JPS5928282B2 - Frequency band shared radar antenna - Google Patents
Frequency band shared radar antennaInfo
- Publication number
- JPS5928282B2 JPS5928282B2 JP6357877A JP6357877A JPS5928282B2 JP S5928282 B2 JPS5928282 B2 JP S5928282B2 JP 6357877 A JP6357877 A JP 6357877A JP 6357877 A JP6357877 A JP 6357877A JP S5928282 B2 JPS5928282 B2 JP S5928282B2
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- frequency band
- tracking
- signal
- radar antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/001—Crossed polarisation dual antennas
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
【発明の詳細な説明】
この発明は回転対称な反射鏡系と一次放射器系から成る
レーダ用アンテナで、追尾目標から放射される任意の偏
波の電波の到来方向を追尾する周波数帯の他に、クロス
ダイポールアンテナを素子アンテナとする一次放射器系
をもつ他の周波数帯を共用するレーダ用アンテナに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is a radar antenna consisting of a rotationally symmetrical reflector system and a primary radiator system, and is capable of tracking the direction of arrival of radio waves of arbitrary polarization emitted from a tracking target. The present invention relates to a radar antenna that shares another frequency band and has a primary radiator system using a cross dipole antenna as an element antenna.
従来このような目的のアンテナとしては、第1図に示す
ように、グレゴリアン形式のアンテナで、追尾を行なう
周波数帯で5ホーンアンテナを一次放射器系として使用
し、周辺の4個のホーンの出力を内因Cに示すような信
号処理回路によって合成し、Az面、IIJ?面の追尾
角度信号を取出すと共に、クロスダイポールアンテナを
副反射鏡面上に同図すのように配置し、他の周波数帯に
も共用する形のアンテナがあった。Conventional antennas for this purpose are Gregorian type antennas, as shown in Figure 1, in which a five-horn antenna is used as the primary radiator system in the tracking frequency band, and the output of the four surrounding horns is are synthesized by a signal processing circuit as shown in internal factor C, and the Az plane, IIJ? In addition to extracting the tracking angle signal of the surface, there was an antenna that placed a cross dipole antenna on the sub-reflector surface as shown in the figure, and used it for other frequency bands as well.
この形式のアンテナにおいては第1図すに示されている
5ホーン3の素子ホーンA、B、C,D、Sの出力を同
図Cに示すように、ハイブリッド回路6,6/で合成し
てAz方向、EA?方向の角度信号をAz端子1端子で
得る。In this type of antenna, the outputs of the horns A, B, C, D, and S of the five horns 3 shown in Figure 1 are combined by a hybrid circuit 6, 6/ as shown in Figure C. AZ direction, EA? A direction angle signal is obtained from one Az terminal.
次にE717端子の信号の位相を位相器7によって90
°進め、Az端子の信号とハイブリッド回路6“によっ
て合成し、一台の受信機8によって増巾する。Next, the phase of the signal at the E717 terminal is changed to 90 by the phase shifter 7.
The signal from the Az terminal is combined with the signal from the Az terminal by the hybrid circuit 6'', and amplified by one receiver 8.
そしてErr端子に現われる信号の実数部をAz方向の
追尾用角度信号、虚数部をE7方向の追尾用角度信号と
している。The real part of the signal appearing at the Err terminal is used as a tracking angle signal in the Az direction, and the imaginary part is used as a tracking angle signal in the E7 direction.
追尾目標から到来する任意の偏波の電波を追尾するため
に、ホーン1 1、
A、B、C,D、Sの後に固液長板4,4′、1波長板
5が設けられており、Sum端子に現われる信1、
号が最大となるように7波長板4,4′をホーンA。In order to track radio waves of arbitrary polarization arriving from the tracking target, solid-liquid long plates 4, 4' and a one-wavelength plate 5 are provided after the horn 11, A, B, C, D, and S. , connect the seven-wavelength plates 4 and 4' to the horn A so that the signals 1 and 1 appearing at the Sum terminals are maximized.
B、C,D、Sについて同時に同じだけ回転する。B, C, D, and S rotate by the same amount at the same time.
このような構造のアンテナにおいては、受信機が1台で
済むという長所があるが、Az端子、El端子に現われ
る信号の位相が到来電波の偏波方向の変化によって変動
するため、Err端子に現われる信号の位相が変化し、
例えば実際にはEl端子に信号がないのにもかかわらず
、Az端子の信号に虚数部分が現われるため、見かけ上
E1方向の追尾用角度信号が検出される。An antenna with this structure has the advantage of requiring only one receiver, but since the phase of the signal appearing at the Az and El terminals varies depending on the change in the polarization direction of the incoming radio wave, the phase of the signal appearing at the Err terminal changes. The phase of the signal changes,
For example, even though there is actually no signal at the El terminal, an imaginary part appears in the signal at the Az terminal, so that an apparent tracking angle signal in the E1 direction is detected.
いわゆるクロスカップリングが見られ、追尾動作が不安
定になるという欠点があった。There was a drawback that so-called cross-coupling was observed, making the tracking operation unstable.
この発明はこのような欠点を除去するために、副反射鏡
上のクロスダイポールの配置を、第2図に示すように、
その一方の素子が追尾信号を取り出す各素子ホーンの中
心と、反射鏡系の中心軸を含む面に平行となるようにし
たもので、その目的はクロスカップリングの発生しない
周波数帯共用レーダ用アンテナを提供することを目的と
する。In order to eliminate such drawbacks, this invention arranges the cross dipole on the sub-reflector as shown in FIG.
One of the elements is parallel to the plane that includes the center of each element horn that extracts the tracking signal and the central axis of the reflector system, and its purpose is to create a frequency band radar antenna that does not cause cross-coupling. The purpose is to provide
その動作を図にしたがって説明する。Its operation will be explained according to the diagram.
第3図は副反射鏡上にクロスダイポールが設けられてい
る場合の副反射鏡面上の電界分布を示したもので、aは
クロスダイポールの素子が入射波の偏波方向に45°の
角度をなす場合、bは一方の素子が偏波に平行な場合を
示す。Figure 3 shows the electric field distribution on the sub-reflector surface when a cross dipole is provided on the sub-reflector. In this case, b indicates the case where one element is parallel to the polarization.
クロスダイポールの素子に平行な偏波成分が鏡面に到達
し得ないとすると、第3図に示すようにaの場合には交
差偏波成分が発生し、bの場合には発生しない。Assuming that polarized components parallel to the elements of the crossed dipole cannot reach the mirror surface, a crossed polarized component is generated in case a and not generated in case b, as shown in FIG.
実際にはクロスダイポールの素子に平行な成分も、鏡面
に到達するが、その位相は垂直な成分とは異なるので、
やはりaの場合には交差偏波成分が発生し、bの場合は
発生しない。In reality, the component parallel to the cross dipole element also reaches the mirror surface, but its phase is different from the perpendicular component, so
Again, a cross-polarized component is generated in case a, but not in case b.
また第4図は追尾に用いる一次放射器系の励振とアンテ
ナの放射電界の関係を示したもので、aに示すように垂
直偏波Vで励振する場合、ホーンAにおいては、この励
振偏波成分はホーンの中心と反射鏡系の中心軸を含む面
に平行な成分子1 とそれに直交する成分c1に分解で
きる。Figure 4 shows the relationship between the excitation of the primary radiator system used for tracking and the radiation electric field of the antenna. When excitation is performed with vertically polarized wave V as shown in a, horn A The component can be decomposed into a component element 1 parallel to the plane containing the center of the horn and the central axis of the reflecting mirror system, and a component c1 perpendicular to the plane.
またホーンBについても同様にr2.C2に分解できる
。Similarly, regarding horn B, r2. Can be decomposed into C2.
Az面内の中心よりある角度■ずれた方向の放射電界は
同図すに示すように、ホーンA、Bの偏波成分子1.r
2 、C1r C2に対応してR1,R2,C1,C。As shown in the figure, the radiated electric field in a direction deviated by a certain angle from the center in the Az plane is caused by the polarization components 1. of horns A and B. r
2, C1r R1, R2, C1, C corresponding to C2.
となる。becomes.
ホーンAをrl 方向の偏波で励振した場合、第2図の
この発明の構成においては、クロスダイポールの一方の
素子が入射偏波に平行なので第3図に示したように交差
偏波成分は発生せず、したがって第4図の放射電界成分
R1がAz面に成す角αは45°に近い。When horn A is excited with polarized waves in the rl direction, in the configuration of the present invention shown in FIG. 2, one element of the cross dipole is parallel to the incident polarized wave, so the cross polarized component is generated as shown in FIG. Therefore, the angle α formed by the radiation electric field component R1 in FIG. 4 with the Az plane is close to 45°.
同様にしてC1がAz面に対してなす角βも45°に近
い。Similarly, the angle β that C1 makes with the Az plane is also close to 45°.
R2,C2のAz面に対して成す角は、R1,C1がA
z面に対して成す角に等しい。The angle that R2 and C2 make with the Az plane is that R1 and C1 are A
It is equal to the angle formed with the z-plane.
第4図Cは水平偏波りで励振した場合を示し、その場合
の■方向の放射電界をdに示す。FIG. 4C shows the case of excitation with horizontal polarization, and the radiated electric field in the ■ direction in that case is shown in d.
追尾用のAz倍信号おいては、ホーンA、Bの信号を合
成して得られるので、第4図すの合成電界ベクトルVと
dの合成電界ベクトルHはα。Since the Az-multiplied signal for tracking is obtained by combining the signals of horns A and B, the combined electric field vector H of the combined electric field vectors V and d in FIG. 4 is α.
βが45°に近いことより、大きさ、位相共はぼ等しい
。Since β is close to 45°, the magnitude and phase are almost equal.
ホーンC,Dについても全く同様にして励振偏波v、h
に対する放射電界ベクトルの大きさ、位相共等しいこと
が容易に分る。Excitation polarizations v, h are obtained in exactly the same manner for horns C and D.
It can be easily seen that the magnitude and phase of the radiation electric field vectors are equal to each other.
結局副反射鏡面上のクロスダイポールを、一方の素子が
r偏波の方向に平行となるように配置すれば、励振偏波
■。After all, if the cross dipole on the sub-reflector surface is arranged so that one element is parallel to the r-polarized direction, the excitation polarization (■) will be obtained.
hに対してAz倍信号振巾、位相は余り変化せず、した
がって任意の偏波に対しても変化が少ない。The Az-fold signal amplitude and phase do not change much with respect to h, and therefore change little with respect to arbitrary polarization.
El信号についても同様のことがいえるので、本発明に
よって簡単な一受信機方式を用い、クロスダイポールを
用いる他の周波数帯を共用してもクロスカップリングの
少ないレーダ用アンテナが実現できる。The same can be said about the El signal, so the present invention can realize a radar antenna with less cross-coupling even if a simple one-receiver system is used and other frequency bands using cross dipoles are shared.
以上の説明はクロスダイポールを副反射鏡上に取つける
場合について行なってるが、主反射鏡あるいは追尾用5
ホーンの近傍に設置する場合についても適用できる。The above explanation is for the case where the cross dipole is mounted on the sub-reflector, but it is not necessary to install the cross dipole on the main reflector or the tracking mirror.
It can also be applied when installed near the horn.
また追尾用−次放射器系として、5ホーンに限らず、4
ホ一ン方式あるいは素子アンテナとしてホーン以外のも
のを用いる場合についても成立つ。In addition, as a tracking radiator system, it is not limited to 5 horns, but 4
This also holds true for the horn system or when using something other than a horn as the element antenna.
また追尾用信号としてAZ。E7方向に限らず、任意の
直交する2方向についての信号を取出す形式にも適用で
きる。Also AZ as a tracking signal. It is applicable not only to the E7 direction but also to a format in which signals are extracted in any two orthogonal directions.
また反射鏡系としてグレゴリアン形式に限らず、カセグ
レン形式、パラボラアンテナ形式、その他任意の枚数の
回転対称な反射鏡系を用いる場合についても適用できる
。The reflecting mirror system is not limited to the Gregorian type, but can also be applied to cases where a Cassegrain type, a parabolic antenna type, or any other number of rotationally symmetrical reflecting mirror systems are used.
第1図は従来の周波数帯共用グレゴリアン形−受信機方
式レーダアンテナを示す図で、第1図aはレーダアンテ
ナの構成図、第1図すは副反射鏡上のクロスダイポール
と追尾用−次放射器系の関係を示す図、第1図Cは信号
処理回路を示すブロック図、第2図はこの発明の一実施
例を示す図、第3図はこの発明によるクロスダイポール
の配置と入射偏波の関係を示す図、第4図はこの発明に
よる追尾用一次放射器の励振偏波と放射電界成分を示す
図である。
図において1は主反射鏡、2は副反射鏡、3゜5はホー
ン、4はクロスダイポールである。
なお図中同一あるいは相当部分には同一符号を付して示
しである。Figure 1 is a diagram showing a conventional frequency band sharing Gregorian type receiver type radar antenna. FIG. 1C is a block diagram showing the signal processing circuit, FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing the arrangement of the cross dipole and the incident polarization according to the present invention. FIG. 4 is a diagram showing the relationship between waves, and is a diagram showing the excitation polarization and radiation electric field components of the primary tracking radiator according to the present invention. In the figure, 1 is a main reflecting mirror, 2 is a sub-reflecting mirror, 3°5 is a horn, and 4 is a crossed dipole. In the drawings, the same or corresponding parts are designated by the same reference numerals.
Claims (1)
ダ用アンテナにおいて、4個以上の素子アンテナで構成
され、追尾角度信号をその内の4個の素子アンテナの出
力を合成して取り出す一次放射器系をもつ周波数帯、お
よびクロスダイポールアンテナを素子アンテナとする一
次放射器系をもつ周波数帯とで反射鏡系を共用し、その
クロスダイポールアンテナの一方の素子を、追尾に用い
る周波数帯の追尾角度信号を合成するのに用いる素子ア
ンテナの中心と、上記回転対称な反射鏡系の中心軸を含
む面に平行となるように配置したことを特徴とする周波
数帯共用レーダ用アンテナ。1 In a radar antenna consisting of a rotationally symmetrical reflector system and a primary radiator system, the primary antenna is composed of four or more element antennas and extracts the tracking angle signal by combining the outputs of the four element antennas. A reflector system is shared between a frequency band with a radiator system and a frequency band with a primary radiator system using a cross dipole antenna as an element antenna, and one element of the cross dipole antenna is used for the frequency band used for tracking. A radar antenna for frequency band sharing, characterized in that the antenna is arranged parallel to a plane containing the center of an element antenna used for synthesizing tracking angle signals and the central axis of the rotationally symmetrical reflecting mirror system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6357877A JPS5928282B2 (en) | 1977-05-31 | 1977-05-31 | Frequency band shared radar antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6357877A JPS5928282B2 (en) | 1977-05-31 | 1977-05-31 | Frequency band shared radar antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53148377A JPS53148377A (en) | 1978-12-23 |
JPS5928282B2 true JPS5928282B2 (en) | 1984-07-12 |
Family
ID=13233270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6357877A Expired JPS5928282B2 (en) | 1977-05-31 | 1977-05-31 | Frequency band shared radar antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5928282B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117968A (en) * | 1984-07-05 | 1986-01-25 | Nec Corp | Measuring device of radio wave direction |
-
1977
- 1977-05-31 JP JP6357877A patent/JPS5928282B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53148377A (en) | 1978-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003245108B2 (en) | Real-time, cross-correlating millimetre-wave imaging system | |
Itoh et al. | A novel slots-and-monopole antenna with a steerable cardioid pattern | |
US4012742A (en) | Multimode loop antenna | |
US3144648A (en) | Dual mode spiral antenna | |
US2990544A (en) | Radar antenna system providing improved resolution | |
Hasnain et al. | Performance of distributed antenna sub-arrays for robust satellite navigation in automotive applications | |
US4611212A (en) | Field component diversity antenna and receiver arrangement | |
JPS5928282B2 (en) | Frequency band shared radar antenna | |
EP0108816A1 (en) | A field component diversity antenna arrangement | |
Caminita et al. | Low-profile Steerable Antennas for User Terminals | |
US2421032A (en) | Unidirectional antenna | |
JPH0232281A (en) | High frequency signal processing circuit for target tracking device | |
US2810127A (en) | Turnstile antenna and feed system therefor | |
Sanad et al. | Performance and design procedure of dual parabolic cylindrical antennas | |
Brookner | Multidimensional ambiguity functions of linear, interferometer, antenna arrays | |
Gans et al. | Narrow multibeam satellite ground station antenna employing a linear array with a geosynchronous arc coverage of 60, part II: Antenna design | |
JPS6019303A (en) | Antenna | |
Love | Radiation patterns and gain for a nominal aperture of 105 meters in the Arecibo spherical reflector | |
Becker et al. | A double-slot radar fence for increased clutter suppression | |
US2720590A (en) | Wedge antenna system for sector operation | |
Privalova et al. | Synthesis of an inhomogeneous anisotropic impedance plane from several reflected waves | |
Yin et al. | Wideband Transmit-Reflect-Array With Tilted Beams Considering Beam Squint Effect | |
JPS58191505A (en) | Antenna suppressing cross polarized wave | |
SU785917A1 (en) | Corner antena | |
JPH0234485B2 (en) | KOTAIIKIMONOPARUSUANTENA |