JPS5924844B2 - Method for manufacturing gas selective permeability composite membrane - Google Patents
Method for manufacturing gas selective permeability composite membraneInfo
- Publication number
- JPS5924844B2 JPS5924844B2 JP10605781A JP10605781A JPS5924844B2 JP S5924844 B2 JPS5924844 B2 JP S5924844B2 JP 10605781 A JP10605781 A JP 10605781A JP 10605781 A JP10605781 A JP 10605781A JP S5924844 B2 JPS5924844 B2 JP S5924844B2
- Authority
- JP
- Japan
- Prior art keywords
- siloxane compound
- gas
- membrane
- porous polymer
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
【発明の詳細な説明】
本発明は薄いシロキサン化合物を多孔性高分子膜に被覆
し、更に好ましくはその上にプラズマ重合によつて得ら
れた架橋構造からなる超薄膜を積層したガス選択透過性
複合膜の製造方法に関するものである。Detailed Description of the Invention The present invention provides a gas-selective permeability film in which a porous polymer film is coated with a thin siloxane compound, and more preferably an ultra-thin film having a crosslinked structure obtained by plasma polymerization is laminated thereon. The present invention relates to a method for manufacturing a composite membrane.
近年流体混合物の分離、精製を蒸留、深冷等の相変化を
ともなうエネルギー多消費プロセスに代る選択透過性膜
で行なうことが積極的に検討されている。In recent years, active consideration has been given to separating and purifying fluid mixtures using permselective membranes instead of energy-intensive processes that involve phase changes such as distillation and deep cooling.
本発明も上記目的を効率的に行なうためのガス選択透過
性複合膜を提供せんとしてなされたものである。液体混
合物の膜分離、精製プロセスのうち工業的規模で実用化
されているのは、海水の淡水化、工場廃水の処理、食品
の濃縮などの液体一液体分離、液体−固体分離が主であ
つて気体−気体の分離についてはほとんどない。The present invention has also been made to provide a gas selectively permeable composite membrane for efficiently accomplishing the above object. Among membrane separation and purification processes for liquid mixtures, the main ones that have been put into practical use on an industrial scale are liquid-liquid separation and liquid-solid separation, such as seawater desalination, factory wastewater treatment, and food concentration. There is little to no gas-gas separation.
ガスの膜分離が実用化され難い理由としては選択透過性
が小さいこと、即ち特定の気体を選択的に通し、他の気
体をほとんど通さないという膜がないため、高純度の気
体をうるためには膜分離を何回も繰り返す多段方式を必
要とし、そのため装置が大型になることと、ガスの透過
性が小さいため、大量のガスを処理し難いことの二点が
あげられる。特に選択透過性を大きくするとガス透過性
が悪くなり、ガス透過性を大きくすると選択透過性が低
下する傾向にあり、この関係を急激に改善することがで
きなかつたためと思われる。そこで本発明者は、選択透
過性、透過性、耐熱性、耐薬品性、強度等の物性を同時
に満足させるために、機能の異なる素材を組合わせるこ
とによつて、上記の目的を達成せんと試み、種々検討し
た結果本発明を完成した。The reason why membrane separation of gases is difficult to put into practical use is that the selective permselectivity is low, that is, there is no membrane that selectively passes a specific gas while almost blocking the passage of other gases. This method requires a multi-stage method in which membrane separation is repeated many times, resulting in a large-sized device, and the low gas permeability makes it difficult to process large amounts of gas. In particular, when the permselectivity is increased, the gas permeability deteriorates, and when the gas permeability is increased, the permselectivity tends to decrease, and this seems to be because this relationship could not be improved rapidly. Therefore, the present inventor sought to achieve the above objective by combining materials with different functions in order to simultaneously satisfy physical properties such as permselectivity, permeability, heat resistance, chemical resistance, and strength. As a result of various trials and studies, the present invention was completed.
即ち耐熱性と強度については既に市販されている多孔性
高分子素材の中から目的に合致したものを選択する。That is, in terms of heat resistance and strength, a material that meets the purpose is selected from commercially available porous polymer materials.
多孔絶のポリスルホン、ポリイミド等でも良いが、セル
ロースエステル、塩化ビニル、ポリプロピレン、ポリカ
ーボネート、ポリビニルアルコール等はあまり好ましく
ない。しかし耐熱性と強度の点からは四弗化エチレン樹
脂からなる多孔性支持体が最も好ましく、また耐薬品性
も同時に満足される利点がある。ガス透過性については
秀れた特性を有する素材を選択する事、および膜の厚み
を可能なかぎり薄くする製造方法を開発する事が課題と
なる。Porous polysulfone, polyimide, etc. may be used, but cellulose ester, vinyl chloride, polypropylene, polycarbonate, polyvinyl alcohol, etc. are not so preferred. However, from the point of view of heat resistance and strength, a porous support made of tetrafluoroethylene resin is most preferable, and also has the advantage of satisfying chemical resistance at the same time. Regarding gas permeability, the challenge is to select a material with excellent properties and to develop a manufacturing method that makes the membrane as thin as possible.
そこで本発明は、ガスの透過性の秀れた特性を有する素
材としてシロキサン化合物を選び、多孔性支持体にその
薄膜を形成する方法を検討した。シロキサン化合物を薄
くする方法としては、有機溶剤との混合溶液を作り多孔
質支持体に塗布し、溶剤を蒸発させ加硫、硬化させる方
法がある。しかし多孔質支持体にシロキサン化合物の薄
い溶液を直接塗布すると、その表面に溶液層が形成され
ると同時の多孔性の内部に浸入されてしまい、結局多孔
質空間の中に深い根を張ることとなつて実質上膜厚は薄
くならない。そこで本発明者は、シロキサン化合物の膜
厚を薄くするため、まず薄膜を平滑平面に形成し、次い
で多孔質支持体にこの薄膜を転写する方法を開発した。
すなわち、平滑平面に有機溶剤で希釈した。シロキサン
化合物を塗布し溶剤を蒸発させてシロキサン化合物の粘
度をあげ加硫、硬化を部分的には進行させるが、まだ加
硫が不完全のうちに多孔質支持体を増粘した薄膜のシロ
キサン化合物上に重ねる。シロキサン化合物は増粘して
いるが、肯一部流動性をもつているので多孔質支持体側
に浅く根を張つた状態となり、更に加硫を完全に進行さ
せた後で支持体を平滑平面よりはがすと支持体側に積層
した形の複合薄膜が得られる。この方法の特徴は増粘し
たシロキサン化合物の厚みを極端に薄くできることにあ
る。有機溶剤で希釈すればする程薄い膜厚が原理的に得
られるはずであるが、多孔性支持体の上に直接塗布する
と多孔性空間の中に毛細管エネルギーのために吸入され
てしまう。この吸入される程度は溶液の粘性と密接に関
係し、粘度が低く、加硫速度が遅い程著るしくなる。一
方高粘度性にすると多孔性空間への流動は少なくなるが
薄い溶液層をつくり出すことが困難となり塗布厚みその
ものも厚くなつてしまう。本発明によれば希釈溶液で薄
い溶液層をまず平滑平面につくり、そこで溶剤を揮散さ
せて濃厚溶液となし、更に一部加硫を進行せしめて薄膜
の強度をもたせたのちに始めて多孔性支持体と複合一体
化できることとなり、特に50重量%以下、好ましくは
30重量%以下の濃度で20μ以下あるいは10μ以下
の薄膜とすることができる。次にシロキサン化合物が多
孔質支持体に積層した後、その表面に0.3μ以下のプ
ラズマ重合薄膜を積層する。Therefore, in the present invention, a siloxane compound was selected as a material having excellent gas permeability, and a method of forming a thin film thereof on a porous support was investigated. A method for thinning a siloxane compound is to prepare a mixed solution with an organic solvent, apply it to a porous support, evaporate the solvent, and vulcanize and harden the solution. However, when a thin solution of a siloxane compound is applied directly to a porous support, a solution layer is formed on the surface and at the same time it penetrates into the porous interior, resulting in the formation of deep roots within the porous space. Therefore, the film thickness does not become substantially thinner. Therefore, in order to reduce the film thickness of the siloxane compound, the present inventor developed a method in which a thin film is first formed on a smooth plane and then this thin film is transferred to a porous support.
That is, it was diluted with an organic solvent onto a smooth surface. The siloxane compound is applied and the solvent is evaporated to increase the viscosity of the siloxane compound, allowing vulcanization and curing to proceed partially, but the siloxane compound becomes a thin film that thickens the porous support while vulcanization is still incomplete. layer on top. Although the siloxane compound has increased viscosity, since the positive part has fluidity, it becomes shallowly rooted on the porous support side, and after vulcanization has completely progressed, the support is removed from the flat surface. When peeled off, a composite thin film layered on the support side is obtained. The feature of this method is that the thickness of the thickened siloxane compound can be made extremely thin. In principle, it should be possible to obtain a thinner film by diluting it with an organic solvent, but if it is applied directly onto a porous support, it will be sucked into the porous space due to capillary energy. The degree of this inhalation is closely related to the viscosity of the solution, and becomes more pronounced as the viscosity is lower and the vulcanization rate is slower. On the other hand, if the viscosity is increased, the flow into the porous space will be reduced, but it will be difficult to create a thin solution layer, and the coating thickness itself will become thicker. According to the present invention, a thin solution layer is first formed on a smooth surface using a diluted solution, the solvent is volatilized there to form a concentrated solution, and a part of the solution is further vulcanized to give the strength of the thin film, after which a porous support is formed. In particular, at a concentration of 50% by weight or less, preferably 30% by weight or less, a thin film of 20μ or less or 10μ or less can be formed. Next, after the siloxane compound is laminated on the porous support, a plasma polymerized thin film of 0.3 μm or less is laminated on the surface thereof.
このためには系内を2t0rr以下の減圧として、重合
性のガスを導入し所定の出力500W以下、たとえば1
0Wで反応容器中に高周波によるブロー放電を行なうと
重合性ガスがプラズマ重合して薄膜となり、架橋シロキ
サン化合物と多孔性高分子膜の複合構造の表面層に積層
してくる。この積層厚みはグロー放電させる時間を長く
することでほぼ直線的に変化し、たとえば0.3μの厚
み変化を放電時間で選定することができる。また重合性
ガスの流量や、グロー放電時の出力の増減によつても積
層厚みが増減したり、粉末化したり、油状になつたりす
るが、これらの条件はこの分野の技術に習熟している者
にとつて比較的容易に最適化できる。重合ガスとしては
、高分子の繰り返し単位に第三級炭素C−CH−Cを含
む化合物、さらに第三級炭素の代りに第三級型有機ケイ
素C−Sl−Cを含しむ化合物がガス選択透過性におい
て秀れており、これを用いることが好ましい。For this purpose, the pressure in the system is reduced to 2 t0rr or less, a polymerizable gas is introduced, and the predetermined output is 500 W or less, for example, 1
When high frequency blow discharge is performed in the reaction vessel at 0 W, the polymerizable gas undergoes plasma polymerization to form a thin film, which is laminated on the surface layer of the composite structure of the crosslinked siloxane compound and porous polymer film. This laminated thickness changes almost linearly by increasing the glow discharge time, and for example, a thickness change of 0.3 μm can be selected depending on the discharge time. Also, depending on the flow rate of the polymerizable gas and the increase or decrease in the output during glow discharge, the laminated thickness may increase or decrease, or the layer may become powdered or oily, but these conditions are determined by those familiar with the technology in this field. It is relatively easy for anyone to optimize. As the polymerization gas, a compound containing tertiary carbon C-CH-C in the repeating unit of the polymer, and a compound containing tertiary organosilicon C-Sl-C instead of tertiary carbon are selected as the polymerization gas. It is preferable to use it because it has excellent transparency.
第3級炭素を含む化合物としては4−メチル1ベンゼン
、4−メチル2ベンゼン、2,4,4,トリメチル1ベ
ンゼン、あるいは4,4ジメチル1ベンゼンなどのベン
ゼン誘導体、あるいは1オクテン、2オクテン、3オク
テン、4オクテンあるいはイソオクテンなどのオクテン
誘導体をあげることが出来る。Compounds containing tertiary carbon include benzene derivatives such as 4-methyl-1 benzene, 4-methyl-2-benzene, 2,4,4, trimethyl-1-benzene, or 4,4-dimethyl-1 benzene, or 1-octene, 2-octene, Examples include octene derivatives such as 3-octene, 4-octene, and isooctene.
また第3級型有機ケイ素化合物としては
で代表することができ、XにはCt,NH2,NHCH
3,N(CH3)2,CH3,CH=CH2,C:CH
をあげることができる。In addition, tertiary type organosilicon compounds can be represented by: X is Ct, NH2, NHCH
3,N(CH3)2,CH3,CH=CH2,C:CH
can be given.
以上説明したように、限定した条件のもとで作成した複
合膜は、混合ガスの選択透過性において極めて秀れた特
性を有しており、省エネルギー的なガス分離方法として
工業的に寄与するところ大である。As explained above, the composite membrane created under limited conditions has extremely excellent permselective properties for mixed gases, and has the potential to contribute industrially as an energy-saving gas separation method. It's large.
以下には本発明を実施例によつて説明する。The present invention will be explained below by way of examples.
実施例 1表面をアルコールで洗浄したガラス板に、厚
みを25μに設定したドクターナイフを用い、キシレン
で50重量%に希釈したKElO8RTV(シロキサン
化合物、信越化学製)を塗布する。Example 1 KElO8RTV (siloxane compound, manufactured by Shin-Etsu Chemical Co., Ltd.) diluted to 50% by weight with xylene is applied to a glass plate whose surface has been cleaned with alcohol using a doctor knife with a thickness of 25 μm.
次に加硫、硬化の程度が完了する以前の幾つかの時間に
フロロボアFP−022(平均孔径0.22μ、住友電
工製四弗化エチレン樹脂多孔質膜)を重ね、全面を一様
に手でおさえる。次にシロキサン化合物が完全に加硫、
硬化した後にフロロボアをガラス板よりはがすと、シロ
キサン化合物の薄膜がフロロボアの表面に完全に転写さ
れた。第1表にはシロキサン化合物の塗布からフロロボ
アを重ねるまでの経過時間、転写してできた薄膜の厚み
、酸素の透過速度PO2、酸素の窒素に対する選択透過
係数PO2/PN2の関係を示す。実施例 2
実施例1の実験黒7の方法で製造した。Next, for some time before the degree of vulcanization and curing is completed, Fluorobore FP-022 (average pore diameter 0.22μ, polytetrafluoroethylene resin porous membrane made by Sumitomo Electric Industries) is layered and the entire surface is uniformly rubbed by hand. Hold it down. Next, the siloxane compound is completely vulcanized,
When the Fluorobor was removed from the glass plate after curing, a thin film of the siloxane compound was completely transferred to the surface of the Fluorobor. Table 1 shows the relationship between the elapsed time from application of the siloxane compound to the overlaying of Fluorobor, the thickness of the thin film formed by transfer, the oxygen permeation rate PO2, and the selective permeability coefficient of oxygen to nitrogen PO2/PN2. Example 2 Produced by the method of Experiment Black 7 of Example 1.
ジメチルシロキサン積層支持体表面に、13.56MH
z・10Wattの高周波出力でビニルトリメチルシラ
ンを30分間プラズマ重合した複合膜のガス透過係数を
測定したところ酸素の透過速度は1.2X10−5i/
Cd−SeC−(V7!Hr.窒素は3.3X10−6
cd/Cd・Sec−?Ht.となり選択透過係数は3
.6であつた。実施例 3プラズマ反応装置に送入する
重合性ガスをビニルトリメチルシランから下表の種類に
変更し.、高周波出力を50Wにあげたこと以外は実施
例2と同様の条件で得た複合膜は以下の特性を示した。13.56MH on the surface of the dimethylsiloxane laminated support.
When we measured the gas permeability coefficient of a composite membrane made by plasma polymerizing vinyltrimethylsilane for 30 minutes with a high frequency output of z・10Watt, the oxygen permeation rate was 1.2X10-5i/
Cd-SeC-(V7!Hr.Nitrogen is 3.3X10-6
cd/Cd・Sec-? Ht. Therefore, the selective permeation coefficient is 3
.. It was 6. Example 3 The polymerizable gas fed into the plasma reactor was changed from vinyltrimethylsilane to the type shown in the table below. A composite film obtained under the same conditions as in Example 2, except that the high frequency output was increased to 50 W, exhibited the following characteristics.
Claims (1)
分子膜をその上に重ね、全面に一定の圧力を加え、次い
で平滑平面から多孔性高分子膜をはがすことによつて、
シロキサン化合物の塗膜を多孔性高分子膜表面に転写し
、転写したシロキサン化合物の塗膜の表面に重合性ガス
によるプラズマ重合膜を積層することを特徴とするガス
選択透過性複合膜の製造方法。 2 重合性ガスが第三級炭素▲数式、化学式、表等があ
ります▼を含む化合物であることを特徴とする特許請求
の範囲第1項の製造方法。 3 重合性ガスが第三級型有機ケイ素▲数式、化学式、
表等があります▼を含む化合物であることを特徴とする
特許請求の範囲第1項の製造方法。 4 多孔性高分子膜が、繊維と結節とからなる多孔性構
造を有する四弗化エチレン樹脂であることを特徴とする
特許請求の範囲第1項、第2項又は第3項の製造方法。[Claims] 1. By applying a siloxane compound onto a smooth flat surface, overlaying a porous polymer membrane thereon, applying a constant pressure to the entire surface, and then peeling off the porous polymer membrane from the smooth flat surface. Then,
A method for producing a gas selectively permeable composite membrane, comprising transferring a coating film of a siloxane compound onto the surface of a porous polymer membrane, and laminating a plasma polymerized membrane using a polymerizable gas on the surface of the transferred coating film of the siloxane compound. . 2. The manufacturing method according to claim 1, wherein the polymerizable gas is a compound containing tertiary carbon. 3 Polymerizable gas is tertiary organosilicon▲mathematical formula, chemical formula,
The manufacturing method according to claim 1, which is a compound containing ▼. 4. The manufacturing method according to claim 1, 2 or 3, wherein the porous polymer membrane is a tetrafluoroethylene resin having a porous structure consisting of fibers and nodules.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10605781A JPS5924844B2 (en) | 1981-07-06 | 1981-07-06 | Method for manufacturing gas selective permeability composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10605781A JPS5924844B2 (en) | 1981-07-06 | 1981-07-06 | Method for manufacturing gas selective permeability composite membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS586208A JPS586208A (en) | 1983-01-13 |
JPS5924844B2 true JPS5924844B2 (en) | 1984-06-12 |
Family
ID=14423982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10605781A Expired JPS5924844B2 (en) | 1981-07-06 | 1981-07-06 | Method for manufacturing gas selective permeability composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5924844B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5955309A (en) * | 1982-09-24 | 1984-03-30 | Shin Etsu Chem Co Ltd | Composite molding for separating gas |
JPS5969105A (en) * | 1982-10-12 | 1984-04-19 | Shin Etsu Chem Co Ltd | Composite molding for gas separation |
JPS61123559A (en) * | 1984-11-20 | 1986-06-11 | Sanyo Electric Co Ltd | Backlash-correcting system |
JPH0637319Y2 (en) * | 1985-12-31 | 1994-09-28 | 株式会社堀場製作所 | Fluorescent X-ray analyzer |
JPWO2008029761A1 (en) * | 2006-09-04 | 2010-01-21 | 東亞合成株式会社 | Method for producing functional membrane |
JP2008189864A (en) * | 2007-02-07 | 2008-08-21 | Toagosei Co Ltd | Manufacturing method of functional film |
-
1981
- 1981-07-06 JP JP10605781A patent/JPS5924844B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS586208A (en) | 1983-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58180205A (en) | Composite membrane having selective permeability to gas and its production | |
JPH0551331B2 (en) | ||
JP3195377B2 (en) | Organic solvent selective permeable membrane | |
JPS6075306A (en) | Liquid separation membrane | |
KR880007581A (en) | Polytrialkyl Germanyl Propine Polymer and Membrane | |
JPS588517A (en) | Method for producing gas selectively permeable composite membrane | |
JPS5924844B2 (en) | Method for manufacturing gas selective permeability composite membrane | |
JP2521884B2 (en) | Method for manufacturing plasma-treated film | |
GB2174619A (en) | Composite separation membranes | |
JPS5924843B2 (en) | Method for producing gas selectively permeable composite membrane | |
JPH038808B2 (en) | ||
JPS61167405A (en) | Separation of liquid mixture | |
JPS6336286B2 (en) | ||
JPS5840102A (en) | Separation of mixed liquid | |
JPS60122026A (en) | Compound molded body for gas separation | |
JPS6333410B2 (en) | ||
JPS61149210A (en) | Preparation of gas permselective composite membrane | |
JPS6334772B2 (en) | ||
JPH0525531B2 (en) | ||
JPS5969105A (en) | Composite molding for gas separation | |
JPS6223401A (en) | Ultrafiltration membrane | |
JPS5955309A (en) | Composite molding for separating gas | |
JPS6297625A (en) | Gas selectively permeable membrane and its manufacturing method | |
JPS6391123A (en) | Porous hollow fiber composite membrane and its manufacturing method | |
JPS62250907A (en) | Method for regenerating performance of separation membrane |