[go: up one dir, main page]

JPS5930798B2 - Steel plate for welded can containers and its manufacturing method - Google Patents

Steel plate for welded can containers and its manufacturing method

Info

Publication number
JPS5930798B2
JPS5930798B2 JP9688880A JP9688880A JPS5930798B2 JP S5930798 B2 JPS5930798 B2 JP S5930798B2 JP 9688880 A JP9688880 A JP 9688880A JP 9688880 A JP9688880 A JP 9688880A JP S5930798 B2 JPS5930798 B2 JP S5930798B2
Authority
JP
Japan
Prior art keywords
steel plate
layer
welded
plating
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9688880A
Other languages
Japanese (ja)
Other versions
JPS5723091A (en
Inventor
征順 樋口
幸雄 塚本
稔 蒲田
智也 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9688880A priority Critical patent/JPS5930798B2/en
Publication of JPS5723091A publication Critical patent/JPS5723091A/en
Publication of JPS5930798B2 publication Critical patent/JPS5930798B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は製缶用素材として、特に溶接部、塗装後の耐食
性に優れた溶接容器用鋼板及びその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel plate for a welded container, which is a material for can manufacturing, and which has excellent corrosion resistance particularly at welded parts and after painting, and a method for manufacturing the same.

近年、電気抵抗溶接方式の進歩と相俟つて、溶接方式(
例えばスードロニツク溶接)による製缶方式の進歩が著
しい。
In recent years, along with advances in electric resistance welding, welding methods (
For example, can manufacturing methods using Sudronik welding have made remarkable progress.

これらの要求に対処するため溶接部に優れるとともに、
製缶用素材(容器用鋼板)として要求される性能、耐食
性、塗装性能(塗料密着比、塗装後耐食性)、加工性に
優れた、COSIの安い容器用鋼板が要求される。従来
から、容器用鉱板としてSnメッキ鋼板(ブリキ)は、
その美麗な外観、耐食性、カロエ住、塗装性能、半田住
に優れ、容器用鋼板として著しく優れた適性を有してい
る。
In order to meet these demands, we have developed excellent welding areas and
There is a need for a steel sheet for containers with a low COSI and excellent performance, corrosion resistance, painting performance (paint adhesion ratio, corrosion resistance after painting), and workability required as a material for can manufacturing (steel sheet for containers). Traditionally, Sn-plated steel plates (tinplate) have been used as ore plates for containers.
It has a beautiful appearance, excellent corrosion resistance, corrosion resistance, coating performance, and solder resistance, making it extremely suitable as a steel sheet for containers.

而して、その最大の欠点はSn地金の高騰により、その
価格が著しく高いことにある。そのため、Sn付着量の
減少によるCosをDownが計られているが、その場
合、耐食性の低下が問題である。就中、溶接缶用素材と
して低Sn付着量、特にSnメッキ量片面当り2000
〜/イ以下の場合、溶接部及び溶接部近傍の溶接時の熱
影響部は、Fe−Sn系合金層(主として、FeSn、
層)の発達により、メッキ層表面まで合金層が成長し、
高熱に酸化して黒灰色にその表面が変色し溶接部外観が
劣化するとともに、この部分は塗装性能(塗料密着比、
塗装後耐食性)も著しく劣る等の問題を生じている。
However, its biggest drawback is that its price is extremely high due to the soaring price of Sn metal. Therefore, attempts have been made to reduce Cos by reducing the amount of Sn attached, but in this case, a problem arises in that the corrosion resistance deteriorates. In particular, as a material for welded cans, the amount of Sn coating is low, especially the amount of Sn plating is 2000 per side.
In the case of ~/a or below, the weld zone and the heat-affected zone near the weld zone during welding are formed by a Fe-Sn alloy layer (mainly FeSn,
layer), the alloy layer grows to the surface of the plating layer,
The surface becomes blackish gray due to oxidation due to high heat, and the appearance of the welded area deteriorates, and the coating performance (paint adhesion ratio,
There are also problems such as significantly inferior corrosion resistance after painting.

本発明は、このような問題点を解決し、低Snメッキ量
で溶接部が優れ、溶接部における欠陥の発生しない、又
耐食住の優れた容器用鋼板を提供することを目的とする
ものであつて鋼板表面にNiメッキを施し、次いでSn
メッキを行つて直ちにクロメート処理を施すか、或いは
Snメッキ後加熱溶融処理(Melt処理)を行つてか
らクロメート処理を施すことによつて目的を達成せんと
するものである。
The purpose of the present invention is to solve these problems and provide a steel plate for containers that has a low Sn plating amount, has excellent welded areas, is free from defects in the welded areas, and has excellent corrosion resistance. Ni plating is applied to the surface of the steel plate, and then Sn
The objective is to be achieved by performing chromate treatment immediately after plating, or by performing heat melting treatment (Melt treatment) after Sn plating and then performing chromate treatment.

すなわち、本発明のその一は鋼板表面に片面当り30〜
1000mfi1/Tl(:!)Niメツ午層と、10
0〜2000η/dのSnメツ午層と、該表面にCr換
算量で2〜20ワ/イのクロメート被膜層を施してなる
溶接容器用鋼板である。
That is, one aspect of the present invention is to apply a coating of 30 to 30% per side on the steel plate surface.
1000mfi1/Tl (:!) Ni Metsugo Formation and 10
This is a steel plate for a welded container, which has a Sn oxide layer of 0 to 2000 η/d and a chromate coating layer of 2 to 20 w/y in terms of Cr on the surface.

本発明のその二は鋼板表面に兵面当り30〜1000W
19/d(17)Niメツ午と、100〜2000Tn
9/d(7)Snメツ午を施して、温度240〜350
℃、好ましくは250〜300℃で加熱溶融処理を施し
て後、Cr換算量で2〜20〜/dのクロメート被膜層
を形成する溶接容器用鋼板の製造法である。
The second aspect of the present invention is to apply 30 to 1000 W per surface on the steel plate surface.
19/d (17) Ni Metsugo and 100-2000Tn
9/d(7) Apply Sn Metsugo, temperature 240-350
This is a method for manufacturing a steel plate for a welded container, in which a chromate coating layer having a chromium equivalent amount of 2 to 20/d is formed after heating and melting at a temperature of 250 to 300°C.

次に本発明について更に詳細に説明する。Next, the present invention will be explained in more detail.

まず鋼板表面に片面当り30〜1000ワ/Trll好
ましくは100〜500Tf19/イのNiメツ午を施
し、さらに100〜2000▼/イ、好ましくは300
〜1000〜/TIのSnメツキが施される。
First, Ni metal coating is applied to the surface of the steel plate at a rate of 30 to 1,000 W/Trll, preferably 100 to 500 Tf19/I, and further 100 to 2,000 T/I, preferably 300
~1000~/TI Sn plating is applied.

すなわちNi下地処理を施すことによつてSnメツ午量
を減少しても重ねメツキによる相剰効果によるピンホー
ルの生成量が少なくなり耐食件が向上すると共に、Ni
下地メツキ層の存在により、電気抵抗溶接における熱影
響部(溶接部、溶接部近傍)のFe−Sn系合金層(主
としてFesn2合金層)の成長を抑制するため、溶接
部において低Sn付着量の場合にも、前記の如き溶接欠
陥の発生による外観、曲能の劣化を生じない。加熱によ
つて生じるFesn2合金層は従来から知られているよ
うに、柱状結晶でありメツ午層厚さ方向への成長が著し
く低Snメツ午量の場合、メツ午層表面の方向に成長表
面層迄達しやすい。一方、Ni−Sn合金層(主として
、NiSn合金層)は粒状の微細な結晶でありメツ牛層
厚さ方向への成長が少なく平面方向に成長するのでメツ
午層表面迄メツキ層が上記の如く少なくても到達するこ
とがなく、溶接部に欠陥を生ずることがない。また例え
Niメツ午層のi部が溶接により表面層まで拡散しても
Ni金属は耐熱曲、耐酸化曲にすぐれているため、Ni
−Sn合金は上記の欠点を生じにくい。Niメツ午層の
厚さは片面当り30〜1000ワ/イの範囲である。
In other words, by applying Ni undercoat treatment, even if the amount of Sn metal is reduced, the amount of pinholes generated due to the additive effect due to overlapping plating will be reduced, and the corrosion resistance will be improved.
The presence of the base plating layer suppresses the growth of the Fe-Sn alloy layer (mainly Fesn2 alloy layer) in the heat-affected zone (weld zone, near the weld zone) during electric resistance welding. Even in this case, there is no deterioration in appearance and bendability due to the occurrence of welding defects as described above. As is conventionally known, the Fesn2 alloy layer produced by heating is a columnar crystal, and the growth in the thickness direction of the Metsu layer is remarkable.When the Sn amount is low, the growth surface grows in the direction of the Metsu layer surface. Easy to reach the layers. On the other hand, the Ni-Sn alloy layer (mainly the NiSn alloy layer) is a granular fine crystal, and it grows less in the thickness direction of the Metsugi layer and grows in the plane direction, so the Metsuki layer extends to the surface of the Metsugi layer as described above. At the very least, it will never reach the weld and will not cause defects in the weld. In addition, even if the i part of the Ni metal layer diffuses to the surface layer by welding, Ni metal has excellent heat resistance and oxidation resistance, so Ni
-Sn alloys are less prone to the above drawbacks. The thickness of the Ni metal layer ranges from 30 to 1000 W/I per side.

30〜/d未満では、上記の如きピンホール防止効果に
よる耐食曲向上効果及びFesn2合金層の溶接時にお
ける成長抑制効果が得られない。
If it is less than 30 to /d, the effect of improving corrosion resistance due to the pinhole prevention effect and the effect of suppressing the growth of the Fesn2 alloy layer during welding cannot be obtained.

1000η/ゴをこえると、その効果が飽和するととも
に、価格が高くなるので経済的でなるなるので1000
η/イ以下が好ましい。
If it exceeds 1000η/go, the effect will be saturated and the price will be high, so it will not be economical.
η/I or less is preferable.

而して、最適範囲は100〜500η/イである。Sn
メツ午層の厚さは片面当り100〜2000〜/イの範
囲である。
Therefore, the optimum range is 100 to 500 η/a. Sn
The thickness of the Metsugo layer is in the range of 100 to 2000 mm per side.

100η/d以下では、溶接時に低融点Sn金属の効果
による広範な溶接条件の範囲(加圧力、電流等)におけ
る均一な溶接ナゲツトの形成が阻害される。
If it is less than 100 η/d, the formation of uniform weld nuggets in a wide range of welding conditions (pressure force, current, etc.) due to the effect of the low melting point Sn metal during welding is inhibited.

又、Snメツキ層自体のピンホールが多くなり、製缶容
器内部の腐食環境、例えば酸素Freeのクエン酸水溶
液中での鋼板或いはNiに対するSn金属の陽極防食効
果が著しく減じられるので好ましくない。2000〜/
m”をこれると、その効果が飽和するとともに、経済的
でなくなり、本発明のNiメツ午下地処理の意味がなく
なる。
Further, the Sn plating layer itself has many pinholes, which is undesirable because the anodic corrosion protection effect of Sn metal against steel sheets or Ni in the corrosive environment inside the can manufacturing container, for example, in an oxygen-free citric acid aqueous solution, is significantly reduced. 2000~/
If the temperature exceeds m'', the effect becomes saturated and becomes uneconomical, and the Ni metal substrate treatment of the present invention becomes meaningless.

而して、好ましくは300〜1000η/dの範囲が好
ましい。Niメツキは通常のNiメツ午法で行われる。
Therefore, it is preferably in the range of 300 to 1000 η/d. Ni-metsuki is performed using the normal Ni-mettsu method.

メツキ方法、メツ午条件特に規定しない。例えば、 1L−1UJjyυ ν IvvSn メツ午は通常のSnメツ午法で行われる。There are no particular regulations regarding the method or conditions. for example, 1L-1UJjyυ ν IvvSn Metsugo is held using the normal Sn Metsugo method.

特に条件、方式規定しない。No particular conditions or methods are specified.

(例)フエロスタン浴 水洗後従来と同様の方法のクロメート処理を施すか或い
はフラツクスを塗布後加熱溶融処理(Melt処理)2
40〜350℃を行なつてからクロメート処理を行なう
ことによつて構成される。
(Example) After washing with water in Ferrostan bath, perform chromate treatment using the same method as before, or apply flux and heat melt treatment (Melt treatment) 2
It is constructed by carrying out a chromate treatment after carrying out a temperature of 40 to 350°C.

メツ午後或いはMelt処理後のSn表面の酸化物除去
と同時にクロメート被膜を形成させ、Sn酸化物の貯蔵
時の成長を抑制し、塗装性能の向上を、従来のブリキと
同様に行なう。Niメツキ及びSnメツ午を施してから
加熱溶融処理(Melt処理)を施すことにより、Sn
メツキ層の金属光沢の増加による外観向上とNi−Sn
系合金層の生成による更に一層の耐食囲向上を計る4。
加熱溶融処理(Melt処理)は、Snメツキ後水洗し
て、そのままあるいは水溶液フラツクスを塗布して、空
気中或いは非酸加件雰囲気(例えばN2雰囲気)中で2
41〜350℃、好ましくは250℃〜300℃でSn
メツ午層がMeltされる。フラツクスは、浸漬処理又
はスプレイ処理により、例えばメツ午浴がフエロスタン
浴では、フエノールスルフオン酸 2〜109/t(硫
酸に換算して) SnSO42〜109/・t を塗布して、Meltされる。
A chromate film is formed simultaneously with the removal of oxides on the Sn surface after the melt treatment or melt treatment, suppressing the growth of Sn oxides during storage, and improving coating performance in the same way as with conventional tinplate. By performing Ni plating and Sn plating and then heating and melting treatment (Melt treatment), Sn
Improved appearance due to increased metallic luster of plating layer and Ni-Sn
Aiming to further improve the corrosion resistance by forming a system alloy layer 4.
Heat melting treatment (Melt treatment) is performed by washing with water after Sn plating, and then applying it as it is or applying an aqueous solution flux for 2 hours in air or in a non-acidic atmosphere (for example, N2 atmosphere).
Sn at 41-350°C, preferably 250°C-300°C
The Metsugo layer is melted. The flux is melted by dipping or spraying, for example, in the case of a ferrostane bath, by applying phenolsulfonic acid 2 to 109/t (in terms of sulfuric acid) SnSO42 to 109/.t.

而して、本発明の方法において施されるクロメート被膜
量は溶接件の点から著しく重要であり、クロメート被膜
量の厚さはCr換算量で2〜20ヮ/m”の範囲で行わ
れる。
The amount of chromate coating applied in the method of the present invention is extremely important from the viewpoint of welding conditions, and the thickness of the chromate coating is in the range of 2 to 20ヮ/m'' in terms of Cr.

2〜/イ未満では、Snメツ午層の酸化膜抑制効果が小
さく、塗装曲能の向上効果が得られない。
When the ratio is less than 2 to 1, the effect of suppressing the oxide film of the Sn layer is small, and the effect of improving coating curvature cannot be obtained.

20W9/dをこえると、上記効果は良好であるが溶接
時の均一なナゲツトの生成を阻害するので20η/7T
I以下であることが必要であり、好ましくは5〜15η
/d(タロム換算量)の範囲で施される。
If it exceeds 20W9/d, the above effect is good, but it inhibits the formation of uniform nuggets during welding, so 20η/7T
It is necessary that it is less than I, preferably 5 to 15η
/d (talom equivalent amount).

クロメート処理方法として通常のクロメート処理法でよ
く、不可避的不純物として含有されるSO4−2,ct
一等の不純物を含む、クロム酸、クロム酸塩(クロム酸
アンモン、クロム酸ソーダー、クロム酸カリEtc)、
重クロム酸塩(重クロム酸アンモン、重クロム酸ソーダ
ー、重クロム酸カリEtc)の水溶液中で浸漬又は陰極
電解処理を施す。
A normal chromate treatment method may be used as the chromate treatment method, and SO4-2, ct contained as an unavoidable impurity can be used.
Chromic acid, chromate (ammonium chromate, sodium chromate, potassium chromate, etc.) containing first class impurities,
Immersion or cathodic electrolysis treatment in an aqueous solution of dichromate (ammonium dichromate, sodium dichromate, potassium dichromate, etc.).

例えば、濃度10〜1209/t1好ましくは20〜6
09/tの水溶液が使用され、浸漬処理法では温度、常
温〜70℃、好ましくは30〜50℃、処理時間0.5
〜5秒、好ましくは1〜3秒間処理される。
For example, the concentration is 10-1209/t1, preferably 20-6
09/t aqueous solution is used, and in the immersion treatment method, the temperature is normal temperature to 70 °C, preferably 30 to 50 °C, and treatment time 0.5
~5 seconds, preferably 1-3 seconds.

Claims (1)

【特許請求の範囲】 1 鋼板表面に片面当り30〜1000mg/m^2の
Niメッキ層と100〜2000mg/m^2のSnメ
ッキ層とさらにCr換算量で2〜20mg/m^2のク
ロメート被膜層で形成されていることを特徴とする溶接
缶容器用鋼板。 2 鋼板表面に片面当り30〜1000mg/m^2の
Niメッキと、100〜2000mg/m^2のSnメ
ッキを施して温度240〜350℃で加熱溶融処理を施
した後、Cr換算量で2〜20mg/m^2のクロメー
ト被膜層が形成することを特徴とする溶接缶容器用鋼板
の製造法。
[Claims] 1. Ni plating layer of 30 to 1000 mg/m^2 per side, Sn plating layer of 100 to 2000 mg/m^2, and further chromate of 2 to 20 mg/m^2 in terms of Cr on the surface of the steel plate. A steel plate for welded can containers, characterized by being formed of a coating layer. 2. After applying Ni plating of 30 to 1000 mg/m^2 and Sn plating of 100 to 2000 mg/m^2 per side on the steel plate surface and performing heat melting treatment at a temperature of 240 to 350 °C, the amount of Cr converted to 2 A method for manufacturing a steel plate for welded can containers, characterized in that a chromate coating layer of ~20 mg/m^2 is formed.
JP9688880A 1980-07-17 1980-07-17 Steel plate for welded can containers and its manufacturing method Expired JPS5930798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9688880A JPS5930798B2 (en) 1980-07-17 1980-07-17 Steel plate for welded can containers and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9688880A JPS5930798B2 (en) 1980-07-17 1980-07-17 Steel plate for welded can containers and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5723091A JPS5723091A (en) 1982-02-06
JPS5930798B2 true JPS5930798B2 (en) 1984-07-28

Family

ID=14176921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9688880A Expired JPS5930798B2 (en) 1980-07-17 1980-07-17 Steel plate for welded can containers and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5930798B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953692A (en) * 1982-09-21 1984-03-28 Nippon Kokan Kk <Nkk> Manufacture of tin plate by electroplating
JPS60128285A (en) * 1983-12-13 1985-07-09 Toyo Kohan Co Ltd Tinned steel sheet and its manufacture
JPS60208494A (en) * 1984-03-31 1985-10-21 Kawasaki Steel Corp Surface-treated steel sheet for seam welding can having excellent weldability
NL189310C (en) * 1984-05-18 1993-03-01 Toyo Kohan Co Ltd COATED STEEL SHEET WITH IMPROVED WELDABILITY AND METHOD FOR MANUFACTURING.
JPH0653955B2 (en) * 1984-12-12 1994-07-20 新日本製鐵株式会社 Surface-treated steel plate for DI can
JPS624879A (en) * 1985-07-01 1987-01-10 Nippon Steel Corp Steel sheet coated with sn-base multilayered film and having superior corrosion resistance, weldability and paintability and its manufacture
AU565129B2 (en) * 1985-07-23 1987-09-03 Nippon Steel Corporation Steel sheet with ni and sn coatings for improved corrosion protection
JPS634091A (en) * 1986-06-23 1988-01-09 Kawasaki Steel Corp Surface treated steel sheet for producing can
JPH0826477B2 (en) * 1987-05-08 1996-03-13 新日本製鐵株式会社 Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion
JPH02153094A (en) * 1988-12-02 1990-06-12 Nippon Steel Corp Method for manufacturing welded can materials with excellent electrical resistance seam weldability, corrosion resistance, and coating performance
JP2527086B2 (en) * 1990-07-30 1996-08-21 日本鋼管株式会社 Ni-Sn plated steel sheet for bright welding cans
JP2739409B2 (en) * 1993-02-22 1998-04-15 川崎重工業株式会社 Manufacturing method of corrosion and wear resistant multilayer metal coating
JP3669877B2 (en) 1999-09-02 2005-07-13 株式会社村田製作所 Electronic component manufacturing method and electronic component

Also Published As

Publication number Publication date
JPS5723091A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JPS6358228B2 (en)
JPS59598B2 (en) Tampered steel plate with excellent weldability
JPH0140118B2 (en)
JPS5932556B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting
JPH08269733A (en) Anti-rust steel plate for fuel tank
JPS63277794A (en) Manufacturing method of Sn-based multilayer plated steel sheet with excellent paint adhesion
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JPS5947040B2 (en) Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JPH06293996A (en) Welding can material with high-speed seam weldability, corrosion resistance, heat resistance, and paint adhesion
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPH0431039B2 (en)
JPH11106953A (en) Steel plate for welded cans with excellent weldability, corrosion resistance and film adhesion
JPS6123786A (en) Manufacturing method for container steel sheets with excellent corrosion resistance
JPS61270391A (en) Steel sheet for fuel vessel
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS6379994A (en) Production of steel sheet for welded can
JPS6396294A (en) Method for manufacturing can steel sheets with excellent weldability and corrosion resistance
JPH0241594B2 (en)
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH05106091A (en) Welding can material with excellent seam weldability and paint adhesion
JPH041074B2 (en)
JPH06173086A (en) Welding can material with high-speed seam weldability, corrosion resistance, heat resistance, and paint adhesion
JPH0241593B2 (en)
JPH06116790A (en) Welding can material with high-speed seam weldability, pitting corrosion resistance, heat resistance, and paint adhesion