JPS5932730B2 - temperature measurement circuit - Google Patents
temperature measurement circuitInfo
- Publication number
- JPS5932730B2 JPS5932730B2 JP10279579A JP10279579A JPS5932730B2 JP S5932730 B2 JPS5932730 B2 JP S5932730B2 JP 10279579 A JP10279579 A JP 10279579A JP 10279579 A JP10279579 A JP 10279579A JP S5932730 B2 JPS5932730 B2 JP S5932730B2
- Authority
- JP
- Japan
- Prior art keywords
- operational amplifier
- temperature
- circuit
- voltage
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009529 body temperature measurement Methods 0.000 title claims description 11
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 17
- 238000005259 measurement Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Description
【発明の詳細な説明】
技術分野
本発明は一般的には温度測定回路に関し、特に抵抗体
の温度による抵抗値の変化を利用して温度を電圧に変換
する温度測定回路に関する。DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention generally relates to a temperature measurement circuit, and more particularly to a temperature measurement circuit that converts temperature into voltage by utilizing changes in resistance value of a resistor due to temperature.
従来技術
従来、温度変化による抵抗値の変化を電圧に変換する
回路としては、測温抵抗素子を抵抗ブリッジの一辺に接
続し、測温抵抗素子の或基準値において他要素を調整し
て平衡をとり、その後は測温抵抗素子の抵抗値の変化に
よるブリッジの不平衡のため発生する電圧を計器で読み
取るような回路が用いられていた。Conventional technology Conventionally, as a circuit for converting changes in resistance value due to temperature changes into voltage, a resistance temperature sensor is connected to one side of a resistance bridge, and other elements are adjusted at a certain reference value of the resistance temperature sensor to maintain balance. After that, a circuit was used that used a meter to read the voltage generated due to the unbalance of the bridge due to changes in the resistance value of the temperature-measuring resistance element.
この回路においては、測温抵抗素子は一般に温度測定回
路本体と離れていることが多く、その場合にはリード線
の影響のために測定が不正確になり、それを避けようと
してりード線の断面積の大きいものを用いても、測定誤
差を所定値以下にすることはできないという問題点があ
つた。発明の目的
本発明の目的は、前述の従来型の回路における問題点
にかんがみ、基準電圧設定およびリード線影響打消用演
算増幅器回路を導入するという着想にもとづき、測温抵
抗素子のリード線の影響を打消し、測定誤差を減少させ
ることにある。In this circuit, the resistance thermometer element is generally separated from the main body of the temperature measurement circuit, and in that case, the measurement becomes inaccurate due to the influence of the lead wire. Even if one with a large cross-sectional area is used, there is a problem in that the measurement error cannot be reduced to a predetermined value or less. OBJECT OF THE INVENTION In view of the problems in the conventional circuit described above, the purpose of the present invention is to introduce an operational amplifier circuit for setting the reference voltage and canceling the influence of the lead wire, and to solve the problem of the influence of the lead wire of the resistance temperature sensing element. The objective is to cancel out the errors and reduce measurement errors.
また測定温度と設定された基準温度との差にほぼ比例し
た電圧出力が得られるようにすることをも目的の1つと
する。発明の構成
本発明においては、温度変化に応じて抵抗値を変化す
る測温抵抗素子、該抵抗値変化を電圧変化に変換する第
1演算増幅器回路、および基準電圧設定およびリード線
影響打消用第2演算増幅器回路を設け、第1演算増幅器
および第2演算増幅器の反転入力端子にはそれぞれの定
電圧直流電源の電圧分割点が入力抵抗を介して接続され
、該測温抵抗素子を第1演算増幅器の帰還回路にリード
線を用いて接続し、第2演算増幅器の出力を第1演算増
幅器の出力と直列に接続し、第2演算増幅器の帰還抵抗
の一端を、リード線を用いて測温抵抗素子の第1演算増
幅器の出力側に接続されている一端に接続し、他端を第
2演算増幅器の入力に接続し、該第2演算増・福器の非
反転入力端子と接地電位点の間から出力をとり出すよう
にした温度測定回路が提供される。Another purpose is to obtain a voltage output that is approximately proportional to the difference between the measured temperature and a set reference temperature. Structure of the Invention The present invention includes a temperature-measuring resistance element whose resistance value changes in accordance with temperature changes, a first operational amplifier circuit which converts the resistance value change into a voltage change, and a first operational amplifier circuit for setting a reference voltage and canceling the influence of lead wires. Two operational amplifier circuits are provided, and the voltage dividing point of each constant voltage DC power supply is connected to the inverting input terminal of the first operational amplifier and the second operational amplifier via an input resistor, and the temperature measuring resistance element is connected to the inverting input terminal of the first operational amplifier and the second operational amplifier. Connect to the feedback circuit of the amplifier using a lead wire, connect the output of the second operational amplifier in series with the output of the first operational amplifier, and measure the temperature of one end of the feedback resistor of the second operational amplifier using the lead wire. One end of the resistive element is connected to the output side of the first operational amplifier, the other end is connected to the input of the second operational amplifier, and the non-inverting input terminal of the second operational amplifier/amplifier is connected to the ground potential point. A temperature measurement circuit is provided that takes an output from between.
実施例 図面に本発明の一実施例としての温度測定回路を示す。Example The drawings show a temperature measurement circuit as an embodiment of the present invention.
測温抵抗素子13は第1演算増幅器11の反転入力から
リード線18を用いてその一端へ接続され、測温抵抗素
子13の他端はリード線16および17の一端が接続さ
れ、リード線17はその他端が第1演算増幅器11の出
力へ接続されており、第1の定電圧直流電源6aは第2
演算増幅器19以外の各構成要素の電源として用いられ
るほか、中性点が接地され、電圧を分割して第1演算増
幅器回路7の入力端子40へ供給する。入力端子40と
第1演算増幅器11の反転入力の間には適当な抵抗値を
有する抵抗器12が挿入される。第1演算増幅器11の
非反転入力は接地される。第1演算増幅器11の出力端
子と第2演算増幅器19の出力端子は互に接続されてお
り、前述のリード線16はその他端が基準電圧設定およ
びリード線影響打消用第2演算増幅器回路8の帰還用抵
抗器15の一端へ接続され、第2の定電圧直流電源6b
は第2の演算増幅器19の電源を供給するほか、電圧を
分割して第2の演算増幅器19の反転入カへ通する入力
端子41へ印加され、入力端子41より適当な抵抗器1
4を介して第2演算増幅器19の反転入カへ接続され、
該反転入力はまた抵抗器15の他端へ接続されている。
第2の定電圧直流電源6bの中性点は特定の電位に固定
されておらず、第2演算増幅器19の非反転入力端子に
接続され、この中性点と接地点の間の電圧は第1演算増
幅器回路7、および基準電圧設定およびリード線影響打
消用第2演算増幅器回路8の系統における出力となる。
次にその動作を説明する。The resistance temperature detector 13 is connected to one end of the inverting input of the first operational amplifier 11 using a lead wire 18 , and the other end of the resistance temperature detector 13 is connected to one end of the lead wires 16 and 17 . The other end is connected to the output of the first operational amplifier 11, and the first constant voltage DC power supply 6a is connected to the second
In addition to being used as a power source for each component other than the operational amplifier 19, the neutral point is grounded, and the voltage is divided and supplied to the input terminal 40 of the first operational amplifier circuit 7. A resistor 12 having an appropriate resistance value is inserted between the input terminal 40 and the inverting input of the first operational amplifier 11. The non-inverting input of the first operational amplifier 11 is grounded. The output terminal of the first operational amplifier 11 and the output terminal of the second operational amplifier 19 are connected to each other, and the other end of the lead wire 16 is connected to the second operational amplifier circuit 8 for setting the reference voltage and canceling the influence of the lead wire. Connected to one end of the feedback resistor 15, the second constant voltage DC power supply 6b
In addition to supplying power to the second operational amplifier 19, the voltage is applied to an input terminal 41 that divides the voltage and passes it to the inverting input of the second operational amplifier 19, and is connected to a suitable resistor 1 from the input terminal 41.
4 to the inverting input of the second operational amplifier 19;
The inverting input is also connected to the other end of resistor 15.
The neutral point of the second constant voltage DC power supply 6b is not fixed at a specific potential, but is connected to the non-inverting input terminal of the second operational amplifier 19, and the voltage between this neutral point and the ground point is This is the output in the system of the first operational amplifier circuit 7 and the second operational amplifier circuit 8 for setting the reference voltage and canceling the influence of the lead wire.
Next, its operation will be explained.
第1演算増幅器回路7においてはその増幅度Gは、八1
2
ここにRl3:測温抵抗素子13の抵抗値、Rl2:抵
抗器12の抵抗値である。In the first operational amplifier circuit 7, the amplification degree G is 81
2 Here, Rl3: the resistance value of the temperature-measuring resistance element 13, and Rl2: the resistance value of the resistor 12.
従つて入力端子40に常に一定の直流電圧が印加されて
おれば第1演算増幅器11の出力はGに比例した、すな
わちRl2を一定とすればR,3に比例した出力を得る
ことができる。第2演算増幅器19についても同様に抵
抗器15に比例した増幅度が得られ、入力端子41に入
力端子40と同じ電圧が印加され、抵抗器12および1
4の抵抗値が同一であり、測温抵抗素子のある基準温度
(たとえばO℃に選ぶと都合がよい)における抵抗値に
等しく抵抗器15を設定するならば、該基準温度におい
て両演算増幅器の出力は同レベルとなる。Therefore, if a constant DC voltage is always applied to the input terminal 40, the output of the first operational amplifier 11 can be proportional to G, that is, if Rl2 is constant, an output proportional to R,3 can be obtained. Similarly, for the second operational amplifier 19, an amplification degree proportional to the resistor 15 is obtained, the same voltage as that of the input terminal 40 is applied to the input terminal 41, and the resistor 12 and 1
4 have the same resistance value, and if resistor 15 is set equal to the resistance value of the resistance thermometer at a certain reference temperature (for example, it is convenient to choose 0°C), then the resistance of both operational amplifiers at the reference temperature is The output will be at the same level.
ここにおいて両演算増幅器の出力の差をとるよう出力回
路を直列接続すれば、該基準温度においては出力は打消
してOとなり、基準温度より温度が変化し測温抵抗素子
の抵抗値が変化した場合、ノ
となり所望の関係が得られる。Here, if the output circuits are connected in series to take the difference between the outputs of both operational amplifiers, the outputs will cancel out and become O at the reference temperature, and as the temperature changes from the reference temperature, the resistance value of the resistance thermometer element will change. In this case, the desired relationship is obtained.
ここにkは比例定数、Rtはt℃における測温抵抗素子
の抵抗値、Rrは該基準温度における測温抵抗素子の抵
抗値である。一般に測温抵抗素子は温度測定回路の本体
と離れた場所に設置する場合が多く、そのリード線の抵
抗値が測温抵抗素子の抵抗値に加算され誤差の原因とな
る。Here, k is a proportionality constant, Rt is the resistance value of the temperature-measuring resistance element at t° C., and Rr is the resistance value of the temperature-measuring resistance element at the reference temperature. Generally, the resistance temperature measurement element is often installed at a location separate from the main body of the temperature measurement circuit, and the resistance value of the lead wire is added to the resistance value of the resistance temperature measurement element, causing an error.
本実施例の回路においては、第1演算増幅器11の帰還
回路用の抵抗である測温抵抗素子にはリード線17およ
び18が加算され、第2演算増幅器19の帰還回路用の
抵抗器15にはリード線16と17が加算されるように
なつているから、リード線16,17,18が同一抵抗
値であればその影響は同じであり、両演算増幅器の出力
の差をとることによつてリード線の抵抗値により変換電
圧に生ずる誤差を打消すことができる。発明の効果本発
明によれば、測温抵抗素子のリード線の影響を打消すこ
とができ、測定誤差を減少できる。In the circuit of this embodiment, the lead wires 17 and 18 are added to the temperature measuring resistance element which is the resistance for the feedback circuit of the first operational amplifier 11, and the resistor 15 for the feedback circuit of the second operational amplifier 19 is added. Since lead wires 16 and 17 are added, if lead wires 16, 17, and 18 have the same resistance value, the effect will be the same, and by taking the difference between the outputs of both operational amplifiers, Therefore, errors caused in the converted voltage due to the resistance value of the lead wire can be canceled out. Effects of the Invention According to the present invention, the influence of the lead wire of the temperature-measuring resistance element can be canceled out, and measurement errors can be reduced.
また、測定温度と或設定された基準温度との差にほぼ比
例した電圧出力が得られる。Further, a voltage output approximately proportional to the difference between the measured temperature and a set reference temperature can be obtained.
図面は本発明の一実施例としての温度測定回路の回路図
である。
6a・・・・・・第1の定電圧直流電源、6b・・・・
・・第2の定電圧直流電源、7・・・・・・第1演算増
幅器回路、8・・・・・・基準電圧設定およびリード線
影響打消用第2演算増幅器回路、11・・・・・・第1
演算増幅器、12・・・・・・抵抗器、13・・・・・
・測温抵抗素子、14,15・・・・・・抵抗器、16
,17,18・・・・・・リード線、19・・・・・・
第2演算増幅器、40,41・・・・・・入力端子、4
2・・・・・・第2の定電圧直流電源の中性点、43・
・・・・・出力端子。The drawing is a circuit diagram of a temperature measurement circuit as an embodiment of the present invention. 6a...first constant voltage DC power supply, 6b...
...Second constant voltage DC power supply, 7...First operational amplifier circuit, 8...Second operational amplifier circuit for reference voltage setting and lead wire effect cancellation, 11...・First
Operational amplifier, 12... Resistor, 13...
・Thermometer resistance element, 14, 15...Resistor, 16
, 17, 18... Lead wire, 19...
Second operational amplifier, 40, 41...Input terminal, 4
2... Neutral point of the second constant voltage DC power supply, 43.
...Output terminal.
Claims (1)
該抵抗値変化を電圧変化に変換する第1演算増幅器回路
、および基準電圧設定およびリード線影響打消用第2演
算増幅器回路を設け、第1演算増幅器および第2演算増
幅器の反転入力端子にはそれぞれの定電圧直流電源の電
圧分割点が入力抵抗を介して接続され該測温抵抗素子を
第1演算増幅器の帰還回路にリード線を用いて接続し、
第2演算増幅器の出力を第1演算増幅器の出力と直列に
接続し、第2演算増幅器の帰還抵抗の一端を、リード線
を用いて測温抵抗素子の第1演算増幅器の出力側に接続
されている一端に接続し、他端を、第2演算増幅器の入
力に接続し、該第2演算増幅器の非反転入力端子と接地
電位点の間から出力をとり出すようにしたことを特徴と
する温度測定回路。1. A temperature-measuring resistance element whose resistance value changes according to temperature changes,
A first operational amplifier circuit for converting the resistance value change into a voltage change and a second operational amplifier circuit for setting the reference voltage and canceling the influence of the lead wire are provided, and the inverting input terminals of the first operational amplifier and the second operational amplifier are connected to each other. A voltage dividing point of a constant voltage DC power supply is connected via an input resistor, and the temperature measuring resistance element is connected to a feedback circuit of the first operational amplifier using a lead wire,
The output of the second operational amplifier is connected in series with the output of the first operational amplifier, and one end of the feedback resistor of the second operational amplifier is connected to the output side of the first operational amplifier of the resistance temperature measuring element using a lead wire. The other end is connected to the input of the second operational amplifier, and the output is taken out from between the non-inverting input terminal of the second operational amplifier and the ground potential point. Temperature measurement circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10279579A JPS5932730B2 (en) | 1979-08-14 | 1979-08-14 | temperature measurement circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10279579A JPS5932730B2 (en) | 1979-08-14 | 1979-08-14 | temperature measurement circuit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18309383A Division JPS5985106A (en) | 1983-10-03 | 1983-10-03 | Linearizing circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5627625A JPS5627625A (en) | 1981-03-18 |
JPS5932730B2 true JPS5932730B2 (en) | 1984-08-10 |
Family
ID=14337021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10279579A Expired JPS5932730B2 (en) | 1979-08-14 | 1979-08-14 | temperature measurement circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5932730B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7383727B2 (en) * | 1999-05-20 | 2008-06-10 | Seiko Epson Corporation | Liquid cotainer having a liquid consumption detecting device therein |
WO2004074794A1 (en) * | 2003-02-20 | 2004-09-02 | Ysi Incorporated | Digitally modified resistive output for a temperature sensor |
-
1979
- 1979-08-14 JP JP10279579A patent/JPS5932730B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5627625A (en) | 1981-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5343755A (en) | Strain gage sensor with integral temperature signal | |
US4169243A (en) | Remote sensing apparatus | |
US4109196A (en) | Resistance measuring circuit | |
US3913403A (en) | Temperature measurement with three-lead resistance thermometers by dual constant current method | |
JPS634717B2 (en) | ||
US4196382A (en) | Physical quantities electric transducers temperature compensation circuit | |
US3651696A (en) | Linearized resistance bridge circuit operable in plurality from a common power supply | |
US4528499A (en) | Modified bridge circuit for measurement purposes | |
JPH09105681A (en) | Temperature measurement circuit | |
JPS61210965A (en) | Measuring equipment for low resistance | |
JPS5932730B2 (en) | temperature measurement circuit | |
JPS6248280B2 (en) | ||
JPS6236126Y2 (en) | ||
US4085379A (en) | Amplifier for floating voltage source | |
JPS6347999Y2 (en) | ||
SU625139A1 (en) | Digital temperature measuring device | |
JP3157482B2 (en) | Signal amplifier | |
JPS6221958Y2 (en) | ||
US3495169A (en) | Modified kelvin bridge with yoke circuit resistance for residual resistance compensation | |
JPS625291B2 (en) | ||
SU758022A1 (en) | Device for temperature compensation of hall sensors | |
JPS5937711Y2 (en) | temperature measurement circuit | |
JPH0625701B2 (en) | Temperature detection circuit of 3-wire resistance temperature sensor | |
JPH0120368B2 (en) | ||
JPS5937710Y2 (en) | temperature measuring device |