■ Since long-time heat treatment at high temperatures is required to form the thick field oxide film 14, a large amount of interfacial charge is generated in the silicon nitride due to autodoping of At from the sapphire substrate 1, leading to an increase in leakage current. invite In particular, when a transistor is formed in the island-shaped silicon film 15 (in the n-channel width direction), the source.
ドレイン領域5,6がダート電極4への電圧の印加に関
係なく前記界面を通って導通する、いわゆるパックチャ
ンネル効果を生じる。The drain regions 5 and 6 conduct through the interface regardless of the voltage applied to the dirt electrode 4, producing a so-called packed channel effect.
■ フィールド酸化膜14の形成後、シリコン窒化!
パターン12下、特に厚いフィールド酸化膜14近傍で
強い応力が発生し、シリコン膜15中に結晶欠陥を誘起
する。このため、デバイヌ特性の劣化、特に漏れ電流の
増加を招く。■ After forming the field oxide film 14, silicon nitridation!
Strong stress is generated under the pattern 12, particularly near the thick field oxide film 14, and induces crystal defects in the silicon film 15. This results in deterioration of Devine characteristics, particularly an increase in leakage current.
5−
■ 厚いフィールド酸化膜14の形成時、シリコン窒化
膜ノ平ターン12下への横方向から酸化が進行し、素子
寸法が縮小する。これはマスク寸法上、余裕をとる必要
が生じ、ひいては素子寸法、素子間寸法の微細化の障害
となる。5-(2) When forming the thick field oxide film 14, oxidation progresses laterally below the silicon nitride film turn 12, reducing the device size. This requires a margin in mask dimensions, which in turn becomes an obstacle to miniaturization of element dimensions and inter-element dimensions.
本発明は従来の素子間分離技術の問題点を全て解消し、
ダート絶縁膜の絶縁破壊耐圧の向上、ダート電極の低抵
抗化及び素子の微細化を達成したMIS型半導体装置を
提供しようとするものである。The present invention solves all the problems of conventional element isolation technology,
It is an object of the present invention to provide a MIS type semiconductor device in which the dielectric breakdown voltage of the dirt insulating film is improved, the resistance of the dirt electrode is lowered, and the element is miniaturized.
本発明は絶縁基板上に互に電気的に分離された一導電型
のソース、ドレイン領域、これら領域間に形成されたチ
ャンネル領域及び該チャンネル領式とつながυ、そのチ
ャンネル幅方向に延びた延出部からなる略十字形状をな
す島状半導体膜を設け、かつ該半導体膜のチャンネル領
域と延出部との間に素子間分離として機能する幅狭の絶
縁体を前、記絶縁基板表面にまで達する6−
ように設け、更に前記チャンネル領域と延出部上にダー
ト電極を少なくともチャンネル領域を覆うダート絶縁膜
を介して設け、前記ダート絶縁膜を前記絶縁体に接触さ
せると共に、ダート電極の一部を半導体膜の延出部に直
接接触させてその延出部をダートの一部として利用する
ことによって、ダート絶縁膜の絶縁破壊強度の向上、r
−)電極の低抵抗化、ダート電極の段差部の断線防止、
及び素子の微細化を達成することを骨子とする。The present invention provides source and drain regions of one conductivity type electrically isolated from each other on an insulating substrate, a channel region formed between these regions, and an extension υ connected to the channel region and extending in the channel width direction. An island-shaped semiconductor film having a substantially cross shape consisting of a protrusion is provided, and a narrow insulator serving as isolation between elements is provided between the channel region and the protrusion of the semiconductor film on the surface of the insulating substrate. furthermore, a dart electrode is provided on the channel region and the extension portion through a dart insulating film that covers at least the channel region, the dirt insulating film is in contact with the insulator, and the dart electrode is in contact with the insulator; The dielectric breakdown strength of the dart insulating film can be improved by bringing a part into direct contact with the extended part of the semiconductor film and using the extended part as part of the dart.
-) Lower resistance of the electrode, prevention of disconnection at the step part of the dart electrode,
The main goal is to achieve miniaturization of devices.
次に、本発明のnチャンネルMO8LSIを第4図(、
)〜(、)及び第5図、第6図に示す製造方法を併記し
て説明する。Next, the n-channel MO8LSI of the present invention is shown in FIG.
) to (, ) and the manufacturing method shown in FIGS. 5 and 6 will be described together.
(1) まず、絶縁基板(例えばサファイア基板)2
1上に単結晶シリコン膜22をヘテロエピタキシャル成
長させてSOSウェハを作った。つづいて、単結晶シリ
コン膜22上に薄いシリコン窒化膜23を堆積し、更に
該窒化膜23上に写真蝕刻法によシ素子分離領域予定部
が開孔されたレジストパターン24を形成した。ひきつ
づき、レジストパターン24をマスクとして窒化膜23
を選択的にエツチング除去して開口部25を形成した(
第4図(、)図示)。(1) First, an insulating substrate (for example, a sapphire substrate) 2
A single crystal silicon film 22 was heteroepitaxially grown on the wafer 1 to produce an SOS wafer. Subsequently, a thin silicon nitride film 23 was deposited on the single-crystal silicon film 22, and a resist pattern 24 in which intended isolation regions were formed was formed on the nitride film 23 by photolithography. Subsequently, using the resist pattern 24 as a mask, the nitride film 23 is
was selectively etched away to form an opening 25 (
Figure 4 (, ) illustration).
(11)次いで、レジストノやターン24をマスクとし
て窒化膜23の開口部25から露出した単結晶シリコン
膜22を例えばリアクティブイオンエツチング(RIE
)により選択エツチングしてサファイア基板21まで達
する幅狭の溝部26を形成した(第4図(b)図示)。(11) Next, the single crystal silicon film 22 exposed from the opening 25 of the nitride film 23 is etched using, for example, reactive ion etching (RIE) using the resist holes and turns 24 as a mask.
) was selectively etched to form a narrow groove portion 26 that reached the sapphire substrate 21 (as shown in FIG. 4(b)).
つづいて、レジストパターン24を除去した後、開口部
25を有するシリコン窒化膜23を耐酸化性マスクとし
て高温酸素雰囲気中で熱処理した。この時、露出した溝
部26内面が酸化されて、該溝部26を埋める酸化体2
7が形成された(第4図(c)図示)。Subsequently, after removing the resist pattern 24, heat treatment was performed in a high temperature oxygen atmosphere using the silicon nitride film 23 having the opening 25 as an oxidation-resistant mask. At this time, the exposed inner surface of the groove 26 is oxidized and the oxidant 2 fills the groove 26.
7 was formed (as shown in FIG. 4(c)).
仙) 次−で、シリコン窒化膜23を除去し、更に熱酸
化処理を施して単結晶シリコン膜22全簡に薄い酸化膜
を成長させた後肢酸化膜を選択的に除去して酸化体27
.27間の素子領域に酸化膜28を残し、更に全面に多
結晶シリコン膜29を堆積した(第4図(d)図示)。Next, the silicon nitride film 23 is removed, and a thermal oxidation process is performed to grow a thin oxide film on the entire single crystal silicon film 22.The hind oxide film is selectively removed to form an oxide film 27.
.. An oxide film 28 was left in the element region between 27 and a polycrystalline silicon film 29 was further deposited on the entire surface (as shown in FIG. 4(d)).
なお、この多結晶シリコン膜29の堆積に先立って、素
子領域のチャンネル領域予定部に閾値を制御するために
ポロン等のp型不純物をイオン注入してもよい。Note that, prior to depositing this polycrystalline silicon film 29, p-type impurity such as poron may be ion-implanted into the intended channel region of the element region in order to control the threshold value.
(i功 次いで、多結晶シリコン膜29をパターニン
グ17てゲート電極30を形成し、該ダート電極30を
マスクとしで薄い酸化膜28を選択的にエツチング除去
してダート酸化膜31を形成した後、単結晶シリコン膜
22をパターニングして素子領域32とこの素子領域と
直交しダート電極30下に位置する延出部33Wる島状
単結晶シリコン膜34を形成した。ひきつづき、ダート
電極30をマスクとしてn型不純物例えば砒素をイオン
注入し、活性化して素子領域32にn 型のソース、ド
レイン領域35゜36を形成してnチャンネルMO8L
Sl、 ’i膜製造た(第4図(e)、第5図、第6図
図示)。なお、第5図は第4図(、)の平面図、第6図
は第5図の9−
■−■線に沿う断面図である。図中の37はソース、ド
レイン領域35.36間に形成されたチャンネル領域で
ある。(I) Next, the polycrystalline silicon film 29 is patterned 17 to form a gate electrode 30, and the thin oxide film 28 is selectively etched away using the dirt electrode 30 as a mask to form a dirt oxide film 31. The single-crystal silicon film 22 was patterned to form an island-shaped single-crystal silicon film 34 having an element region 32 and an extension 33W orthogonal to the element region and located below the dart electrode 30. An n-type impurity such as arsenic is ion-implanted and activated to form n-type source and drain regions 35° and 36 in the element region 32 to form an n-channel MO8L.
A Sl, 'i film was produced (illustrated in Figures 4(e), 5, and 6). 5 is a plan view of FIG. 4 (, ), and FIG. 6 is a sectional view taken along line 9------ of FIG. 37 in the figure is a channel region formed between source and drain regions 35 and 36.
しかして、本発明のMO8LSIは第4図(e)、第5
図及び第6図に示す如く、ザファイア基板21上に互に
電気的に分離されたn型のソース。Therefore, the MO8LSI of the present invention is shown in FIGS. 4(e) and 5.
As shown in the figure and FIG. 6, n-type sources are electrically isolated from each other on a zaphire substrate 21.
ドレイン領域35,36、これら領域35゜36間に形
成されたチャンネル領域37及び該チャンネル領域37
とつながり、そのチャンネル幅方向に延びた延出部、9
3 、33からなる略十字形状をなす島状単結晶シリコ
ン膜34を設け、かつ該チャンネル領域37と延出部3
3゜33との間に前記サファイア基板21表面にまで達
する幅狭の酸化体27.27に埋込み、更に前記チャン
ネル領域37と延出部33 、33との上にダート電極
30を該チャンネル領域37を覆うダート酸化膜31を
介して設けた構造のnチャンネルMO8)ランジスタを
備えている。Drain regions 35 and 36, a channel region 37 formed between these regions 35 and 36, and the channel region 37
an extension part 9 connected to the channel width direction and extending in the channel width direction;
An island-like single crystal silicon film 34 having a substantially cross shape consisting of 3 and 33 is provided, and the channel region 37 and the extension portion 3
A dart electrode 30 is embedded in a narrow oxidizer 27.27 reaching the surface of the sapphire substrate 21 between the channel region 37 and the extension portions 33, 33. An n-channel MO8) transistor is provided with a dirt oxide film 31 covering the transistor.
したがって、チャンネル幅方向のr−)酸化膜31の両
端には島状単結晶シリコン膜34の膜10−
厚方向に形成された均一幅の酸化体27.27とつなが
っているため、従来のメサ型島状シリコン膜側面で問題
とがるr−)破壊を解消できる。また、素子分離となる
酸化体2y 、 27 iJ−従来の選択酸化技術のよ
うな高温長時間の熱酸化処理を行なわずに形成できるだ
め、サファイア基板21からのAtのオートドーピング
に起因するバックチャンネル効果を防止できる。更に、
ケ゛−ト電極30は島状単結晶シリコン膜34と略同−
の高さにて形成されているため、断線の問題を解消でき
ると共に、微細化できる。しかも、多結晶シリコンから
なるケ9−ト電極30は素子領域32に対して酸化体2
7.27で電気的に分離された低抵抗の単結晶シリコン
の延出部33.33と直接接触しているため、該ダート
電極30の低抵抗化が可能となる。更に、素子領域間の
距離は酸化体27.27を形成する際の溝部の幅にのみ
決定されるので、フォトエツチング技術による微細/4
’タ一ン寸法の限界にまで縮小でき、高密度のMO8L
SIを得ることができる。Therefore, both ends of the r-) oxide film 31 in the channel width direction are connected to the film 10 of the island-shaped single-crystal silicon film 34 and the oxide film 27, 27 having a uniform width formed in the thickness direction. It is possible to eliminate the problem of r-) destruction on the side surface of the mold island-like silicon film. In addition, the oxidants 2y, 27iJ, which cause element isolation, cannot be formed without performing high-temperature and long-term thermal oxidation treatment as in the conventional selective oxidation technology, and the back channel caused by autodoping of At from the sapphire substrate 21. effect can be prevented. Furthermore,
The gate electrode 30 is approximately the same as the island-shaped single crystal silicon film 34.
Since it is formed at a height of , the problem of disconnection can be solved and miniaturization can be achieved. Moreover, the gate electrode 30 made of polycrystalline silicon has an oxidant 2
Since the dirt electrode 30 is in direct contact with the low-resistance single-crystal silicon extension 33.33 that is electrically isolated at 7.27, the resistance of the dart electrode 30 can be reduced. Furthermore, since the distance between the device regions is determined only by the width of the groove when forming the oxidizer 27, 27, it is possible to
'High-density MO8L can be reduced to the limit of tank dimensions.
SI can be obtained.
なお、上記実施例で説明した方法では絶縁体を溝部形成
後の熱酸化処理により形成したが、これに限定されない
。例えば前記第4図(a) 、 (b)図示の工程で単
結晶シリコン膜22に溝部26を形成し、レジストパタ
ーン24、窒化膜23を除去して単結晶シリコン膜22
表面を露出させる(第7図(、)図示)。つづいて、全
面に(財)−8IO2膜38を溝部26が十分に埋まる
程度に厚く堆積した後(第7図(b)図示)、CVD−
8in2膜38をエツチングして溝部26内にCVD−
8102膜を残すことによりCVD −S s 02体
(絶縁体)39を形成する(第7図(c)図示)方法を
採用してもよい。Note that in the method described in the above embodiment, the insulator is formed by thermal oxidation treatment after forming the groove, but the present invention is not limited thereto. For example, in the steps shown in FIGS. 4(a) and 4(b), a groove 26 is formed in the single crystal silicon film 22, the resist pattern 24 and the nitride film 23 are removed, and the single crystal silicon film 22 is removed.
The surface is exposed (as shown in FIG. 7(, )). Subsequently, after depositing a -8IO2 film 38 on the entire surface so thickly that the trench 26 is sufficiently filled (as shown in FIG. 7(b)), CVD-
Etch the 8in2 film 38 and deposit CVD into the groove 26.
A method may be adopted in which the CVD-S s 02 body (insulator) 39 is formed by leaving the 8102 film (as shown in FIG. 7(c)).
また、上記実施例で説明した方法では溝部の形成をレジ
スト・臂ターンをマスクとしてエツチングすることによ
9行なったが、これに限定さす、以下に示す第8図(、
)〜(f)の方法で形成してもよい。まず、サファイア
基板2ノ上の単結晶シリコン膜22表面の素子領域予定
部に酸化膜4θを介して多結晶シリコン・やターン41
を形成する(第8図(a)図示)。つづいて、熱酸化処
理を施して多結晶シリコンパターン41局囲に厚い熱酸
化膜42を露出する単結晶シリコン膜22表面に薄い熱
酸化膜(図示せず)を形成した後、単結晶シリコン膜2
2表面の薄い熱酸化膜を除去する(第8図(b)図示)
。ひきつづき、全面にAtなどの薄い金属膜43を蒸着
する。この時、多結晶シリコン/’Pターン41周囲の
厚い熱酸化膜420段差部では金属膜43がほとんど蒸
着されないか、他の部分に比較して薄くしか蒸着されな
い。そこで、金属膜43をわずかにエツチングすること
により多結晶シリコンノeターン41の側面に対応する
厚い熱酸化膜42部分の金属膜43を除去して同熱酸化
膜42部分を露出させる(第8図(C)図示)。次いで
、第8図(d)に示す如く熱酸化膜42を除去して該熱
酸化膜42上の金属膜43をリフトオフすると共に、多
結晶シリコンパターン41側面周辺の熱酸化膜が存在し
ていた箇所のシリコン膜22を露出させた後、残存した
金属膜43′及び酸化−13=
膜4θをマスクとして単結晶シリコンM22YcRJE
により除去してサファイア基板21にまで達する溝部4
4.44を形成する(第8図(、)図示)。その後、第
8図(f)に示す如、く、残存金属膜43′及び酸化膜
40を順次除去する。このような方法によれば、多結晶
シリコンパターン41周囲(特に側面)の熱酸化膜42
の膜厚に相当する寸法で溝部44.44を形成できるた
め、1μm以下の細い溝部を容易に実現できる。In addition, in the method described in the above embodiment, the groove was formed by etching using the resist/arm turn as a mask, but this is not limited to this.
) to (f) may be used. First, a polycrystalline silicon layer 41 is formed on the surface of the single crystal silicon film 22 on the sapphire substrate 2 through an oxide film 4θ on the intended element region.
(as shown in FIG. 8(a)). Subsequently, after performing thermal oxidation treatment to form a thin thermal oxide film (not shown) on the surface of the single crystal silicon film 22 exposing the thick thermal oxide film 42 around the polycrystalline silicon pattern 41, a single crystal silicon film 42 is formed. 2
2. Remove the thin thermal oxide film on the surface (as shown in Figure 8(b))
. Subsequently, a thin metal film 43 such as At is deposited on the entire surface. At this time, the metal film 43 is hardly deposited on the stepped portion of the thick thermal oxide film 420 around the polycrystalline silicon/'P turn 41, or is deposited only thinly compared to other portions. Therefore, by slightly etching the metal film 43, the metal film 43 in the thick thermal oxide film 42 portion corresponding to the side surface of the polycrystalline silicon E-turn 41 is removed to expose the thermal oxide film 42 portion (eighth Figure (C) (Illustrated). Next, as shown in FIG. 8(d), the thermal oxide film 42 was removed and the metal film 43 on the thermal oxide film 42 was lifted off, and the thermal oxide film was removed around the sides of the polycrystalline silicon pattern 41. After exposing the silicon film 22 at the location, single crystal silicon M22YcRJE is applied using the remaining metal film 43' and the oxidized -13 = film 4θ as a mask.
Groove portion 4 that reaches the sapphire substrate 21 by being removed by
4.44 (as shown in FIG. 8(, )). Thereafter, as shown in FIG. 8(f), the remaining metal film 43' and oxide film 40 are sequentially removed. According to such a method, the thermal oxide film 42 around the polycrystalline silicon pattern 41 (especially on the side surfaces)
Since the groove portions 44 and 44 can be formed with dimensions corresponding to the film thickness, a narrow groove portion of 1 μm or less can be easily realized.
また、上記実施例の製造方法において、溝部に埋込んだ
絶縁体中もしくは絶縁体と単結晶シリコン膜との界面で
の固定電荷による反転リーク全防止するために、溝部形
成の前もしくは後にその溝部付近の単結晶シリコン膜に
不純物を導入することが望ましい。In addition, in the manufacturing method of the above embodiment, in order to completely prevent reverse leakage due to fixed charges in the insulator embedded in the groove or at the interface between the insulator and the single crystal silicon film, the groove is It is desirable to introduce impurities into the nearby single crystal silicon film.
以上詳述した如く、本発明によればダート絶縁膜の絶縁
破壊耐圧の向上、ダート電極の低抵抗化及び素子の微細
化を達成したMO8型半導体装置を提供できる。As described in detail above, according to the present invention, it is possible to provide an MO8 type semiconductor device that achieves improved dielectric breakdown voltage of the dirt insulating film, lower resistance of the dirt electrode, and miniaturization of the element.
−14=−14=
【図面の簡単な説明】
第1図(a) 、 (b)は従来法による空気絶縁によ
り分離さハたnチャンネルMO8+−ランジスタの製造
工程を示す断面図、第2図は第1図(a) 、 (b)
の製造法による問題点を説明するだめの断面図、第3図
(、) 、 (b)は従来の選択酸化法により分離され
たnチャンネルMO8LSIの製造工程を示す断面図、
第4図(、)〜(e)は本発明の一実施例であるnチャ
ンネルMO8LSI′f:得るための製造工程を示す断
面図、第5図は第4図(、)の平面図、第6図は第5図
のVl −Vl線に沿う断面図、第7図(a)〜(c)
は溝部内に素子分離として作用する絶縁体を埋込む工程
を示す断面図、第8図(1)〜(f)は単結晶シリコン
膜への溝部形成工程を示す断面図である。
21・・・サファイア基板、22・・・単結晶シリコン
膜、23・・・シリコン窒化膜、26.44・・・溝部
、27・・・酸化体、30・・・e−)電極、3ノ・・
・ダート酸化膜、32・・・素子領域、33・・・延出
部、34・・・島状単結晶シリコン膜、35・・・層型
ソース領域、36・・・n 型ドレイン領域、37・・
・チャンネル領域、39−CVD−8in2体。
出願人代理人 弁理士 鈴 江 武 彦@
区六[Brief Description of the Drawings] Figures 1(a) and (b) are cross-sectional views showing the manufacturing process of an n-channel MO8+- transistor separated by air insulation according to the conventional method, and Figure 2 is a cross-sectional view showing the manufacturing process of an n-channel MO8+- transistor separated by air insulation according to the conventional method. ), (b)
3(a) and 3(b) are cross-sectional views showing the manufacturing process of an n-channel MO8LSI separated by the conventional selective oxidation method,
Figures 4(,) to (e) are cross-sectional views showing the manufacturing process for obtaining an n-channel MO8LSI'f, which is an embodiment of the present invention; Figure 5 is a plan view of Figure 4(,); Figure 6 is a sectional view taken along the line Vl-Vl in Figure 5, and Figures 7 (a) to (c).
8 is a cross-sectional view showing the step of embedding an insulator that acts as element isolation in the trench, and FIGS. 8(1) to 8(f) are cross-sectional views showing the step of forming the trench in a single-crystal silicon film. 21...Sapphire substrate, 22...Single crystal silicon film, 23...Silicon nitride film, 26.44...Groove portion, 27...Oxide, 30...e-) Electrode, 3・・・
- Dirt oxide film, 32... Element region, 33... Extension portion, 34... Island-shaped single crystal silicon film, 35... Layered source region, 36... N type drain region, 37・・・
・Channel area, 39-CVD-8in2 units. Applicant's agent Patent attorney Takehiko Suzue @
Ward 6
Claims (1)
分離された一導電型のソース、ドレイン領域、該ソース
、ドレイン領域間に形成されたチャンネル領域、及び該
チャンネル領域からその幅方向に延びた延出部からなる
島状半導体膜と、この島状半導体膜の前記チャンネル領
域と延出部との間に前記絶縁基板表面壕で達するように
設けられた幅狭の絶縁体と、前記チャンネル領域及び延
出部上に少々くともチャンネル領域を覆うダート絶縁膜
を介して設けられたダート電極とを具備したことを特徴
とするMIS型半導体装置。an insulating substrate, a source and drain region of one conductivity type provided on the insulating substrate and electrically isolated from each other, a channel region formed between the source and drain regions, and a region extending from the channel region in the width direction thereof. an island-shaped semiconductor film comprising an extension portion extending to a narrow insulator, and a narrow insulator provided between the channel region and the extension portion of the island-shaped semiconductor film so as to reach the insulating substrate surface trench; A MIS type semiconductor device comprising a dirt electrode provided on the channel region and the extension portion with a dirt insulating film covering at least the channel region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57143725A JPS5933876A (en) | 1982-08-19 | 1982-08-19 | MIS type semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57143725A JPS5933876A (en) | 1982-08-19 | 1982-08-19 | MIS type semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5933876A true JPS5933876A (en) | 1984-02-23 |
Family
ID=15345543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57143725A Pending JPS5933876A (en) | 1982-08-19 | 1982-08-19 | MIS type semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5933876A (en) |
-
1982
- 1982-08-19 JP JP57143725A patent/JPS5933876A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6410959B2 (en) | Method of fabricating semiconductor device | |
US6188104B1 (en) | Trench DMOS device having an amorphous silicon and polysilicon gate | |
JP3078720B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH1197693A (en) | Semiconductor device and manufacturing method thereof | |
JP3152959B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0574806A (en) | Semiconductor device and manufacturing method thereof | |
US5969393A (en) | Semiconductor device and method of manufacture of the same | |
US5872044A (en) | Late process method for trench isolation | |
CN100356579C (en) | Semiconductor device and its manufacturing method | |
US6914307B2 (en) | Semiconductor device and method of manufacturing the same | |
CN107546232A (en) | Semiconductor devices and its manufacture method | |
JPH0586673B2 (en) | ||
US20010000111A1 (en) | Field effect transistor having dielectrically isolated sources and drains and method for making same | |
JP2003168802A (en) | Semiconductor device and manufacturing method thereof | |
US6271064B2 (en) | Thin film transistor and method of manufacturing the same | |
JP2002076113A (en) | Semiconductor device and method of manufacturing the same | |
JPH01130542A (en) | Semiconductor device having interelement isolation region and manufacture thereof | |
JPH10335660A (en) | Semiconductor device and manufacture thereof | |
JPH05114734A (en) | Semiconductor device | |
JPS5933876A (en) | MIS type semiconductor device | |
JPS59168675A (en) | Manufacturing method for semiconductor devices | |
JP2663371B2 (en) | Field effect type semiconductor device and method of manufacturing the same | |
JPS5856436A (en) | Manufacture of semiconductor device | |
JP2531688B2 (en) | Method for manufacturing semiconductor device | |
JPS63314870A (en) | Insulated gate field effect transistor and its manufacturing method |