[go: up one dir, main page]

JPS5926128Y2 - mechanical seal - Google Patents

mechanical seal

Info

Publication number
JPS5926128Y2
JPS5926128Y2 JP1976067486U JP6748676U JPS5926128Y2 JP S5926128 Y2 JPS5926128 Y2 JP S5926128Y2 JP 1976067486 U JP1976067486 U JP 1976067486U JP 6748676 U JP6748676 U JP 6748676U JP S5926128 Y2 JPS5926128 Y2 JP S5926128Y2
Authority
JP
Japan
Prior art keywords
sealing ring
hydraulic pressure
sealing
mechanical seal
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976067486U
Other languages
Japanese (ja)
Other versions
JPS52158257U (en
Inventor
寛二 大場
Original Assignee
日本ピラ−工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピラ−工業株式会社 filed Critical 日本ピラ−工業株式会社
Priority to JP1976067486U priority Critical patent/JPS5926128Y2/en
Publication of JPS52158257U publication Critical patent/JPS52158257U/ja
Application granted granted Critical
Publication of JPS5926128Y2 publication Critical patent/JPS5926128Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Description

【考案の詳細な説明】 この考案は高圧流体用に適するメカニカルシールに関す
るものである。
[Detailed Description of the Invention] This invention relates to a mechanical seal suitable for high-pressure fluid.

第1図に示すように回転軸1に対して回転不能に嵌着さ
れた回転密封環2と、回転軸1の周辺を囲んでいるフレ
ーム3の内壁に固着された静止密封環4との互いに対向
するシール面6,7間に中間密封環5を介在させ、各シ
ール面6,7により流体を密封するようにしたメカニカ
ルシールが従来から多く使用されている。
As shown in FIG. 1, a rotating sealing ring 2 that is non-rotatably fitted to the rotating shaft 1 and a stationary sealing ring 4 that is fixed to the inner wall of a frame 3 surrounding the rotating shaft 1 are connected to each other. Mechanical seals in which an intermediate sealing ring 5 is interposed between opposing sealing surfaces 6 and 7 and fluid is sealed by each sealing surface 6 and 7 have been widely used.

ところがこのような形式のメカニカルシールで高圧流体
を密封する場合にはシール面6,7における各密封環の
圧接力を高く設定する関係上、上記中間密封環の材質と
してカーボングラファイト等の自己潤滑性を有する物質
を使用してシール面の摩擦状態を改善させざるを得ない
However, when sealing high-pressure fluid with this type of mechanical seal, the pressure of each sealing ring on the seal surfaces 6 and 7 is set high, so the material of the intermediate sealing ring is self-lubricating, such as carbon graphite. Therefore, it is necessary to improve the frictional condition of the sealing surface by using a material having the following properties.

ところが一般にカーボングラフアイl〜は、金属材料に
比し弾性係数が小さい為、液圧により極めて変形し易い
という性質があるため、特に高圧流体用メカニカルシー
ルにおいては多くの問題がある。
However, in general, carbon graphite materials have a smaller elastic modulus than metal materials and are therefore extremely easily deformed by hydraulic pressure, which causes many problems, especially in mechanical seals for high-pressure fluids.

たとえば第1図に示すような軸方向断面丁字形の中間密
封環5をその内壁面に液圧が作用しないようにして使用
したメカニカルシールにおいては、その中間密封環5の
各面にかかる液圧は、第2図aにおいてその方向と大き
さを矢印で近似的に表わしたような分布状態となる。
For example, in a mechanical seal using an intermediate sealing ring 5 having a T-shaped axial cross section as shown in FIG. has a distribution state whose direction and size are approximately represented by arrows in FIG. 2a.

このとき液圧による中間密封環5の変形を考えてみると
、回転軸1方向と同一な方向にかかる液圧により、この
中間密封環は第2図すで示すようにそのシール面の内径
側が凸状に変形しようとし、回転軸1の径方向にかかる
液圧により、この中間密封環5は第2図Cで示すように
、そのシール面の外径側が凸状に変形しようとする。
Considering the deformation of the intermediate sealing ring 5 due to the hydraulic pressure at this time, due to the hydraulic pressure applied in the same direction as the rotating shaft 1, the inner diameter side of the sealing surface of the intermediate sealing ring is changed as shown in Fig. 2. Due to the hydraulic pressure applied in the radial direction of the rotating shaft 1, the outer diameter side of the sealing surface of the intermediate sealing ring 5 tends to deform into a convex shape, as shown in FIG. 2C.

したがって軸方向の液圧と、径方向の液圧とが同時にこ
の中間密封環5にかかった場合には、主に中間密封環5
のシール面の巾Pとシール面突出量nとの割合によって
、軸方向の液圧の影響が径方向の液圧の影響より大きく
なり、この中間密封環5のシール面内径側が凸状になる
か、または逆に径方向の液圧の影響が軸方向の液圧の影
響より大きくなり、中間密封環5のシール面外径側が凸
状になるかパ決まる。
Therefore, when axial hydraulic pressure and radial hydraulic pressure are applied to the intermediate sealing ring 5 at the same time, the intermediate sealing ring 5
Depending on the ratio between the width P of the sealing surface and the amount of protrusion n of the sealing surface, the influence of the hydraulic pressure in the axial direction becomes larger than the influence of the hydraulic pressure in the radial direction, and the inner diameter side of the sealing surface of the intermediate sealing ring 5 becomes convex. Or, conversely, the influence of the hydraulic pressure in the radial direction becomes greater than the influence of the hydraulic pressure in the axial direction, which determines whether the outer diameter side of the sealing surface of the intermediate sealing ring 5 becomes convex.

したがって、液圧を一定に設定し、シール面の巾Pとシ
ール面の突出量nとの比P/nを適当に選べば軸方向の
液圧の影響と、径方向の液圧の影響とがバランスし、結
果として中間密封環5の変形による両端シール面の傾き
を無くすることがで゛きる。
Therefore, if the hydraulic pressure is set constant and the ratio P/n of the width P of the sealing surface and the protrusion amount n of the sealing surface is appropriately selected, the influence of the hydraulic pressure in the axial direction and the influence of the hydraulic pressure in the radial direction can be reduced. are balanced, and as a result, it is possible to eliminate the inclination of both end seal surfaces due to deformation of the intermediate seal ring 5.

ところがシール面の巾Pとシール面の突出量nとの比p
/ nは中間密封環5の材料強度上小さくするにはお
のずと限度があるため、液圧の大きさがある範囲を超え
ると、各面にかかる液圧のバランスによって中間密封環
5の変形を無くすことは不可能になり、シール面の平行
度が保てなくなるため、シール性能を損うことになる。
However, the ratio p between the width P of the sealing surface and the protrusion amount n of the sealing surface
There is a natural limit to reducing /n due to the material strength of the intermediate sealing ring 5, so if the hydraulic pressure exceeds a certain range, deformation of the intermediate sealing ring 5 can be eliminated by balancing the hydraulic pressure applied to each surface. This makes it impossible to maintain the parallelism of the sealing surfaces, which impairs the sealing performance.

このため近時第3図に示すように中間密封環26の内壁
面に金属性の保強環27を設けたりして、中間密封環2
6の液圧の影響による変形を抑え、その両端シール面8
,8の平行度をくずさないようにし、高圧においてもそ
のシール性能が低下しに<<シたメカニカルシールが考
案されているが、このようなものは構造が比較的複雑で
あるので、設計、製作の上から難点を有し、また前述し
た液圧による歪をバランスさせる為の形状決定が困難で
゛ある。
For this reason, recently, as shown in FIG.
6, the sealing surface 8 at both ends is suppressed from deformation due to the influence of hydraulic pressure.
Mechanical seals have been devised that prevent the parallelism of the . It is difficult to manufacture, and it is difficult to determine the shape to balance the distortion caused by the hydraulic pressure mentioned above.

本考案はこのような事情に着目してなされたもので、断
面丁字形のカーボングラファイト製中間密封環を、その
内壁面に液体圧が作用しない状態で使用する場合に生じ
る特有の問題点、つまり、前記中間密封環の外壁面に高
い流体圧が作用すると該中間密封環自身に歪が生じてシ
ール性能の低下を招くという問題点を簡単な構成により
解消することがで゛きるようにしたメカニカルシール供
しようとするものである。
The present invention was developed in light of these circumstances, and addresses the unique problems that arise when a carbon graphite intermediate sealing ring with a T-shaped cross section is used without liquid pressure acting on its inner wall surface. , a mechanical system capable of solving the problem that when high fluid pressure acts on the outer wall surface of the intermediate sealing ring, distortion occurs in the intermediate sealing ring itself, resulting in a reduction in sealing performance, with a simple configuration. It is intended to provide a seal.

以下本考案の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図に示すように、フレーム10内に設けた回転軸1
2上に回転密封環13をこの回転軸12に対して回転不
能で、かつ回転軸方向にはスライド可能に嵌挿している
As shown in FIG. 4, a rotating shaft 1 provided within a frame 10
A rotary sealing ring 13 is fitted onto the rotary shaft 12 so as to be non-rotatable with respect to the rotary shaft 12 but slidable in the direction of the rotary shaft.

またこの回転軸12の周辺フレーム10の内壁に静止密
封環14を上記回転軸12を囲むように取着し、回り止
め用ピン15によってこの静止密封環14がフレーム1
0に対して回転しないようにしている。
Further, a stationary sealing ring 14 is attached to the inner wall of the frame 10 around the rotating shaft 12 so as to surround the rotating shaft 12, and the stationary sealing ring 14 is attached to the frame 10 by a rotation prevention pin 15.
It is made to not rotate relative to 0.

またこの静止密封環14と上記回転密封環13との互い
に相対向する端面16、 17間にカーボングラファイ
ト製の中間密封環18を、その両端シール面が上記各端
面16,17に当接するようにして、かつその内壁面に
液圧が作用しないようにして介在させている。
Further, an intermediate sealing ring 18 made of carbon graphite is provided between the end surfaces 16 and 17 of the stationary sealing ring 14 and the rotating sealing ring 13, which face each other, so that both end sealing surfaces of the intermediate sealing ring 18 are in contact with the respective end surfaces 16 and 17. and is interposed so that no hydraulic pressure acts on its inner wall surface.

一方上記回転軸12上の上記回転密封環13の他端後部
にスプリングリテーナ19を回転軸に対して回転不能に
嵌着し、このスプリングリテーナ19によって保持され
るスプリング20の力により上記回転密封環13を上記
中間密封環18に押圧して、この回転密封環13の外周
囲部に存在する流体を密封している。
On the other hand, a spring retainer 19 is fitted to the rear of the other end of the rotary sealing ring 13 on the rotary shaft 12 so that it cannot rotate with respect to the rotary shaft, and the force of the spring 20 held by the spring retainer 19 is applied to the rotary sealing ring. 13 is pressed against the intermediate seal ring 18 to seal the fluid present around the outer circumference of the rotary seal ring 13.

また上記中間密封環18は、シール面をその両側に平行
に突出させた回転軸方向断面が丁字形をしており、その
内壁面に円周方向に設けた溝Aは、断面U字形のもので
、液圧によって生じる中間密封環18の変形をバランス
させて両シール面6,7の平行度を保つのに必要かつ十
分な大きさに設定されている。
Further, the intermediate sealing ring 18 has a T-shaped cross section in the rotational axis direction with the sealing surface projecting parallel to both sides thereof, and the groove A provided in the circumferential direction on the inner wall surface has a U-shaped cross section. The size is set to be necessary and sufficient to balance the deformation of the intermediate sealing ring 18 caused by hydraulic pressure and to maintain the parallelism of both sealing surfaces 6 and 7.

具体的には、第5図に示すような寸法の中間密封環18
において、 なる関係が成立するような溝Aの大きさを定めればよい
ことか゛判っている。
Specifically, an intermediate sealing ring 18 having dimensions as shown in FIG.
It is known that it is sufficient to determine the size of the groove A such that the following relationship holds true.

なお、Pは中間密封環18のシール面16. 17の巾
であり、nはこのシール面16. 17の突出量であり
、ρは溝Aの円弧状溝底の曲率半径であり、tはこの溝
Aの溝深さである。
Note that P is the sealing surface 16. of the intermediate sealing ring 18. 17, and n is the width of this sealing surface 16. 17, ρ is the radius of curvature of the arcuate groove bottom of groove A, and t is the groove depth of groove A.

このような構成であれば、この溝Aを有する中間密封環
18は、この溝Aを有さす、他の各寸法および材質が同
一である中間密封環に比べ、両端シール面の外径側が凸
になる変形をしやすくなり、シール面の巾Pおよびシー
ル面の突出量nの割合p / nが同一であっても、溝
Aを有しない中間密封環に比べて遥かに高液圧下で、両
端シール面の外径側を凸状に変形させようとする液圧の
影響と、両端シール面の内径側を凸状に変形させようと
する液圧の影響とがバランスし、両端シール面を理想的
な平行状態に保持することができる。
With such a configuration, the intermediate sealing ring 18 having the groove A has a convex outer diameter side of both end sealing surfaces compared to an intermediate sealing ring having the groove A and having the same dimensions and material. Even if the width P of the sealing surface and the ratio p/n of the protrusion amount n of the sealing surface are the same, it will deform under much higher hydraulic pressure than the intermediate sealing ring without the groove A. The effect of the hydraulic pressure that tries to deform the outer diameter side of the sealing surfaces at both ends into a convex shape and the influence of the hydraulic pressure that tries to deform the inner diameter side of the sealing surfaces at both ends into a convex shape are balanced, and the sealing surfaces at both ends are Can be maintained in an ideal parallel state.

したがって第3図に示すように中間密封環26の内壁円
周方向の凸部に金属性の保強環27を設けたりして、こ
の中間密封環26の補強を行って、両端シール面8,8
の平行度を最小限とパめるというような工夫をする必要
が無く、製作工数および材料の節約にも効果がある。
Therefore, as shown in FIG. 3, the intermediate sealing ring 26 is reinforced by providing a metallic reinforcing ring 27 on the convex portion of the inner wall of the intermediate sealing ring 26 in the circumferential direction. 8
There is no need to take measures such as minimizing the parallelism of the lines, which is effective in saving manufacturing man-hours and materials.

第6図、第7図は実験により本考案に係るメカニカルシ
ールが所期の効果を発揮するものであるかどうかを判定
する方法を示したものである。
FIGS. 6 and 7 show a method for determining whether the mechanical seal according to the present invention exhibits the desired effect through experiments.

すなわち、この実験では、m= 7 mm, n=2.
5 mm, P=3、5mm, q=12mmという寸
法の中間密封環を有した従来のメカニカルシールと、こ
の中間密封環と同一外形を有しその内壁面にt=2mm
、ρ−1.4mmの溝Aを設けた中間密封環18を有し
てなる本考案に係るメカニカルシールにつき、シール面
部における漏洩量、摩擦抵抗を比較測定した。
That is, in this experiment, m=7 mm, n=2.
A conventional mechanical seal has an intermediate sealing ring with dimensions of 5 mm, P = 3, 5 mm, and q = 12 mm, and a mechanical seal having the same external shape as this intermediate seal ring and a t = 2 mm on its inner wall surface.
For the mechanical seal according to the present invention having an intermediate sealing ring 18 provided with a groove A of ρ-1.4 mm, the amount of leakage and frictional resistance at the seal surface were compared and measured.

第6図に示す結果よりすれば、従来のメカニカルシール
では折れ線Fが示すようにシール面に作用する摩擦力が
、液圧の増加にもかかわらず増大しておらず、折れ線C
が示すように液圧が4mg/cm2以上になるとシール
面部での漏洩量が増大する。
According to the results shown in Fig. 6, in the conventional mechanical seal, the frictional force acting on the sealing surface does not increase as indicated by the polygonal line F despite the increase in hydraulic pressure, and the frictional force acting on the seal surface does not increase as indicated by the polygonal line C
As shown, when the liquid pressure exceeds 4 mg/cm2, the amount of leakage at the seal surface increases.

これに対して、本考案に係るメカニカルシールでは、折
れ線すが示すように、液圧の増大にともない摩擦力かは
パ直線的に増加している。
On the other hand, in the mechanical seal according to the present invention, as shown by the broken line, the frictional force increases linearly as the hydraulic pressure increases.

このことから、中間密封環18のシール面6,7が平行
度を保ち、シール面部の平面摺接状態が維持されている
ことが判る。
From this, it can be seen that the seal surfaces 6 and 7 of the intermediate seal ring 18 maintain parallelism, and the plane sliding state of the seal surfaces is maintained.

また、折れ線dが示すように本考案に係るメカニカルシ
ールでは80 kg/Cm2の液圧が生じても漏洩量が
全く増加しない。
Further, as shown by the polygonal line d, in the mechanical seal according to the present invention, even if a hydraulic pressure of 80 kg/Cm2 is generated, the amount of leakage does not increase at all.

また、第7図に示す結果よりすれば、従来のメカニカル
シールでは、折れ線eが示すようにシール面の摩擦係数
が液圧の増大にともなって大巾に減少している。
Furthermore, according to the results shown in FIG. 7, in the conventional mechanical seal, the friction coefficient of the sealing surface decreases significantly as the hydraulic pressure increases, as indicated by the polygonal line e.

このことからシール面が液圧によって極端に歪んでいる
ことが判る。
This shows that the sealing surface is extremely distorted by the hydraulic pressure.

これに対して、本考案に係るメカニカルシールでは、折
れ線fが示すように摩擦係数は液圧に関係なく一定であ
る。
In contrast, in the mechanical seal according to the present invention, the coefficient of friction is constant regardless of the hydraulic pressure, as indicated by the polygonal line f.

よって、本考案に係るメカニカルシールのシール面ば液
圧の増加にもかかわらず平行度を維持していることがわ
かる。
Therefore, it can be seen that the sealing surface of the mechanical seal according to the present invention maintains parallelism despite an increase in hydraulic pressure.

以上詳述したように、本考案によれば液圧によって生じ
る中間密封環の変形をバランスさせて両シール面の平行
度を保つことができるので、変形しやすく高圧流体の密
封に一定の限界があるとされていた断面丁字形のカーボ
ングラファイト製中間密封環の密封性能を飛躍的に向上
させることができ、しかも、非接液面たる内壁面のみに
溝を設けるようにしているので、構造が簡単で実施が容
易である等、実用上優れた効果が得られるものである。
As detailed above, according to the present invention, the deformation of the intermediate sealing ring caused by hydraulic pressure can be balanced and the parallelism of both sealing surfaces can be maintained. The sealing performance of the carbon graphite intermediate sealing ring with a T-shaped cross section has been dramatically improved, and since the grooves are provided only on the inner wall surface, which is the non-wetted surface, the structure has been improved. It is simple and easy to implement, and provides excellent practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す正面図、第2図は従来例における
中間密封環の変形状態を示す説明図、第3図は他の従来
例における中間密封環の形状を示す断面図、第4図は本
考案の一実施例を示す正面図、第5図は中間密封環の寸
法説明図、第6図、第7図は実験結果を示す説明図であ
る。 13・・・・・・回転密封環、14・・・・・・静止密
封環、18・・・・・・中間密封環、A・・・・・・溝
FIG. 1 is a front view showing a conventional example, FIG. 2 is an explanatory view showing a deformed state of the intermediate sealing ring in the conventional example, FIG. 3 is a sectional view showing the shape of the intermediate sealing ring in another conventional example, and FIG. The figure is a front view showing an embodiment of the present invention, FIG. 5 is a dimensional explanatory diagram of an intermediate sealing ring, and FIGS. 6 and 7 are explanatory diagrams showing experimental results. 13... Rotating sealing ring, 14... Stationary sealing ring, 18... Intermediate sealing ring, A... Groove.

Claims (1)

【実用新案登録請求の範囲】 回転密封環と静止密封環との間に、両側にシール面を有
した断面丁字形のカーボングラファイトからなる中間密
封環を、その内壁面に液圧が作用しないようにして介在
させてなるメカニカルシールにおいて、上記中間密封環
の非接液面たる内壁面のみに断面U字形の溝を設け、こ
の溝の円弧状溝底の曲率半径ρ及びその溝深さtと前記
シール面の巾P及びその突出量nとの関係が、 旦=ρ及び聾=1となるようにしであることを特n
jn 徴とするメカニカルシール。
[Claims for Utility Model Registration] An intermediate sealing ring made of carbon graphite having a T-shaped cross section and having sealing surfaces on both sides is provided between a rotating sealing ring and a stationary sealing ring so that hydraulic pressure does not act on its inner wall surface. In this mechanical seal, a groove having a U-shaped cross section is provided only on the inner wall surface, which is the non-liquid contact surface, of the intermediate sealing ring, and the radius of curvature ρ of the arcuate groove bottom of this groove and the groove depth t are The relationship between the width P of the sealing surface and its protrusion amount n is such that: dan=ρ and deafness=1.
Mechanical seal with jn characteristics.
JP1976067486U 1976-05-25 1976-05-25 mechanical seal Expired JPS5926128Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976067486U JPS5926128Y2 (en) 1976-05-25 1976-05-25 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976067486U JPS5926128Y2 (en) 1976-05-25 1976-05-25 mechanical seal

Publications (2)

Publication Number Publication Date
JPS52158257U JPS52158257U (en) 1977-12-01
JPS5926128Y2 true JPS5926128Y2 (en) 1984-07-30

Family

ID=28534292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976067486U Expired JPS5926128Y2 (en) 1976-05-25 1976-05-25 mechanical seal

Country Status (1)

Country Link
JP (1) JPS5926128Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707639B2 (en) * 2011-10-28 2015-04-30 イーグル工業株式会社 Mechanical seal device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118142A (en) * 1974-03-04 1975-09-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118142A (en) * 1974-03-04 1975-09-16

Also Published As

Publication number Publication date
JPS52158257U (en) 1977-12-01

Similar Documents

Publication Publication Date Title
US2420104A (en) Seal guard ring
US4610319A (en) Hydrodynamic lubricant seal for drill bits
US6685194B2 (en) Hydrodynamic rotary seal with varying slope
US5368314A (en) Contactless pressurizing-gas shaft seal
US3776560A (en) Bellows type fluid seal
US4169605A (en) Shaft sealing means for high pressure fluid
US7052020B2 (en) Hydrodynamic rotary seal
US2871039A (en) Sealing element for rotary mechanical seals
JP3875824B2 (en) Lip type seal
EP0835398A1 (en) Skew and twist resistant hydrodynamic rotary shaft seal
JPS589870B2 (en) mechanical seal
JPS5891971A (en) Butterfly valve
USRE24440E (en) Groen
US3784213A (en) Rotary face seal assembly
US4753443A (en) Composite annular seals for rotary ball valves and ball joints
US4436317A (en) Cassette seal having a counterring free from unrelieved internal stress
US4792118A (en) Low dead space ring
US4554985A (en) Rotary drill bit
JPS5926128Y2 (en) mechanical seal
US2728591A (en) Rotary mechanical seal
US3999767A (en) Piston ring system
US3738667A (en) Self-energizing face seals
EP0195682B1 (en) Seals
JP3068170B2 (en) Oil seal
US11391375B2 (en) Angled radial lip seal assembly