JPS5926905B2 - Storage battery remaining capacity detection device - Google Patents
Storage battery remaining capacity detection deviceInfo
- Publication number
- JPS5926905B2 JPS5926905B2 JP51104176A JP10417676A JPS5926905B2 JP S5926905 B2 JPS5926905 B2 JP S5926905B2 JP 51104176 A JP51104176 A JP 51104176A JP 10417676 A JP10417676 A JP 10417676A JP S5926905 B2 JPS5926905 B2 JP S5926905B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- storage battery
- output
- voltage
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 title claims description 17
- 238000007599 discharging Methods 0.000 claims description 25
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 description 36
- 238000005259 measurement Methods 0.000 description 32
- 230000008569 process Effects 0.000 description 31
- 238000011084 recovery Methods 0.000 description 21
- 238000009792 diffusion process Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- MZAGXDHQGXUDDX-JSRXJHBZSA-N (e,2z)-4-ethyl-2-hydroxyimino-5-nitrohex-3-enamide Chemical compound [O-][N+](=O)C(C)C(/CC)=C/C(=N/O)/C(N)=O MZAGXDHQGXUDDX-JSRXJHBZSA-N 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- KIWSYRHAAPLJFJ-DNZSEPECSA-N n-[(e,2z)-4-ethyl-2-hydroxyimino-5-nitrohex-3-enyl]pyridine-3-carboxamide Chemical compound [O-][N+](=O)C(C)C(/CC)=C/C(=N/O)/CNC(=O)C1=CC=CN=C1 KIWSYRHAAPLJFJ-DNZSEPECSA-N 0.000 description 5
- 102100031033 CCR4-NOT transcription complex subunit 3 Human genes 0.000 description 4
- 102100032981 CCR4-NOT transcription complex subunit 4 Human genes 0.000 description 4
- 101000919663 Homo sapiens CCR4-NOT transcription complex subunit 3 Proteins 0.000 description 4
- 101000942594 Homo sapiens CCR4-NOT transcription complex subunit 4 Proteins 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- HCUOEKSZWPGJIM-YBRHCDHNSA-N (e,2e)-2-hydroxyimino-6-methoxy-4-methyl-5-nitrohex-3-enamide Chemical compound COCC([N+]([O-])=O)\C(C)=C\C(=N/O)\C(N)=O HCUOEKSZWPGJIM-YBRHCDHNSA-N 0.000 description 2
- 102100031025 CCR4-NOT transcription complex subunit 2 Human genes 0.000 description 2
- 101001092183 Drosophila melanogaster Regulator of gene activity Proteins 0.000 description 2
- 101000919667 Homo sapiens CCR4-NOT transcription complex subunit 2 Proteins 0.000 description 2
- 101001109689 Homo sapiens Nuclear receptor subfamily 4 group A member 3 Proteins 0.000 description 2
- 101000598778 Homo sapiens Protein OSCP1 Proteins 0.000 description 2
- 101001067395 Mus musculus Phospholipid scramblase 1 Proteins 0.000 description 2
- 102100022673 Nuclear receptor subfamily 4 group A member 3 Human genes 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000010351 charge transfer process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- Y02E60/12—
Landscapes
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Description
【発明の詳細な説明】
本発明は蓄電池の残存容量を検知するに適した装置に関
し、蓄電池の端子間に定電流放電回路を接続すると共に
、上記蓄電池の一方端には該蓄電池が一定電流で放電し
た後に回復する端子電圧を検出する差動増幅回路を介し
て、蓄電池が充電過程にあつたかあるいは放電過程にあ
つたかによつて該蓄電池が示す特性曲線からあらかじめ
設定された増幅度を有する2つの演算増幅回路を並列に
接続し、この演算増幅回路の出力端に切換スイッチを介
して表示装置を接続し、この切換スイッチは上記差動増
幅回路と蓄電池の一方の端子との間に接続されて蓄電池
が充電過程にあつたか放電過程にあつたかを弁別するよ
うにした比較検出回路のいずれかの信号によつて切換制
御されるように設けられ、上記定電流放電回路により一
定電流で放電した後に回復する蓄電池の端子電圧を比較
検出回路により切換スイッチを制御して演算増幅回路の
いずれか一方の指令により表示装置を応動せしめて蓄電
池の残存容量を検出表示せしめるようにしたものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device suitable for detecting the remaining capacity of a storage battery. Through a differential amplifier circuit that detects the terminal voltage that recovers after being discharged, an amplification degree that is preset from the characteristic curve shown by the storage battery depending on whether the storage battery has been in the charging process or the discharging process is obtained. Two operational amplifier circuits are connected in parallel, and a display device is connected to the output terminal of this operational amplifier circuit via a changeover switch, and this changeover switch is connected between the differential amplifier circuit and one terminal of the storage battery. The storage battery is provided to be switched and controlled by one of the signals of the comparison detection circuit which discriminates whether the storage battery is in the charging process or the discharging process, and the battery is discharged at a constant current by the constant current discharge circuit. A changeover switch is controlled by a comparison detection circuit for the terminal voltage of the storage battery that is later recovered, and a display device is activated in response to a command from either one of the operational amplifier circuits to detect and display the remaining capacity of the storage battery.
従来より、蓄電池の残存容量を検出する方法としては蓄
電池の電解液の比重を測定して検出する方法、クーロン
メータで使用電気量を検知してこの値を蓄電池の公称容
量から差引いて残存容量を知る方法、放電時の端子電圧
降下により残存容量を検知する方法等が知られているが
、比重による検出方法では1セル毎に測定する必要があ
り、そのため多セル蓄電池においては著しい手間を要し
、しかも鉛蓄電池以外には適用できない。Traditionally, the remaining capacity of a storage battery has been detected by measuring the specific gravity of the electrolyte in the storage battery, or by detecting the amount of electricity used with a coulomb meter and subtracting this value from the nominal capacity of the storage battery to determine the remaining capacity. There are methods to detect the remaining capacity based on the terminal voltage drop during discharge, but the detection method based on specific gravity requires measurement for each cell, which requires considerable effort for multi-cell storage batteries. Moreover, it cannot be applied to anything other than lead-acid batteries.
又、クーロンメータによる方法では装置が複雑となり、
しかも常に蓄電池に装備しなければならず1台の検出装
置で多数の蓄電池を測定することが不可能であると共に
、経済的でない。更に、放電時の端子電圧降下による方
法では負荷条件が一定せず指示値が大きく変動して正確
な測定が困難である等の欠点を有している。これらを改
善するために、被測定用の蓄電池を5秒間IC位(公称
容量を表す数値(無名数)の倍数に電流の単位を付した
もので、公称容量が例えば100Ahであれば、100
×1=100A位)の大電流で放電し、その終期(5秒
後)の端子電圧を測定して統計的に容量を推定するいわ
ゆる5秒後電圧測定方法のものが用いられているが、こ
の方法によると大電流を流すため発熱が問題となり、大
容量の蓄電池には適用できず、しかも測定用のリード線
の抵抗による誤差を生じると共に、測定前の状態が充放
電のいずれにあつたかを見分ける方法がなく、このため
測定誤差が大きく、古い蓄電池では放電特性が平行移動
しないものがあり、劣化状態が判別できない。又、比重
の影響を取除くことができないため誤差が大きく、しか
も測定時期の違いにより例えば、無負荷後の放置時間の
相違により測定結果が大きく異なる等の問題を有してい
る。本発明の目的は残存容量を検出するための測定電流
を小さくして発熱を抑えて大容量の蓄電池にも適用し得
るものにすることにあり、他の目的は測定用のリード線
の抵抗による誤差を解消すると共に、測定時期の相違に
よる測定結果の差を小さくするようにした蓄電池の残存
容量検出装置を提供することにある。In addition, the method using a coulomb meter requires complicated equipment;
Moreover, it must always be installed in the storage battery, making it impossible and uneconomical to measure a large number of storage batteries with one detection device. Furthermore, the method based on the terminal voltage drop during discharge has the disadvantage that the load conditions are not constant and the indicated value fluctuates greatly, making accurate measurement difficult. In order to improve these problems, the storage battery to be measured is heated for 5 seconds at IC level (the unit of current is attached to a multiple of the numerical value (anonymous number) representing the nominal capacity. If the nominal capacity is 100 Ah, for example, 100
The so-called 5-second voltage measuring method is used, which discharges with a large current of about 100 A) and measures the terminal voltage at the end (after 5 seconds) to statistically estimate the capacity. This method causes a problem of heat generation due to the flow of a large current, and cannot be applied to large-capacity storage batteries.Furthermore, it causes errors due to the resistance of the measurement lead wires, and also makes it difficult to determine whether the state before measurement was charging or discharging. There is no way to tell the difference, and as a result, measurement errors are large.In some older storage batteries, the discharge characteristics do not shift in parallel, making it impossible to determine the state of deterioration. Further, since the influence of specific gravity cannot be removed, the error is large, and there are also problems in that the measurement results vary greatly due to differences in measurement timing, for example, differences in the length of time the device is left unloaded. The purpose of the present invention is to reduce the measurement current for detecting the remaining capacity to suppress heat generation and to make it applicable to large capacity storage batteries. It is an object of the present invention to provide a storage battery remaining capacity detection device that eliminates errors and reduces differences in measurement results due to differences in measurement timing.
この発明のこれらの目的とそれ以外の目的と、特徴と、
利益とは下記の詳細な説明と図面によつて一層明確にな
るであろう。These and other objects and features of this invention,
The benefits will become clearer from the detailed description and drawings below.
而して上記目的にかんがみ、本発明においては蓄電池を
所定時間(例えば5秒間)定電流回路に放電せしめたと
きの端子電圧と放電停止から一定時間(例えば250ミ
リ秒)後の回復した端子電圧とを測定してこの端子電圧
の差をあらかじめ定めた基準に対して比較することによ
り蓄電池の残存容量を電流一時間積の関係から検出する
ようになつている。Therefore, in view of the above object, in the present invention, the terminal voltage when the storage battery is discharged into a constant current circuit for a predetermined period of time (for example, 5 seconds) and the terminal voltage recovered after a certain period of time (for example, 250 milliseconds) after the discharging is stopped. By measuring the difference between the terminal voltages and comparing the terminal voltages with a predetermined standard, the remaining capacity of the storage battery is detected from the relationship between the current and hour product.
今、蓄電池を定電流で連続放電したときの放電特性は一
般に第1図に示す曲線Aとして知られている。Now, the discharge characteristic when a storage battery is continuously discharged at a constant current is generally known as curve A shown in FIG.
この放電特性曲線Aは、蓄電池の初期状態(t=o)の
起電力Eが比重低下に伴う起電力Eの低下と、内部抵抗
による抵抗過電圧η,と、電荷の移動過程の反応による
活性化過電圧η2及び極板の細孔内から反応面への反応
に関与するイオンの拡散に支配される拡散過電圧ηdと
の諸要因によつて時間と共に変化する特性であるとみる
ことができる。そして、上記諸要因のうち、比重低下に
伴う起電力Eの低下と抵抗過電圧η,とは時間とともに
直線的に変化し、その影響も一般に小さいということは
知られており、放電終期においては活性化過電圧η2と
拡散過電圧ηdが特に支配的であることも知られている
。従つて、初期状態の起電力Eの曲線をDとすれば、曲
線Cは比重低下に伴う起電力Eの低下のみによる特性で
あり、曲線Bは抵抗過電圧η,と比重低下に伴う起電力
Eの低下とによつて支配される特性であり、この曲線B
に活性化過電圧η。及び拡散過電圧ηdが加わつたもの
が放電特性曲線Aということになる。そこで第1図にお
いて、残存容量をCRとすると、残存容量CRは任意の
時間Txから放電終止電圧Veに到達するまでの時間T
。までの定電流1の時間積であるから、−入
とあられすことができる。This discharge characteristic curve A shows that the electromotive force E in the initial state (t=o) of the storage battery is activated by a decrease in electromotive force E due to a decrease in specific gravity, a resistance overvoltage η due to internal resistance, and a reaction in the charge transfer process. It can be seen that this is a characteristic that changes over time depending on various factors such as the overvoltage η2 and the diffusion overvoltage ηd, which is dominated by the diffusion of ions involved in the reaction from the pores of the electrode plate to the reaction surface. Of the above factors, it is known that the decrease in electromotive force E and the resistance overvoltage η due to a decrease in specific gravity change linearly with time, and that their effects are generally small. It is also known that the diffusion overvoltage η2 and the diffusion overvoltage ηd are particularly dominant. Therefore, if the curve of the electromotive force E in the initial state is D, the curve C is a characteristic due only to the decrease in the electromotive force E due to a decrease in specific gravity, and the curve B is a characteristic due to the resistance overvoltage η, and the electromotive force E due to a decrease in specific gravity. This curve B is a characteristic dominated by a decrease in
activation overvoltage η. The discharge characteristic curve A is obtained by adding the diffusion overvoltage ηd. Therefore, in FIG. 1, if the remaining capacity is CR, the remaining capacity CR is the time T from an arbitrary time Tx until reaching the discharge end voltage Ve.
. Since this is the time product of the constant current 1 until 1, it can be said to be -in.
この上記(1)式において任意の時間Txにおける端子
電圧Vxは時間T。からTxまでの経歴に関しているの
で蓄電池の内部の状態、即ち内部抵抗、活物質の活性度
及び電解液のイオンの拡散に関係しているとみることが
できる。又、第2図において示すように、蓄電池を定電
流でt1時間(例えば5秒間)放電したとき、t1時間
後の端子電圧をVLとし、放電を停止してからT2時間
(例えば250ミリ秒)後の回復過程にある端子電圧を
VHとすると、この端子電圧Hは無負荷時であるから電
流は零と考えられ、抵抗過電圧η,と過性化過電圧η3
及び拡散過電圧ηdとは零とみなすことができる。即ち
、端子電圧Hはと示すことができる。In the above equation (1), the terminal voltage Vx at any time Tx is the time T. Since it relates to the history from Tx to Tx, it can be considered that it is related to the internal state of the storage battery, that is, the internal resistance, the activity of the active material, and the diffusion of ions in the electrolyte. Also, as shown in Fig. 2, when the storage battery is discharged at a constant current for t1 time (for example, 5 seconds), the terminal voltage after t1 time is VL, and after discharging is stopped, T2 time (for example, 250 milliseconds) is set. If the terminal voltage in the subsequent recovery process is VH, the current is considered to be zero since this terminal voltage H is under no load, and the resistance overvoltage η, and the transient overvoltage η3
and the diffusion overvoltage ηd can be considered to be zero. That is, the terminal voltage H can be expressed as.
他方、始間t1後の端子電圧Lは、抵抗過電圧η,と活
性化過電圧η8及び拡散過電圧ηdとによつて支配され
る電圧をみることができる。即ち、端子電圧Lはと示す
ことができる。On the other hand, the terminal voltage L after the initial period t1 can be seen as a voltage dominated by the resistance overvoltage η, the activation overvoltage η8, and the diffusion overvoltage ηd. That is, the terminal voltage L can be expressed as follows.
而して、上記(2),(3)式において、T2時間を短
時間(例えば250ミリ秒)に設定すれば極板細孔内の
電解液の比重変化は殆んどないと考えられるので、起電
力EHとELとは略々等しい(EHZEL)とみること
ができ、上記端子電圧VH(!1.VLの差電圧d(V
H−L)(以下回復電圧と呼称する)は上記(2),(
3)よりとなる。即ち、回復電圧dは、抵抗過電圧η,
と活性化電圧η8及び拡散過電圧ηdの和であり、これ
はみかけの内部抵抗とみることができる。この回復電圧
Vaと時間tの関係は第1図における曲線Cと曲線Aの
差を示す特性となり、これを図に示すと第3図のように
なり、t=f(Vd)の関係式であられすことができる
から上記(1)式における時間TxをTx=f(Vd)
とおけば上記(1)式から残存容量CRはと変形するこ
とができ、上記(5)式においてI,tOは、一定であ
るから回復電圧dを測定することにより残存容量CRを
検出すること力何能となる。Therefore, in equations (2) and (3) above, if T2 time is set to a short time (for example, 250 milliseconds), it is thought that there will be almost no change in the specific gravity of the electrolyte in the pores of the electrode plate. , the electromotive forces EH and EL can be considered to be approximately equal (EHZEL), and the difference voltage d(V
H-L) (hereinafter referred to as recovery voltage) is determined by (2) above, (
3) It becomes better. That is, the recovery voltage d is the resistance overvoltage η,
is the sum of the activation voltage η8 and the diffusion overvoltage ηd, which can be regarded as an apparent internal resistance. The relationship between this recovery voltage Va and time t is a characteristic that shows the difference between curve C and curve A in Figure 1, and when shown in Figure 3, it is expressed by the relational expression t = f (Vd). Since rain can occur, the time Tx in equation (1) above is Tx=f(Vd)
Then, the remaining capacity CR can be transformed from the above equation (1) as follows. In the above equation (5), I and tO are constant, so the remaining capacity CR can be detected by measuring the recovery voltage d. Becomes powerful and capable.
しかし回復電圧dは上記(4)式にも示すとおり、みか
けの内部抵抗とみなすことができ抵抗過電圧η,と活性
化過電圧η2及び拡散過電圧ηdの和であるが、回復電
圧Vd測定前の蓄電池のおかれた条件によつて蓄電池内
部の反応に関与するイオン濃度分布が異なるため例えば
測定前の条件が充電過程にあつたとすると極板細孔内の
反応に関与するイオン濃度は電解液相の濃度より高い、
一方測定前の条件が放電過程にあつたとすればその逆に
なつて第6図のようになるため蓄電池の残存容量が同一
であつても測定前の条件が充電過程では細孔内から反応
面への反応に関与するイオンの拡散速度が電解液相への
逆方向の拡散であるため測定前の条件が放電過程であつ
た時よりも遅くなるので、測定前の条件が充電過程にあ
つた方が放電過程にあつた時よりも拡散過電圧ηdが大
きく生じて回復電圧Vdも大きくなり、この回復電圧V
dと残存容量CR.との関係は第4図に示すように異な
つた特性を示し、この特性において残存容量が30〜1
00%にかけては略々直線近似にあることが確認されて
おる。従つて、この特性から測定前の蓄電池が充放電の
いずれにあつたかを弁別して補正することにより、回復
電圧Vdから残容量CRを検出することができることに
なる。そこでこれを弁別するために、回復電圧Vdとt
1時間(例えば5秒間)定電流放電後の蓄電池の端子電
圧VLとの関係は第5図に示すように測定前の状態が充
電過程にあれば端子電圧VLlからVL2を越えて略々
直線的に変化し、放電過程にあれば端子電圧VLlより
も小さい値のVLからL2にかけて略々直線的に変化す
る特性を示すことが確認されておる。従つて先ずt1時
間(例えば5秒間)定電流放電後の端子電圧VLがVL
l並びにVL2よりも大きいか小さいかを比較すること
によりVL2よりも大きければ充電過程に、L1よりも
小さければ放電過程にあつたと弁別し、更に端子電圧V
LlとL2間で示される領域内の弁別については放電過
程にあつたVLl並びに充電過程にあつたVL2に対応
する回復電圧Vdの値からあらかじめ設定したVdlの
レベルに対して大きいか小さいかを比較することにより
大きければ充電過程にあつたことになり、小さければ放
電過程にあつたと弁別することにより測定前の状態が充
放電過程のいずれにあつたかが弁別可能となる。この測
定前の状態を弁別することにより上述した第4図の特性
に応じて直線勾配を変換して検出するようにすれば回復
電圧Vdにより蓄電池の残存容量が検出できる点に着目
してなされたもので以下、その実施例を第7図によつて
説明すると、1は被測定用の蓄電池、2は上記蓄電池1
の端子間にトランジスタ等からなる半導体スイツチング
素子3を介して接続された定電流放電回路で、抵抗とこ
の抵抗に流れる電流を制御して一定の電流が流れるよう
に構成され後述する時限回路7により上記スイツチング
素子3を所定時間閉路することにより蓄電池1が定電流
放電回路2により放電するようになつている。4は蓄電
池1のP端子に接続された演算増幅回路で、増幅器によ
つて構成され、所定時間(例えば5秒間)定電流放電す
ることによつて降下する蓄電池1の端子電圧Bを該蓄電
池1の放電終止電圧から設定された基準電圧Vsとの差
(VB−Vs)を演算増幅するようになつている。However, as shown in equation (4) above, the recovery voltage d can be regarded as the apparent internal resistance and is the sum of the resistance overvoltage η, the activation overvoltage η2 and the diffusion overvoltage ηd, but the The concentration distribution of ions involved in the reaction inside the battery differs depending on the conditions in which the battery is placed. For example, if the conditions before measurement were in the charging process, the concentration of ions involved in the reaction in the pores of the electrode plate will vary depending on the electrolyte phase. higher than the concentration,
On the other hand, if the conditions before measurement were in the discharging process, the opposite would be true, as shown in Figure 6. Therefore, even if the remaining capacity of the storage battery is the same, if the conditions before measurement were in the charging process, the reaction surface would flow from inside the pores. Because the diffusion rate of ions involved in the reaction is in the opposite direction to the electrolyte phase, it is slower than when the conditions before measurement were during the discharging process, so the conditions before measurement were during the charging process. The diffusion overvoltage ηd is larger than that during the discharge process, and the recovery voltage Vd is also larger, and this recovery voltage V
d and remaining capacity CR. As shown in Figure 4, the relationship between
It has been confirmed that there is approximately a linear approximation up to 00%. Therefore, the remaining capacity CR can be detected from the recovery voltage Vd by distinguishing and correcting whether the storage battery was charging or discharging before measurement based on this characteristic. Therefore, in order to distinguish this, the recovery voltage Vd and t
As shown in Figure 5, the relationship with the terminal voltage VL of the storage battery after constant current discharge for 1 hour (for example, 5 seconds) is approximately linear from the terminal voltage VLl to VL2 if the state before measurement is in the charging process. It has been confirmed that during the discharging process, the voltage changes almost linearly from VL, which is a value smaller than the terminal voltage VLl, to L2. Therefore, first, the terminal voltage VL after constant current discharge for t1 time (for example, 5 seconds) is VL
By comparing whether it is larger or smaller than L and VL2, it is determined that if it is larger than VL2, it is in the charging process, and if it is smaller than L1, it is in the discharging process, and furthermore, the terminal voltage V
For discrimination within the region shown between Ll and L2, the values of the recovery voltages Vd corresponding to VLl during the discharging process and VL2 during the charging process are compared to see if they are larger or smaller than the preset Vdl level. By doing so, if the value is large, it means that the charging process has occurred, and if it is small, it is determined that the discharging process has occurred, thereby making it possible to determine which of the charging and discharging processes the state before measurement was in. This work was done by focusing on the point that the remaining capacity of the storage battery can be detected from the recovery voltage Vd by distinguishing the state before measurement and converting and detecting the linear slope according to the characteristics shown in FIG. 4 mentioned above. Hereinafter, the embodiment will be explained with reference to FIG. 7. 1 is the storage battery to be measured, 2 is the storage battery 1
A constant current discharge circuit is connected between the terminals of a resistor through a semiconductor switching element 3 consisting of a transistor, etc., and is configured to control a resistor and the current flowing through this resistor so that a constant current flows. By closing the switching element 3 for a predetermined period of time, the storage battery 1 is discharged by the constant current discharge circuit 2. Reference numeral 4 denotes an operational amplifier circuit connected to the P terminal of the storage battery 1. The operational amplifier circuit 4 is composed of an amplifier and converts the terminal voltage B of the storage battery 1, which drops due to constant current discharge for a predetermined period of time (for example, 5 seconds), into the storage battery 1. The difference (VB-Vs) between the discharge end voltage and the set reference voltage Vs is operationally amplified.
5及び6は上記演算増幅回路4の出力端に並列に接続さ
れた記憶回路で、コンデンサと高入力インピーダンス増
幅器等で構成され、時限回路7によつて開閉制御される
スイツチング素子3と同期して送出する出力信号により
入力端が開閉制御されて演算増幅回路4の出力電圧をコ
ンデンサによつて記憶すると共にその出力電圧を次段に
供給するようになつている。5 and 6 are memory circuits connected in parallel to the output terminal of the operational amplifier circuit 4, which are composed of a capacitor, a high input impedance amplifier, etc. The opening/closing of the input terminal is controlled by the output signal sent out, and the output voltage of the operational amplifier circuit 4 is stored by a capacitor, and the output voltage is supplied to the next stage.
而して、記憶回路5は第2図に示す定電流の放電時間t
1の期間だけ演算増幅回路4の出力電圧をうけ、T,時
間後に時限回路7の出力信号によつて開路するスイツチ
ング素子3と同期して入力端を開路し、端子電圧Lを記
憶する。他方記憶回路6は上記記憶回路5と同時に入力
端を閉路して定電流の放電時間t1と放電停止からT2
時間経過後即ちt1+T2時間後に時限回路7から送出
される出力信号によつて入力端を開路して蓄電池1の回
復過程の端子電圧VHを記憶するようになつている。又
、時限回路7は第8図に示すように、定電圧電源装置1
4と接地間に、始動スイツチSWlと抵抗R1の直列回
路と、コンデンサC1と抵抗R2の直列回路とを並列に
挿入し、上記始動スイツチSWlの抵抗R1との接続点
をノア一回路NORlのS入力端子に接続し、上記コン
デンサC1と抵抗R2の接続点にはノア一回路NOR2
の9R入力端子を接続し、このノア一回路NOR,及び
NOR2の出力端子を相互の他方の入力端子に接続して
リセツトフリツプフロツプ回路を形成し、ノア一回路N
OR2の出力端子にはノツト回路NOTlを介してノア
一回路NOR3の一方の入力端子に接続すると共に、抵
抗R3とコンデンサC2からなるCR遅延回路を介して
ノア一回路NOR3の他方の入力端子に接続し、このノ
ア一回路NOR3の出力端子を、ノア一回路NOR4及
びNOR5の一方の入力端子にそれぞれ接続すると共に
、上記スイツチング素子3のゲートに接続し、上記ノア
一回路NOR4及びNOR5の他方の入力端子にはノア
一回路NORlの出力端子を接続し、ノア一回路NOR
4の出力端子はノツト回路NOT2を介して上記記憶回
路5に接続してこのノツト回路NOT2を介して送出す
る出力信号によつて記憶回路5の入力端を開閉制御し、
上記ノア一回路NOR5の出力端子は抵抗R4とコンデ
ンサC3からなるCR遅延回路を介してノツト回路NO
T3に接続し、このノツト回路NOT3の出力端子を上
記記憶回路6に接続して上記ノツト回路NOT3を介し
て送出される出力信号により記憶回路6の入力端を開閉
制御するようになつている。8は上記記憶回路5及び6
の出力端に接続された差動増幅回路で、差動増幅器によ
つて構成され、入力電圧HとVLの差(VH−VL)を
演算増幅し回復電圧Vdを出力として送出するようにな
つている。Therefore, the memory circuit 5 has a constant current discharge time t shown in FIG.
The input terminal is opened in synchronization with the switching element 3, which receives the output voltage of the operational amplifier circuit 4 for a period of T, and is opened by the output signal of the timer circuit 7 after T, and stores the terminal voltage L. On the other hand, the memory circuit 6 closes its input terminal at the same time as the memory circuit 5, and the constant current discharge time t1 and the discharge stop to T2.
After the elapse of time, that is, after t1+T2 time, the input terminal is opened by an output signal sent from the time limit circuit 7, and the terminal voltage VH of the storage battery 1 in the recovery process is stored. Further, the time limit circuit 7 is connected to the constant voltage power supply device 1 as shown in FIG.
A series circuit of a starting switch SWl and a resistor R1 and a series circuit of a capacitor C1 and a resistor R2 are inserted in parallel between the starting switch SWl and the resistor R1, and the connection point of the starting switch SWl and the resistor R1 is connected to the S of the NOR circuit NORl. Connected to the input terminal, and a NOR circuit NOR2 is connected to the connection point of the capacitor C1 and resistor R2.
The 9R input terminals of the NOR circuit NOR and NOR2 are connected to each other's input terminals to form a reset flip-flop circuit.
The output terminal of OR2 is connected to one input terminal of the NOR circuit NOR3 via a NOTl circuit, and is also connected to the other input terminal of the NOR circuit NOR3 via a CR delay circuit consisting of a resistor R3 and a capacitor C2. The output terminal of this NOR circuit NOR3 is connected to one input terminal of each of the NOR circuits NOR4 and NOR5, and also connected to the gate of the switching element 3, and the output terminal of the NOR circuit NOR4 and NOR5 is connected to the other input terminal of the NOR circuit NOR4 and NOR5. Connect the output terminal of the Noah one circuit NORl to the terminal, and connect the output terminal of the Noah one circuit NOR1.
The output terminal of No. 4 is connected to the memory circuit 5 through the NOT circuit NOT2, and the input terminal of the memory circuit 5 is controlled to open/close by the output signal sent through the NOT circuit NOT2.
The output terminal of the above NOR circuit NOR5 is connected to the NOR circuit NO through a CR delay circuit consisting of a resistor R4 and a capacitor C3.
The output terminal of this NOT circuit NOT3 is connected to the above-mentioned memory circuit 6, and the input terminal of the memory circuit 6 is controlled to open and close by the output signal sent through the above-mentioned NOT circuit NOT3. 8 is the memory circuit 5 and 6 mentioned above.
A differential amplifier circuit connected to the output terminal of the differential amplifier, which is configured with a differential amplifier, operationally amplifies the difference between the input voltages H and VL (VH - VL), and sends out the recovery voltage Vd as an output. There is.
9は記憶回路5と差動増幅回路8との出力端に接続され
て、第5図に示す測定前の蓄電池1の状態が充放電過程
のいずれにあつたかを弁別する比較検出回路で、第1、
第2及び第3の弁別回路とこれら弁別回路の出力信号を
論理条件で判別してリレーを応動するように構成?され
、該比較検出回路9のリレーと連動して開閉する切換ス
イツチ10により、上記差動増幅回路8の出力端に並列
に接続されて、異なる増幅度即ち第4図に示す測定前の
蓄電池1の充放電過程の特性における直線近似式からそ
れぞれ設定された増幅度を有する増幅器により構成され
た放電過程用の演算増幅回路11及び充電過程用の演算
増幅回路12の出力端を開閉制御するように設けてある
。Reference numeral 9 denotes a comparison detection circuit connected to the output terminals of the memory circuit 5 and the differential amplifier circuit 8, which discriminates which state of the charging/discharging process the storage battery 1 was in before the measurement shown in FIG. 1,
Is it configured so that the second and third discrimination circuits and the output signals of these discrimination circuits are discriminated based on logical conditions and the relay is actuated? is connected in parallel to the output terminal of the differential amplifier circuit 8 by a changeover switch 10 that opens and closes in conjunction with the relay of the comparison and detection circuit 9, and is connected in parallel to the output terminal of the differential amplifier circuit 8 to detect different amplification degrees, that is, the storage battery 1 before measurement as shown in FIG. The output terminals of the operational amplifier circuit 11 for the discharging process and the operational amplifier circuit 12 for the charging process, which are configured by amplifiers each having an amplification degree set from a linear approximation equation in the characteristics of the charging and discharging process, are controlled to open and close. It is provided.
而して、比較検出回路9は、第9図に示すように、記憶
回路5の出力端に、反転入力端子に基準電圧設定回路S
1を接続して入力を基準電圧L1と比較する比較器CO
MPlの非反転入力端子を接続するようにした第1の弁
別回路9aと、非反転入力端子に基準電圧設定回路VS
2を接続して入力を基準電圧L2と比較する比較器CO
MP2の反転入力端子を接続するようにした第2の弁別
回路9bとを設け、差動増幅回路8の出力端には、非反
転入力端子に基準電圧設定回路VS3を接続して入力を
基準電圧Vdlと比較する比較器COMP3の反転入力
端子を接続してなる第3の弁別回路9Cを設け、上記第
1の弁別回路9aの比較器COMPlの出力端を、一方
はノツト回路NOT4を介してオア一回路0R1に接続
し、他方は第2の弁別回路9bの比較器COMP2の出
力端に接続されたアンド回路ANDlに接続し、このア
ンド回路ANDlの出力端は、第3の弁別回路9Cの比
較器COMP3の出力端に接続されたアンド回路AND
2を介して上記オア一回路0R1に接続し、このオア一
回路0R1の出力端と接地間にリレーXを挿入して、オ
ア一回路0R1の出力が”HllレベルのときリレーX
を励磁しJlLlレベルのときは無励磁となるようにし
て切換スイツチ10を開閉制御するようになつている。
13は上記演算増幅回路11及び12の出力端に切換ス
イツチ10を介して接続された表示装置で、直流電圧計
等のメータからなり、その目盛は指示値の読取りを容易
にするために残存容量パーセント(%CR)で表示して
ある。As shown in FIG.
1 is connected to compare the input with the reference voltage L1.
A first discrimination circuit 9a to which the non-inverting input terminal of MPl is connected, and a reference voltage setting circuit VS to the non-inverting input terminal.
Comparator CO which connects 2 and compares the input with reference voltage L2
A second discrimination circuit 9b is connected to the inverting input terminal of MP2, and a reference voltage setting circuit VS3 is connected to the non-inverting input terminal of the differential amplifier circuit 8 to set the input to the reference voltage. A third discrimination circuit 9C is provided which connects the inverting input terminal of the comparator COMP3 to be compared with Vdl, and one output terminal of the comparator COMP1 of the first discrimination circuit 9a is connected to the One circuit 0R1 is connected to the output terminal of the comparator COMP2 of the second discrimination circuit 9b, and the other is connected to the AND circuit ANDl connected to the output terminal of the comparator COMP2 of the second discrimination circuit 9b. AND circuit AND connected to the output terminal of the device COMP3
2 to the above OR circuit 0R1, and insert a relay X between the output terminal of this OR circuit 0R1 and the ground.
is energized, and is de-energized when it is at the JlLl level, thereby controlling the opening and closing of the changeover switch 10.
A display device 13 is connected to the output terminals of the operational amplifier circuits 11 and 12 via a changeover switch 10, and is composed of a meter such as a DC voltmeter. (%CR).
尚、表示装置13は目盛表示に代つてアナログ−デジタ
ル変換回路を介してデジタル表示するように構成したも
のであつてもよい。Note that the display device 13 may be configured to display digitally via an analog-to-digital conversion circuit instead of displaying the scale.
本発明は上述のように構成され、その残存容量検出動作
について第7図乃至第9図により説明すると、被測定用
の蓄電池1の端子P,Nに本装置を接続し、時限回路7
が定電圧電源装置14の電源電圧Ccをうけたときのコ
ンデンサC1の両端の電位差は零であるからノア一回路
NOR2の入力端子Rは1!Hllレベルの入力をうけ
ることになりその出力は11L0レベルとなる。The present invention is constructed as described above, and its remaining capacity detection operation will be explained with reference to FIGS.
Since the potential difference across the capacitor C1 when C1 receives the power supply voltage Cc of the constant voltage power supply 14 is zero, the input terminal R of the NOR circuit NOR2 is 1! It receives an input of Hll level and its output becomes 11L0 level.
この1WL1レベルの出力がノア一回路NORlの入力
端子に送出され、このノア一回路NOR,の入力端子S
は始動スイツチSWlが開路しているため11L1レベ
ルの入力をうけておるので該ノア一回路NORlの出力
は11H]Vレベルとなる。なお、上記ノア一回路NO
R2の入力端子Rの入力は電源電圧Ccが印加されたと
きには11H!vレベルであるがコンデンサC1が充電
を開始するので1゛Ll゛レベルとなるため上記ノア一
回路NORlの1H1Vレベルの出力をうけても該ノア
一回路NORlの出力は11L1レベルに保持されてリ
セツトセツトフリツプフロツプ回路はりセツトの状態に
ある。而して、ノア一回路NORlの1H1レベルの出
力をうけたノア一回路NOR4及びNOR5の出力は1
!Lllレベルとなり、これをうけたノツト回路NOT
2及びNOT3を介して15H1レベルの出力を記憶回
路5及び6に送出して該記憶回路5及び6の入力端を閉
路する。他方上記ノア一回路NOR2の11L11レベ
ルの出力をうけたノツト回路NOTlの出力は1H1レ
ベルとなり、ノア一回路NOR3の出力は?1L1レベ
ルとなつてスイツチング素子3のゲートに送出されるの
で該スイツチング素子3は不導通状態にある。この状態
で、上記始動スイツチSW,を投入すると、ノア一回路
NORlの入力端子Sは33H′1レベルの入力をうけ
ることになり、該ノア一回路NORlの出力は?WLl
レベルとなつてノア一回路NOR2に送出するのでノア
一回路NOR2の出力は11H1レベルとなる。即ちリ
セツトセツトフリツプフロツプ回路はセツトの状態とな
る。而して、上記ノア一回路NOR2の7WH?lレベ
ルの出力をうけたノツト回路NOTlの出力は1L?l
レベルとなつて送出される。このIlLf!レベルの出
力をうけたノア一回路NOR3の他方の入力もこの時点
では1L”レベルであるのでその出力は1H11レベル
となつてスイツチング素子3のゲートに送出し該スイツ
チング素子3を導通せしめる。この際、ノア一回路NO
R3の1VH11レベルの出力によりノア一回路NOR
4及びNOR5の一方の入力はVlLOレベルから11
Hq1レベルなるが他方の入力がノア一回ノ路NORl
の11L1レベルの出力をうけているためその出力は1
Lv?レベルに保持されている。This 1WL1 level output is sent to the input terminal of the NOR circuit NORl, and the input terminal S of this NOR circuit NOR.
Since the start switch SWl is open, it receives an input at the 11L1 level, so the output of the NOR circuit NORl becomes the 11H]V level. In addition, the above Noah circuit NO.
The input to the input terminal R of R2 is 11H when the power supply voltage Cc is applied! V level, but as the capacitor C1 starts charging, it becomes 1゛Ll゛ level, so even if it receives the 1H1V level output of the above NOR circuit NORl, the output of the NOR circuit NORl is held at the 11L1 level and reset. SET Flip-flop circuit is in reset state. Therefore, the outputs of the Noah circuits NOR4 and NOR5, which received the 1H1 level output of the Noah circuit NORl, are 1.
! The NOT circuit that received this became Lll level.
The 15H1 level output is sent to the memory circuits 5 and 6 via the terminals 2 and NOT3, and the input terminals of the memory circuits 5 and 6 are closed. On the other hand, the output of the NOT circuit NOTl which receives the 11L11 level output of the NOR circuit NOR2 becomes the 1H1 level, and the output of the NOR circuit NOR3? Since the signal reaches the 1L1 level and is sent to the gate of the switching element 3, the switching element 3 is in a non-conductive state. In this state, when the start switch SW is turned on, the input terminal S of the NOR circuit NORl receives an input at the 33H'1 level, and the output of the NOR circuit NORl is? WLl
level and sends it to the NOR circuit NOR2, so the output of the NOR circuit NOR2 becomes the 11H1 level. That is, the reset flip-flop circuit is in the set state. So, 7WH of the above-mentioned Noah circuit NOR2? Is the output of NOTl, which receives an output of L level, 1L? l
It is sent out as a level. This IlLf! Since the other input of the NOR circuit NOR3 which received the level output is also at the 1L'' level at this point, its output becomes the 1H11 level and is sent to the gate of the switching element 3, making the switching element 3 conductive. , Noah one circuit NO
One circuit NOR is generated by the 1VH11 level output of R3.
4 and one input of NOR5 is 11 from the VlLO level.
Hq1 level is reached, but the other input is NOR1
Since it receives the output of 11L1 level, its output is 1.
Lv? held at the level.
このスイツチング素子3の導通により定電流放電回路2
が蓄電池1の端子間に接続されて蓄電池1は定電流放電
を開始する。この放電開始からあらかじめ設定されたt
1時間(例えば5秒)即ち、時限回路7のノア一回路N
OR2の1H1レベルの出力により抵抗R3を介して充
電されたコンデンサC2がCRの時定数によつて定まる
時限(第2図に示すT,時間)でノア一回路NOR3の
一方の入力をFWHlレベルにするので該ノア一回路N
OR3の出力はゞ1L1レベルとなつてスイツチング素
子3のゲートに送出されるのでスイツチング素子3は不
導通となり、蓄電池1の定電流放電を停止すると共に、
上記ノア一回路NOR3のt]L1レベルの出力により
ノア一回路NOR4及びNOR5の両入力共13Lt′
レベルとなつてその出力を8H1レベルとし、これをう
けたノツト回路NOT2は出力を1H?1から1L1レ
ベルにして記憶回路5の入力端を開路して、定電流放電
中に差動増幅回路4を介して降下する蓄電池1の端子電
圧VBを基準電圧Vsとの差電圧としてうけていた記憶
回路5は放電停止時の端子電圧VLを記憶する。他方ノ
ア回路NOR5の両入力も上述同様11L1レベルとな
つてその出力を71L1から1H1レベルにするが抵抗
R4とコンデンサC3とのCR時定数によつて定まる時
限即ち第2図に示す時間T2(例えば250ミリ秒)に
達するまでばQLl゛レベルに保持されるので記憶回路
6の入力端は閉路状態を維持し、時間T2経過すると、
ノツト回路NOT3の入力が11H1レベルになつてそ
の出力を゛3L1レベルにして記憶回路6の入力端を開
路し、上述同様、演算増幅回路4を介して上記放電停止
後回復する蓄電池1の端子電圧Bと基準電圧sとの差電
圧としてうけていた記憶回路6は回復過程の端子電圧V
Hを記憶する。こら記憶回路5及び6によつて記憶され
た端子電圧VL及び−VHを出力信号としてうけた差動
増幅回路8は両入力(VH,VL)の差(H−VL)を
演算増幅して回復電圧Vdを出力信号として比較検出回
路9に送出する。上記記憶回路5と差動増幅回路8の出
力信号をうけた比較検出回路9は、上記記憶回路5の出
力信号(VL)をうけた第1及び第2の弁別回路9a及
ひ9bの比較器COMPl及及びCOMP2は、入力(
L)をそれぞれ基準電圧VLl及びVL2で比較し、基
準電圧VLlよりも小さいときは第1の弁別回路9aの
比較器COMPlは1L11レベルの出力をノツト回路
NOT4及びアンド回路ANDlに送出し、これをうけ
たノツト回路NOT4は1H8レベルの出力をオア一回
路0R,を介してリレーXに送出し、このリレーXを励
磁して切換スイツチ10を応動せしめて差動増幅回路8
の出力端に並列に接続された演算増幅回路11の出力端
を表示装置13に切換接続し、演算増幅回路11の出力
により表示装置13を応動せしめて蓄電池1の残存容量
CRを表示する。即ち、記憶回路5の出力信号(L)が
第5図に示すように、基準電圧L1よりも小さいときは
第1の弁別回路9aによつて測定前の蓄電池1の状態が
放電過程にあつたと弁別して放電過程用の演算増幅回路
11の出力端を表示装置13に接続することになる。こ
の際、第1の弁別回路9aの比較器COMPlの11L
11レベルの信号をうけたアンド回路ANDlは他方の
入力端に第2の弁別回路9bの比較器COMP2の1H
11レベルの出力(即ち基準電圧VL2よりも入力が小
さいため)をうけているので該アンド回路AND,の出
力は1L1レベルとなる。又、第3の弁別回路9cの比
較器COIVl)3も差動増副回路8の出力信号(Vd
)をうけているので基準電圧Vdlと比較して基準電圧
d1よりも大きいときは1L1!レベルの出力となりア
ンド回路AND2の両入力は11L1Wレベルになるの
でその出力はT2HF?レベルとなつてオア一回路0R
1を介してリレーXを励磁することになるが、すでにリ
レーXは励磁されているのでそのま\となる。もし比較
器COMP,の入力(Vd)が基準電圧Vdlよりも小
さいときは出力が1H11レベルとなるためアンド回路
AND2の出力は゛L′1レベルとなる。これで第5図
のVLlよりも小さいときの弁別が完了することになる
。又、記憶回路5の出力信号(VL)が比較器COMP
lにより基準電圧VLlよりも大きいときは出力は1H
11レベルとなるのでノツト回路NOT4を介してうけ
るオア一回路0R1の入力は11L1レベルであるので
リレーXは励磁されない。他方第2の弁別回路9bの比
較器COMP2の基準電圧VL2よりも小さいときは該
比較器COMP2の出力はWTHffレベルとなり、ア
ンド回路ANDlは31L1!′レベルの出力をアンド
回路AND2に送出すると共に、第3の弁別回路9cの
比較器COMP3の基準電圧d1に対して入力が小さい
ときは11H11レベルとなるのでアンド回路AND2
の出力は11H15レベルとなつてオア一回路0R1を
介してリレーXを励磁して切換スイツチ10を応動せし
め演算増幅回路11の出力端を表示装置13に切換接続
する。Due to the conduction of this switching element 3, the constant current discharge circuit 2
is connected between the terminals of the storage battery 1, and the storage battery 1 starts constant current discharge. From the start of this discharge, the preset t
1 hour (for example, 5 seconds), that is, the time limit circuit 7's Noah 1 circuit N
The capacitor C2 charged via the resistor R3 by the 1H1 level output of OR2 brings one input of the NOR circuit NOR3 to the FWHL level in a time period determined by the time constant of CR (T, time shown in Figure 2). Therefore, the corresponding Noah circuit N
The output of OR3 becomes 1L1 level and is sent to the gate of switching element 3, so switching element 3 becomes non-conductive, stopping constant current discharge of storage battery 1, and
t]L1 level output of the above NOR circuit NOR3 makes both inputs of the NOR circuit NOR4 and NOR5 13Lt'
The output becomes 8H1 level, and the NOT circuit receiving this changes the output to 1H? 1 to 1L1 level, the input terminal of the storage circuit 5 was opened, and the terminal voltage VB of the storage battery 1, which drops through the differential amplifier circuit 4 during constant current discharge, was received as a differential voltage from the reference voltage Vs. The memory circuit 5 stores the terminal voltage VL when the discharge is stopped. On the other hand, both inputs of the NOR circuit NOR5 go to the 11L1 level as described above, and the output changes from the 71L1 level to the 1H1 level, but for a time limit determined by the CR time constant of the resistor R4 and the capacitor C3, that is, the time T2 shown in FIG. 2 (for example, 250 milliseconds), the input terminal of the memory circuit 6 maintains the closed circuit state, and when the time T2 elapses,
When the input of the NOT circuit NOT3 reaches the 11H1 level, its output becomes the ``3L1 level'' and the input terminal of the storage circuit 6 is opened, and the terminal voltage of the storage battery 1 recovers after the discharging is stopped via the operational amplifier circuit 4 as described above. The memory circuit 6, which was receiving the voltage difference between B and the reference voltage s, receives the terminal voltage V during the recovery process.
Remember H. The differential amplifier circuit 8, which receives the terminal voltages VL and -VH stored by the memory circuits 5 and 6 as output signals, operationally amplifies and recovers the difference (H-VL) between both inputs (VH, VL). The voltage Vd is sent to the comparison detection circuit 9 as an output signal. A comparison detection circuit 9 receiving the output signals of the memory circuit 5 and the differential amplifier circuit 8 is a comparator of the first and second discrimination circuits 9a and 9b receiving the output signal (VL) of the memory circuit 5. COMPl and COMP2 are the inputs (
L) are compared with reference voltages VLl and VL2, respectively, and when it is smaller than the reference voltage VLl, the comparator COMPl of the first discrimination circuit 9a sends an output of 1L11 level to the NOT circuit NOT4 and the AND circuit ANDl, and The received NOT circuit NOT4 sends a 1H8 level output to the relay X via the OR circuit 0R, which excites the relay
The output terminal of the operational amplifier circuit 11 connected in parallel with the output terminal of the operational amplifier circuit 11 is switched and connected to the display device 13, and the display device 13 is caused to respond to the output of the operational amplifier circuit 11 to display the remaining capacity CR of the storage battery 1. That is, as shown in FIG. 5, when the output signal (L) of the memory circuit 5 is smaller than the reference voltage L1, the first discrimination circuit 9a determines that the state of the storage battery 1 before measurement was in the discharging process. The output end of the operational amplifier circuit 11 for the discharge process is then connected to the display device 13. At this time, 11L of the comparator COMPl of the first discrimination circuit 9a
The AND circuit ANDl which receives the 11 level signal has the other input terminal connected to the 1H of the comparator COMP2 of the second discrimination circuit 9b.
Since it receives an output of 11 level (that is, the input is smaller than the reference voltage VL2), the output of the AND circuit AND becomes 1L1 level. Further, the comparator COIVl) 3 of the third discrimination circuit 9c also receives the output signal (Vd
), so when compared with the reference voltage Vdl, if it is higher than the reference voltage d1, 1L1! level output and both inputs of the AND circuit AND2 are at the 11L1W level, so the output is T2HF? Becomes a level OR circuit 0R
Relay X will be energized via 1, but since relay If the input (Vd) of the comparator COMP is smaller than the reference voltage Vdl, the output will be at the 1H11 level, so the output of the AND circuit AND2 will be at the 'L'1 level. This completes the discrimination when it is smaller than VLl in FIG. Also, the output signal (VL) of the memory circuit 5 is output from the comparator COMP.
When the voltage is higher than the reference voltage VLl due to l, the output is 1H.
Since the input to the OR circuit 0R1 received via the NOT circuit NOT4 is at the 11L1 level, the relay X is not excited. On the other hand, when it is smaller than the reference voltage VL2 of the comparator COMP2 of the second discrimination circuit 9b, the output of the comparator COMP2 becomes the WTHff level, and the AND circuit ANDl outputs 31L1! ' level output is sent to the AND circuit AND2, and when the input is small with respect to the reference voltage d1 of the comparator COMP3 of the third discrimination circuit 9c, it becomes the 11H11 level, so the AND circuit AND2
The output becomes 11H15 level and excites the relay X via the OR circuit 0R1 to actuate the changeover switch 10 and connect the output end of the operational amplifier circuit 11 to the display device 13.
このとき、比較器COMP3が基準電圧D,よりも大き
い差動増幅回路8の出力信号(Vd)うけたときはその
出力は1Lv1レベルになるのでアンド回路AND2の
出力は!1L1レベルのま\となりリレーXは励磁され
ない。即ち、充電過程用の演算増幅回路12の出力端は
切換スイツチ10を介して表示装置13に接続され該表
示装置13は演算増幅回路12の出力により応動して残
存容量CRを表示する。更に4第2の弁別回路9bの比
較器COMP2の基準電圧VL2よりも大きい入力(L
)を記憶回路5からうけたときは第1の弁別回路9aの
比較器COMPlの基準電圧L1よりも大きくなるので
該比較器COMPlの出力は!1H1レベルとなつてノ
ツト回路NOT4を介してオア一回路0R1の入力はt
!L1レベルになるのでリレーXは励磁されない。他方
比較器COMP2の基準電圧L2よりも大きいのでその
出力はQlLlレベルとなり、アンド回路ANDlの出
力ば5L8となり、第3の弁別回路9cの比較器COM
P3の出力は基準電圧D,よりも小さいときは1Hv1
レベルとなつてアンド回路AND2の出力は71L1レ
ベル従つて、リレーXは励磁されない。このとき基準電
圧Vdlよりも大きいときは比較器COMP3の出力は
Q7Lllレベルとなるのでアンド回路AND2の出力
8L11レベルとなり、リレーXは励磁されない。即ち
、測定前の蓄電池1が充電過程にあつたと弁別すること
になる。この比較検出回路9の弁別動作と同時に、演算
増幅回路11及び12は差動増幅回路8の出力信号(V
d)をそれぞれうけて入力(d)を演算増幅回路11は
基準電圧D52と差で演算すると共に、第4図に示す測
定前の状態が放電過程にあつたときの特性に応じて設定
された増幅度により増幅し、他方演算増幅回路12は基
準電圧D8lとの差を演算し、上述同様、第4図に示す
充電過程の特性に応じて設定された増幅度により増幅し
、上記比較検出回路9による切換スイツチ10の開閉制
御により、測定前の蓄電池1の状態に応じて表示装置1
3に演算増幅回路11あるいは12を切換接続して、そ
の出力により表示装置13を応動せしめて、蓄電池1の
残存容量CRを表示する。本発明は上述したように、蓄
電池を所定時間定電流放電せしめることによつて降下し
た蓄電池の端子電圧と放電停止後に回復する端子電圧と
の差電圧を出力信号として、測定前の蓄電池が充放電過
程のいずれにあつたかを弁別する比較検出回路によつて
開閉制御される切換スイツチを介して、上記差電圧の出
力信号を測定前の蓄電池の充放電過程に応じて演算増幅
する異なつた増幅度を有する2つの演算増幅回路の出力
端を選択して表示装置に接続するように設けて、定電流
放電後に回復する端子電圧により蓄電池の残存容量を検
出するようにしたもので、測定のための電流は小電流で
すむので放電による発熱も抑制されて大容量の蓄電池に
対しても適用することができ、しかも放電停止後に回復
する端子電圧により残存容量を検出するようになつてい
るので測定用リード線の抵抗、接触抵抗による誤差も少
なくなることは勿論、測定前の蓄電池の状態に応じて補
正するようにしてあるので測定誤差も小さくなつて精度
を向上することができる。又、みかけ上の内部抵抗を測
定するようにしてあるので蓄電池の残存容量によく対応
せしめることができ、しかも蓄電池の劣化状況も回復過
程における端子電圧に対応するため劣化判別もでき、測
定時期の相違に影響されることもないので測定結果の信
頼度を一段と向上せしめることができる等著しい効果を
有するものである。At this time, when the comparator COMP3 receives the output signal (Vd) of the differential amplifier circuit 8 which is higher than the reference voltage D, its output becomes 1Lv1 level, so the output of the AND circuit AND2 is ! The level remains at 1L1 and relay X is not energized. That is, the output terminal of the operational amplifier circuit 12 for charging process is connected to the display device 13 via the changeover switch 10, and the display device 13 responds to the output of the operational amplifier circuit 12 and displays the remaining capacity CR. Furthermore, an input (L
) is received from the memory circuit 5, it becomes larger than the reference voltage L1 of the comparator COMPl of the first discrimination circuit 9a, so the output of the comparator COMPl is ! 1H1 level and the input of the OR circuit 0R1 via the NOT circuit NOT4 becomes t.
! Since it is at L1 level, relay X is not energized. On the other hand, since it is larger than the reference voltage L2 of the comparator COMP2, its output becomes the QlLl level, and the output of the AND circuit ANDl becomes 5L8, and the comparator COM of the third discrimination circuit 9c
The output of P3 is 1Hv1 when it is smaller than the reference voltage D.
The output of the AND circuit AND2 is at the 71L1 level, so the relay X is not energized. At this time, when the voltage is higher than the reference voltage Vdl, the output of the comparator COMP3 becomes the Q7Lll level, so the output of the AND circuit AND2 becomes the 8L11 level, and the relay X is not excited. That is, it is determined that the storage battery 1 before measurement was in the charging process. Simultaneously with the discrimination operation of the comparison detection circuit 9, the operational amplifier circuits 11 and 12 output the output signal (V
d), the operational amplifier circuit 11 receives the input (d) and calculates the difference from the reference voltage D52, and also sets the voltage according to the characteristics when the state before measurement is in the discharge process as shown in Fig. 4. On the other hand, the operational amplifier circuit 12 calculates the difference from the reference voltage D8l, and as described above, performs amplification according to the amplification degree set according to the characteristics of the charging process shown in FIG. By controlling the opening/closing of the changeover switch 10 by the switch 9, the display device 1 is changed depending on the state of the storage battery 1 before measurement.
An operational amplifier circuit 11 or 12 is selectively connected to 3, and the output thereof causes a display device 13 to respond, thereby displaying the remaining capacity CR of the storage battery 1. As described above, the present invention uses, as an output signal, the difference voltage between the terminal voltage of the storage battery that drops by discharging the storage battery at a constant current for a predetermined period of time and the terminal voltage that recovers after discharging is stopped, so that the storage battery can be charged or discharged before measurement. The output signal of the above-mentioned difference voltage is operationally amplified according to the charge/discharge process of the storage battery before measurement via a changeover switch that is controlled to open or close by a comparison detection circuit that discriminates which process the battery is in. The output terminals of two operational amplifier circuits with Since only a small current is required, heat generation due to discharge is suppressed, and it can be applied to large-capacity storage batteries.Furthermore, the remaining capacity is detected by the terminal voltage recovered after discharging has stopped, making it suitable for measurement. Errors due to lead wire resistance and contact resistance are of course reduced, and since correction is made according to the state of the storage battery before measurement, measurement errors are also reduced and accuracy can be improved. In addition, since the apparent internal resistance is measured, it can be closely related to the remaining capacity of the storage battery.Furthermore, the deterioration status of the storage battery can also be determined because it corresponds to the terminal voltage during the recovery process, and it is possible to determine the timing of measurement. Since it is not affected by differences, it has remarkable effects such as being able to further improve the reliability of measurement results.
第1図は蓄電池の定電流放電特性図、第2図は定電流放
電後の蓄電池の端子電圧の回復過程を示す特性図、第3
図は回復電圧と時間との関係を示す特性図、第4図は回
復電圧と残存容量の関係を示す特性図、第5図は回復電
圧と放電停止時の蓄電池の端子電圧との関係を示す特性
図、第6図は反応に関与するイオン濃度分布の説明図、
第7図は本発明の実施例を示すプロツク図、第8図は本
発明の時限回路の実施例を示す回路図、第9図は本発明
の比較検出回路の実施例を示す回路図である。
1:蓄電池、2:定電流放電回路、3:スイツチング素
子、5,6:記憶回路、7:時限回路、8:差動増幅回
路、9:比較検出回路、10:切換スイツチ、11,1
2:演算増幅回路、13:表示装置。Figure 1 is a constant current discharge characteristic diagram of the storage battery, Figure 2 is a characteristic diagram showing the recovery process of the terminal voltage of the storage battery after constant current discharge, and Figure 3 is a characteristic diagram showing the recovery process of the terminal voltage of the storage battery after constant current discharge.
The figure is a characteristic diagram showing the relationship between recovery voltage and time, Figure 4 is a characteristic diagram showing the relationship between recovery voltage and remaining capacity, and Figure 5 is a characteristic diagram showing the relationship between recovery voltage and terminal voltage of the storage battery when discharging is stopped. Characteristic diagram, Figure 6 is an explanatory diagram of the ion concentration distribution involved in the reaction,
FIG. 7 is a block diagram showing an embodiment of the present invention, FIG. 8 is a circuit diagram showing an embodiment of the time limit circuit of the present invention, and FIG. 9 is a circuit diagram showing an embodiment of the comparison detection circuit of the present invention. . 1: Storage battery, 2: Constant current discharge circuit, 3: Switching element, 5, 6: Memory circuit, 7: Time limit circuit, 8: Differential amplifier circuit, 9: Comparison detection circuit, 10: Changeover switch, 11, 1
2: operational amplifier circuit, 13: display device.
Claims (1)
流回路を接続すると共に、上記蓄電池の一方端には該蓄
電池が上記定電流放電回路により放電したときの端子電
圧と放電停止から一定時間後の端子電圧との差電圧を演
算増幅する差動増幅回路を介して異なつた増幅度を有す
る2つの演算増幅回路を並列に接続し、この演算増幅回
路の出力端に上記差動増幅回路と蓄電池の一方端とに接
続されて蓄電池が充放電過程のいずれにあつたかを弁別
するようにした比較検出回路の信号によつて制御される
切換スイッチを介して表示装置を切換可能に接続して、
蓄電池が定電流放電した後に回復する端子電圧によつて
上記蓄電池の残存容量を検知するようにしたことを特徴
とする蓄電池の残存容量検出装置。1. A constant current circuit is connected between the terminals of the storage battery via a switching element, and one end of the storage battery is connected to the terminal voltage when the storage battery is discharged by the constant current discharging circuit, and the terminal voltage after a certain period of time after discharging is stopped. Two operational amplifier circuits having different amplification degrees are connected in parallel through a differential amplifier circuit that operationally amplifies the voltage difference between the terminal voltage and the terminal voltage. A display device is switchably connected to one end of the display device via a changeover switch controlled by a signal from a comparison and detection circuit connected to one end of the storage battery and configured to discriminate which stage of charging and discharging the storage battery is in;
A remaining capacity detection device for a storage battery, characterized in that the remaining capacity of the storage battery is detected based on the terminal voltage recovered after the storage battery discharges a constant current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51104176A JPS5926905B2 (en) | 1976-08-31 | 1976-08-31 | Storage battery remaining capacity detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51104176A JPS5926905B2 (en) | 1976-08-31 | 1976-08-31 | Storage battery remaining capacity detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5329533A JPS5329533A (en) | 1978-03-18 |
JPS5926905B2 true JPS5926905B2 (en) | 1984-07-02 |
Family
ID=14373700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51104176A Expired JPS5926905B2 (en) | 1976-08-31 | 1976-08-31 | Storage battery remaining capacity detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5926905B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4032934B2 (en) * | 2002-11-15 | 2008-01-16 | ソニー株式会社 | Battery capacity calculation method, battery capacity calculation device, and battery capacity calculation program |
-
1976
- 1976-08-31 JP JP51104176A patent/JPS5926905B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5329533A (en) | 1978-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6556019B2 (en) | Electronic battery tester | |
US8447544B2 (en) | Method and apparatus for detecting state of charge of battery | |
US5179340A (en) | Apparatus for monitoring the state of charge of a battery | |
JP4858378B2 (en) | Cell voltage monitoring device for multi-cell series batteries | |
EP3828568B1 (en) | Battery management apparatus, battery management method and battery pack | |
US9897657B2 (en) | Method and apparatuses for determining a state of charge | |
CN110741268B (en) | Method for determining power limit of battery and battery management system | |
JP2002017045A (en) | Secondary battery device | |
KR940701546A (en) | Method and device for charging and testing the battery | |
US20230366935A1 (en) | Battery Diagnosis Apparatus, Battery Pack, Electric Vehicle And Battery Diagnosis Method | |
US20210249885A1 (en) | Battery management device, battery management method, and battery pack | |
JP2001186684A (en) | Lithium-ion battery charger | |
JPS6188731A (en) | Charge-discharge controller | |
EP3805768B1 (en) | Battery management apparatus, battery management method, and battery pack | |
JPH08254573A (en) | Battery measuring apparatus | |
JP2023527137A (en) | Battery diagnostic device, battery diagnostic method, battery pack and electric vehicle | |
JP3900689B2 (en) | Charging method and charging device | |
US12322766B2 (en) | Battery management system, battery pack, electric vehicle and battery management method | |
JPH11271408A (en) | Secondary battery deterioration detection method and charger equipped with deterioration detection function | |
JPS5926905B2 (en) | Storage battery remaining capacity detection device | |
JPH06342045A (en) | Battery life measuring apparatus | |
KR102646373B1 (en) | Battery management system, battery management method and battery pack | |
JPH08339834A (en) | Storage battery deterioration degree determination method and deterioration degree determination device | |
JPH04250376A (en) | Estimation of remaining capacity of closed type lead storage battery | |
Okazaki et al. | Measurement of short circuit current for low internal resistance batteries |