[go: up one dir, main page]

JPS5928525A - Manufacture of cube-on-edge silicon steel - Google Patents

Manufacture of cube-on-edge silicon steel

Info

Publication number
JPS5928525A
JPS5928525A JP58093325A JP9332583A JPS5928525A JP S5928525 A JPS5928525 A JP S5928525A JP 58093325 A JP58093325 A JP 58093325A JP 9332583 A JP9332583 A JP 9332583A JP S5928525 A JPS5928525 A JP S5928525A
Authority
JP
Japan
Prior art keywords
cube
silicon steel
edge
steel
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093325A
Other languages
Japanese (ja)
Inventor
ロバ−ト・フレデリツク・ミラ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunbeam Oster Co Inc
Original Assignee
Allegheny Ludlum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allegheny Ludlum Industries Inc filed Critical Allegheny Ludlum Industries Inc
Publication of JPS5928525A publication Critical patent/JPS5928525A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はキューブ・オン・エツジ方向性ケイ素鋼の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing cube-on-edge grain-oriented silicon steel.

シート状のキューブ・オン・エラ:)(cube−on
−edge)方向性ケイ素鋼は変圧器コアを含めて種々
の血気機器用に知られている。キューブ・オン・エツジ
 ケイ素鋼についてはこの合金はキューブ・オン・エツ
ジ位置と称せられる(110)[0011位置に二次再
結晶の特徴がある。シート状のこの相料は圧延の方向に
磁化容易の方向を有する。この材料の用途、特に変圧器
コアの製造に用いた場合には、鉄ロスが減少するにつれ
て電気エネルギー消費が減少するからこの材料にはワッ
トロスが低いことが要求される。
Sheet-like cube-on gills :) (cube-on
-edge) Grain-oriented silicon steels are known for use in a variety of hemodynamic equipment, including transformer cores. Cube-on-Edge For silicon steels, this alloy has a secondary recrystallization feature at the (110)[0011 position, referred to as the cube-on-edge position. This phase material in sheet form has a direction of easy magnetization in the direction of rolling. Applications of this material, particularly when used in the manufacture of transformer cores, require that the material have low watt losses, since electrical energy consumption is reduced as iron losses are reduced.

したがって本発明の目的はキューブ・オン・エツジ ケ
イ素鋼の製造におり、−て低減したワットロスが得られ
る方法を提供することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for the production of cube-on-edge silicon steels which results in reduced watt losses.

本発明のこの目的及び他の目的は以下の説明および具体
例によって十分理解される。
This and other objects of the invention will be better understood from the following description and specific examples.

本茜明の実施に当っては本発明に係るキューブ・オン・
エツジ ケイ素は従来通り熱間圧延および中間焼なまし
をともなう冷間圧延によって製造される。その後この鋼
は組社規なましをうけて(100)[001)位置に所
望の二次再結晶を生じる。
When carrying out Akanemei, the cube-on according to the present invention
Edge silicon is conventionally produced by hot rolling and cold rolling with intermediate annealing. This steel is then subjected to company standard smoothing to produce the desired secondary recrystallization at the (100)[001) position.

本発明によれば、この最終組絨焼なましの前または最終
組餓焼なまし後のいずれでも、この鋼を好ましくは[0
011結晶方向に本質的に直角の方向においてセレーシ
ョング(serrating)することによって鋼のワ
ットロスを低減できることが判明した。このセレーショ
ン(5erration)の深さは代表的には0.02
5mm(0,001インチ)であるが範囲は0.05な
いし0.0057111 (0,002ないし0.00
02インチ)にできる;そしてセレーションからセレー
ションまでの間隔または距離は5,08ないし12.’
7+ruCO,2ないし0.5インチ)の範凹内でよい
。本発明の方法はキューブ・オン・エツジ ケイ素鋼一
般に応用できるが特に以下に示す重t<の組成物に適し
ている: 組成(重量%) し 実施例として、最終焼なら評5x−14ケイ素鋼組成物
の0.259+++m(10,2ミル)厚の12−スト
リップエプスタイン(Epstein)パック5組を試
験のため準備した。最終焼ならししたパックの2組は比
較試料(比較サンプル1及び比較サンプル2)として使
用し、残り6組は本発明の方法に従ってセレーションを
与える1こめに圧延方向および鋼の〔001〕結晶方向
に本質的に直角にスクライブ(Scribe) サレ7
=。セレーションとセレーションの間隔は10++oa
と5順の間で変化させた。全試料Y 水300 CC,
M g O46’9 オヨヒHa Bo32gの水性ス
ラリーで被穆し水素中1177℃(2150下)の温度
で12時間焼なましした。
According to the invention, the steel is preferably [0
It has been found that the watt loss of the steel can be reduced by serrating in a direction essentially perpendicular to the 011 crystal direction. The depth of this serration is typically 0.02
5 mm (0,001 inch), but the range is 0.05 to 0.0057111 (0,002 to 0.00
02 inches); and the spacing or distance from serration to serration can be from 5.08 to 12.0 inches. '
7+ruCO, 2 to 0.5 inches). The method of the present invention is applicable to cube-on-edge silicon steels in general, but is particularly suitable for compositions with weight t<: Five 10,2 mil thick 12-strip Epstein packs of the composition were prepared for testing. Two sets of the final normalized packs were used as comparative samples (Comparative Sample 1 and Comparative Sample 2), and the remaining six sets were serrated according to the method of the present invention in the rolling direction and [001] grain direction of the steel. Scribe essentially at right angles to Sale 7
=. The spacing between serrations is 10++ oa
and 5-order. All sample Y water 300cc,
M g O46'9 Oyohi Ha Bo was amalgamated with an aqueous slurry of 32 g and annealed in hydrogen at a temperature of 1177° C. (below 2150° C.) for 12 hours.

焼なましのあと、磁気特性を測定した。After annealing, the magnetic properties were measured.

ヒー)  154684−IA 間隔7.5mm  1896     12,400 
     0.604(238刈0  )  (1,5
6X10  )(133)*0内数字は国際車位すなわ
ちウェーバ−/アンはア回数/mである。
Heat) 154684-IA Spacing 7.5mm 1896 12,400
0.604 (238 cut 0) (1,5
6×10)(133)*0 The number in the box is the international vehicle position, that is, Weber/Ann is the number of times/m.

上のデータかられかるようにセレートされたサンプルは
比較サンプルよりもワットロスが少ないことを示してい
る。
The above data shows that the serrated sample has less watt loss than the comparison sample.

上述の各パックからの8ストリツプについて単一ストリ
ップ試験を行いセレートしたストリップのワットロスを
張力がさらに低下させるかどうかを判定した。試験では
、先ず張力をかけないでワットロスを測定してから各パ
ックからの8ストリツプに応力皮膜を施し、張力発生用
コアプレートを用いて張力をかけて試験した後ワットロ
スを測定した。8枚のストリップに対するワットロスの
平均は以下の通りである: このデータかられかるように、セレーテイング   も
本発明のと組合せて応力を加えるとワットロスの低下に
関してセレーテイングだけの場合よりもさらに改善され
る。
A single strip test was performed on eight strips from each pack described above to determine whether tension further reduced the watt loss of the serrated strips. In the test, the watt loss was first measured without applying tension, then the stress coating was applied to eight strips from each pack, and the watt loss was measured after applying tension using a tension generating core plate. The average watt loss for the eight strips is as follows: As can be seen from this data, serrating, when combined with the stress of the present invention, is even more improved than serrating alone in reducing watt loss. Ru.

慣用のMgO+0.75B被覆して組織焼なましされ 
  特許出願人ている1組の20−ストリップエプスタ
インパック(ヒー) 156525−3アウト)を圧延
方向に直角にZ5朋間隔で金属スクライプによってセレ
ートした。スクライブ線をつけた後、各ストリップは水
素中1177℃(2150°F)で8時間応力   代
 期 人除去され1こ。測定された磁気特性は以下の通
りであった。
The structure was annealed with conventional MgO + 0.75B coating.
A set of 20-strip Epstein packs (Hee 156525-3 out) of the applicant's patent application were serrated with a metal scribe at Z5 spacing perpendicular to the rolling direction. After applying the scribe lines, each strip was subjected to an 8-hour stress test in hydrogen at 1177°C (2150°F). The measured magnetic properties were as follows.

セレーテイ 1940      13,440   
   0.651ンダの前 (244XlO)   (
1,70X10  )  (1,44)セレーテイ 1
919      16300     0.609ン
グの後 (2/llXl0  )  (21)5X10
  )   (1,34)上記かられかるようにセレー
テイングが仕上げ組織焼なましの前または後のいずれに
実施されズ方法は効果的である。
Seretei 1940 13,440
Before 0.651nda (244XlO) (
1,70X10) (1,44) Ceretei 1
919 16300 After 0.609 (2/llXl0) (21) 5X10
(1, 34) As shown above, the method is effective if serrating is carried out either before or after the finish annealing.

アレゲニー・ラド9ラム・スチール・ コーポレーション (外4名)allegheny rad 9 ram steel corporation (4 other people)

Claims (3)

【特許請求の範囲】[Claims] (1)  熱間圧延、中間焼なましをともなう冷間圧延
および仕上げ組絨焼なましの諸工程を含んで、ワットロ
スを低減したキューブ・オン・エツジケイ素鋼の製造法
圧おいて、組社規なまし後鎖鋸をセレートすることを特
徴とするケイ素鋼の製造方法。
(1) A manufacturing method for cube-on-edge silicon steel that reduces watt loss, including hot rolling, cold rolling with intermediate annealing, and final assembling annealing. A method for manufacturing silicon steel, which comprises serrating a chain saw after standardizing.
(2)鉄鋼が[001]結晶方向に本り的に直角である
方向にセレートされる、特許請求の範囲第(1)1項に
記載の方法。
(2) The method according to claim 1, wherein the steel is serrated in a direction essentially perpendicular to the [001] crystal direction.
(3)  セレートして深さ0.05ないし0.005
龍巾0.25ないし0.0025朋のセレーションを4
え、該セレーションは各々5.0.8ないり、12.7
朋の範囲内の間隔である、特許請求の範囲第(1)項に
記載の方法。
(3) Serrate to a depth of 0.05 to 0.005
Dragon width 0.25 to 0.0025 serrations 4
Eh, the serrations are 5.0.8 or 12.7, respectively.
A method according to claim 1, wherein the interval is within the range of the present invention.
JP58093325A 1982-07-19 1983-05-26 Manufacture of cube-on-edge silicon steel Pending JPS5928525A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39993782A 1982-07-19 1982-07-19
US399937 1982-07-19

Publications (1)

Publication Number Publication Date
JPS5928525A true JPS5928525A (en) 1984-02-15

Family

ID=23581547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093325A Pending JPS5928525A (en) 1982-07-19 1983-05-26 Manufacture of cube-on-edge silicon steel

Country Status (6)

Country Link
EP (1) EP0099618A3 (en)
JP (1) JPS5928525A (en)
KR (1) KR860000532B1 (en)
BR (1) BR8301546A (en)
CA (1) CA1197759A (en)
PL (1) PL242746A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117284A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Production of low-iron loss grain-oriented electromagnetic steel sheet
JPS61117218A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Manufacturing method of low iron loss unidirectional electrical steel sheet
JPS61174329A (en) * 1985-01-26 1986-08-06 Nippon Steel Corp Strain relief annealing method for grain-oriented electrical steel sheets
JPS6286175A (en) * 1985-10-14 1987-04-20 Nippon Steel Corp Processing method for grain-oriented electrical steel sheets
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate
JPH057397U (en) * 1991-02-05 1993-02-02 株式会社西原環境衛生研究所 Contact aeration sewage treatment equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3539731C2 (en) * 1984-11-10 1994-08-04 Nippon Steel Corp Grain-oriented electrical steel sheet having stable stress-relieving magnetic properties and method and apparatus for making the same
US4533409A (en) * 1984-12-19 1985-08-06 Allegheny Ludlum Steel Corporation Method and apparatus for reducing core losses of grain-oriented silicon steel
US4728083A (en) * 1985-12-16 1988-03-01 Allegheny Ludlum Corporation Method and apparatus for scribing grain-oriented silicon steel strip
JPH0615694B2 (en) * 1987-04-17 1994-03-02 川崎製鉄株式会社 Iron loss reduction method for grain-oriented silicon steel sheet
US5146063A (en) * 1988-10-26 1992-09-08 Kawasaki Steel Corporation Low iron loss grain oriented silicon steel sheets and method of producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE626673C (en) * 1932-02-13 1936-07-01 Hoesch Koeln Neuessen Akt Ges Process and device for the production of coarse-grained, recrystallized strips or sheets
DE1804208B1 (en) * 1968-10-17 1970-11-12 Mannesmann Ag Process for reducing the watt losses of grain-oriented electrical steel sheets, in particular of cube-texture sheets
US3833431A (en) * 1971-12-09 1974-09-03 Westinghouse Electric Corp Process for continuously annealed silicon steel using tension-producing glass
JPS5423647B2 (en) * 1974-04-25 1979-08-15
JPS585968B2 (en) * 1977-05-04 1983-02-02 新日本製鐵株式会社 Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117284A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Production of low-iron loss grain-oriented electromagnetic steel sheet
JPS61117218A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Manufacturing method of low iron loss unidirectional electrical steel sheet
JPS6253579B2 (en) * 1984-11-10 1987-11-11 Nippon Steel Corp
JPS6254873B2 (en) * 1984-11-10 1987-11-17 Nippon Steel Corp
JPS61174329A (en) * 1985-01-26 1986-08-06 Nippon Steel Corp Strain relief annealing method for grain-oriented electrical steel sheets
JPS6286175A (en) * 1985-10-14 1987-04-20 Nippon Steel Corp Processing method for grain-oriented electrical steel sheets
JPS636611B2 (en) * 1985-10-14 1988-02-10 Nippon Steel Corp
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate
JPH0569284B2 (en) * 1986-02-03 1993-09-30 Nippon Steel Corp
JPH057397U (en) * 1991-02-05 1993-02-02 株式会社西原環境衛生研究所 Contact aeration sewage treatment equipment

Also Published As

Publication number Publication date
PL242746A1 (en) 1984-03-12
CA1197759A (en) 1985-12-10
EP0099618A3 (en) 1984-06-13
KR840004177A (en) 1984-10-10
KR860000532B1 (en) 1986-05-08
EP0099618A2 (en) 1984-02-01
BR8301546A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US3948786A (en) Insulative coating for electrical steels
US4046602A (en) Process for producing nonoriented silicon sheet steel having excellent magnetic properties in the rolling direction
JPS5928525A (en) Manufacture of cube-on-edge silicon steel
US3996073A (en) Insulative coating for electrical steels
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPH05279864A (en) Method for forming insulating coating on grain-oriented silicon steel sheet
US2282163A (en) Treatment of silicon-iron alloys
JPS6059045A (en) Manufacturing method of unidirectional silicon steel plate with low iron loss value
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JPS6240705A (en) Method of improving formation of base film for silicon steelby adjusting winding tension
JPS62250122A (en) Reduction of iron loss of directional silicon steel
JPH04325629A (en) Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
EP0074715B1 (en) Method for producing oriented silicon steel having improved magnetic properties
US3650851A (en) Gallium containing cold-rolled transformer laminations and sheets with a cubic structure
US4548655A (en) Method for producing cube-on-edge oriented silicon steel
US4186038A (en) Method of producing silicon-iron sheet material with boron addition, and product
JPS5941488B2 (en) Manufacturing method of unidirectional electrical steel sheet with high magnetic flux density
JP2007056303A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
US3640780A (en) Method of producing electrical sheet steel with cube texture
JPS5970722A (en) Production of electrical sheet having small anisotropy
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPH0371511B2 (en)
JPS5928523A (en) Cube-on-edge oriented silicon steel and manufacture
JPS613838A (en) Manufacture of electromagnetic steel sheet having small anisotropy
JP3455019B2 (en) Unidirectional electrical steel sheet for instruments with excellent low-field magnetic properties and manufacturing method